Properties

Label 77.2.i.a
Level $77$
Weight $2$
Character orbit 77.i
Analytic conductor $0.615$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 77.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.614848095564\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 8 x^{10} + 47 x^{8} - 122 x^{6} + 233 x^{4} - 119 x^{2} + 49\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{1} + \beta_{7} ) q^{2} + ( -1 + \beta_{2} - \beta_{8} - \beta_{9} ) q^{3} + ( 1 - \beta_{2} - \beta_{3} - \beta_{4} - \beta_{8} - \beta_{9} ) q^{4} + ( \beta_{3} + 2 \beta_{4} + \beta_{8} + \beta_{9} ) q^{5} + ( -\beta_{1} - \beta_{6} - \beta_{7} ) q^{6} + ( -\beta_{5} - \beta_{6} - \beta_{7} + \beta_{10} ) q^{7} + ( \beta_{5} - \beta_{11} ) q^{8} + ( -\beta_{2} - \beta_{3} + \beta_{9} ) q^{9} +O(q^{10})\) \( q + ( \beta_{1} + \beta_{7} ) q^{2} + ( -1 + \beta_{2} - \beta_{8} - \beta_{9} ) q^{3} + ( 1 - \beta_{2} - \beta_{3} - \beta_{4} - \beta_{8} - \beta_{9} ) q^{4} + ( \beta_{3} + 2 \beta_{4} + \beta_{8} + \beta_{9} ) q^{5} + ( -\beta_{1} - \beta_{6} - \beta_{7} ) q^{6} + ( -\beta_{5} - \beta_{6} - \beta_{7} + \beta_{10} ) q^{7} + ( \beta_{5} - \beta_{11} ) q^{8} + ( -\beta_{2} - \beta_{3} + \beta_{9} ) q^{9} + ( -\beta_{5} + 2 \beta_{6} - 2 \beta_{10} + 2 \beta_{11} ) q^{10} + ( -1 - \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} + \beta_{6} + \beta_{8} + \beta_{9} + \beta_{10} ) q^{11} + ( -1 + \beta_{8} ) q^{12} + ( \beta_{1} - \beta_{6} ) q^{13} + ( 1 - \beta_{2} - \beta_{3} - 3 \beta_{4} ) q^{14} + ( -3 + 2 \beta_{2} - 2 \beta_{4} - 2 \beta_{8} - 2 \beta_{9} ) q^{15} + ( 2 - \beta_{2} + 3 \beta_{8} + 2 \beta_{9} ) q^{16} + ( \beta_{5} - 2 \beta_{11} ) q^{17} + ( -2 \beta_{1} + \beta_{5} + \beta_{6} + \beta_{10} ) q^{18} + ( 2 \beta_{5} + 2 \beta_{7} - 2 \beta_{10} - \beta_{11} ) q^{19} + ( -1 + 2 \beta_{2} + 4 \beta_{3} + 2 \beta_{4} + 3 \beta_{8} + \beta_{9} ) q^{20} + ( \beta_{6} + \beta_{7} + \beta_{10} + \beta_{11} ) q^{21} + ( 1 - 2 \beta_{2} + 2 \beta_{4} - \beta_{5} - 2 \beta_{7} + 2 \beta_{8} + 2 \beta_{9} + \beta_{11} ) q^{22} + ( -4 + \beta_{2} + \beta_{3} - 4 \beta_{8} - \beta_{9} ) q^{23} + ( \beta_{1} + 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{10} ) q^{24} + ( 3 - 3 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} - 3 \beta_{8} - 3 \beta_{9} ) q^{25} + ( 1 - \beta_{3} - 2 \beta_{4} - 2 \beta_{8} - \beta_{9} ) q^{26} + ( -2 + \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{8} + 3 \beta_{9} ) q^{27} + ( 2 \beta_{1} + \beta_{5} - 2 \beta_{6} + \beta_{7} + \beta_{10} - \beta_{11} ) q^{28} + ( \beta_{1} - 2 \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{10} + 2 \beta_{11} ) q^{29} + ( -\beta_{1} - 4 \beta_{6} - 3 \beta_{7} + 2 \beta_{10} - 2 \beta_{11} ) q^{30} + ( 1 + \beta_{2} - \beta_{3} + \beta_{4} - \beta_{9} ) q^{31} + ( 2 \beta_{1} - 2 \beta_{5} + \beta_{6} + \beta_{10} ) q^{32} + ( 1 - 2 \beta_{5} + \beta_{7} - \beta_{8} - \beta_{10} + \beta_{11} ) q^{33} + ( 3 - 2 \beta_{2} - 4 \beta_{3} - 2 \beta_{4} + \beta_{8} - \beta_{9} ) q^{34} + ( -5 \beta_{1} + \beta_{5} - \beta_{6} - 5 \beta_{7} + 2 \beta_{10} ) q^{35} + ( -1 + \beta_{2} + 3 \beta_{4} + \beta_{8} + \beta_{9} ) q^{36} + ( 4 - 2 \beta_{3} + 2 \beta_{8} - 2 \beta_{9} ) q^{37} + ( -5 + 3 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 4 \beta_{8} - 3 \beta_{9} ) q^{38} + \beta_{5} q^{39} + ( \beta_{1} - 2 \beta_{7} + \beta_{10} ) q^{40} + ( 3 \beta_{1} - 3 \beta_{6} ) q^{41} + ( 1 - 2 \beta_{2} + \beta_{3} + 3 \beta_{4} - \beta_{8} + 2 \beta_{9} ) q^{42} + ( -\beta_{1} - \beta_{5} - \beta_{6} + \beta_{7} + 2 \beta_{10} + \beta_{11} ) q^{43} + ( 2 - \beta_{1} + \beta_{2} + 2 \beta_{3} - \beta_{7} + 3 \beta_{8} + 2 \beta_{11} ) q^{44} + ( 6 - 2 \beta_{2} + \beta_{3} - \beta_{4} + 4 \beta_{8} + 2 \beta_{9} ) q^{45} + ( -2 \beta_{1} - \beta_{5} - \beta_{6} - \beta_{10} ) q^{46} + ( -3 + 3 \beta_{2} + \beta_{3} + 2 \beta_{4} + \beta_{8} + \beta_{9} ) q^{47} + ( -3 + \beta_{2} + 2 \beta_{3} + \beta_{4} - 6 \beta_{8} - 2 \beta_{9} ) q^{48} + ( 3 - 2 \beta_{2} + 2 \beta_{3} - \beta_{4} + \beta_{8} - 2 \beta_{9} ) q^{49} + ( \beta_{1} + 2 \beta_{5} + \beta_{6} + 7 \beta_{7} - 2 \beta_{10} - 2 \beta_{11} ) q^{50} + ( \beta_{1} + 4 \beta_{6} + 3 \beta_{7} - 2 \beta_{10} ) q^{51} + ( \beta_{1} + \beta_{5} + 2 \beta_{7} - 2 \beta_{11} ) q^{52} + ( 1 - \beta_{2} - 4 \beta_{3} - 4 \beta_{4} - \beta_{8} - \beta_{9} ) q^{53} + ( \beta_{1} - 2 \beta_{5} - 2 \beta_{7} + \beta_{10} + \beta_{11} ) q^{54} + ( 1 + 4 \beta_{1} - 2 \beta_{2} - 4 \beta_{3} - 2 \beta_{4} + 2 \beta_{6} + 3 \beta_{7} - 3 \beta_{8} - \beta_{9} ) q^{55} + ( -2 + 3 \beta_{2} - 6 \beta_{8} - 2 \beta_{9} ) q^{56} + ( 2 \beta_{5} - 3 \beta_{7} - 2 \beta_{11} ) q^{57} + ( -5 + 4 \beta_{2} + 6 \beta_{3} - 3 \beta_{8} - 2 \beta_{9} ) q^{58} + ( 1 - 7 \beta_{2} + 4 \beta_{8} + 7 \beta_{9} ) q^{59} + ( 1 - \beta_{2} - 3 \beta_{3} - 3 \beta_{4} - \beta_{8} - \beta_{9} ) q^{60} + ( 4 \beta_{1} - 2 \beta_{7} - 2 \beta_{10} ) q^{61} + ( -2 \beta_{1} + \beta_{5} - \beta_{7} + \beta_{11} ) q^{62} + ( -\beta_{1} + \beta_{5} + 2 \beta_{7} - \beta_{10} - 2 \beta_{11} ) q^{63} + ( 2 - \beta_{2} - 5 \beta_{4} - 2 \beta_{8} - 2 \beta_{9} ) q^{64} + ( -3 \beta_{1} - 3 \beta_{7} + \beta_{11} ) q^{65} + ( -7 + \beta_{1} + 3 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{7} - 5 \beta_{8} - 3 \beta_{9} ) q^{66} + ( -4 + 4 \beta_{2} + 6 \beta_{3} + 6 \beta_{4} + 6 \beta_{8} + 4 \beta_{9} ) q^{67} + ( -3 \beta_{1} + 3 \beta_{10} ) q^{68} + ( 2 - \beta_{2} - 2 \beta_{3} - \beta_{4} + 6 \beta_{8} + 4 \beta_{9} ) q^{69} + ( -2 + 2 \beta_{2} + 2 \beta_{3} + 6 \beta_{4} + 14 \beta_{8} + 7 \beta_{9} ) q^{70} + ( 3 - 3 \beta_{2} - \beta_{4} + \beta_{8} + \beta_{9} ) q^{71} + ( -2 \beta_{1} - 2 \beta_{6} - 3 \beta_{7} + \beta_{10} + \beta_{11} ) q^{72} + ( \beta_{1} - \beta_{5} + \beta_{6} + 2 \beta_{7} - \beta_{10} + 2 \beta_{11} ) q^{73} + 2 \beta_{5} q^{74} + ( -5 + \beta_{2} - \beta_{3} - 2 \beta_{4} + 3 \beta_{8} - \beta_{9} ) q^{75} + ( -7 \beta_{1} + 3 \beta_{6} - 2 \beta_{7} ) q^{76} + ( -2 - 2 \beta_{1} + \beta_{2} - 3 \beta_{3} - 2 \beta_{4} - \beta_{5} + 2 \beta_{6} - \beta_{7} - \beta_{8} - 5 \beta_{9} - \beta_{10} + \beta_{11} ) q^{77} + ( 1 + 2 \beta_{4} + \beta_{8} + \beta_{9} ) q^{78} + ( 2 \beta_{1} + 2 \beta_{6} + 3 \beta_{7} - \beta_{10} ) q^{79} + ( 7 - 5 \beta_{2} - 3 \beta_{3} + 3 \beta_{4} + 6 \beta_{8} + 5 \beta_{9} ) q^{80} + ( -1 + \beta_{2} + 4 \beta_{3} + 4 \beta_{4} - \beta_{8} + \beta_{9} ) q^{81} + ( 3 - 3 \beta_{3} - 6 \beta_{4} - 6 \beta_{8} - 3 \beta_{9} ) q^{82} + ( -8 \beta_{1} - \beta_{5} - 4 \beta_{7} - \beta_{11} ) q^{83} + ( \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{10} + \beta_{11} ) q^{84} + ( -\beta_{1} - \beta_{6} - 6 \beta_{7} + 2 \beta_{10} ) q^{85} + ( -5 - \beta_{2} - 2 \beta_{3} - 6 \beta_{8} ) q^{86} + ( -3 \beta_{1} + \beta_{5} - 5 \beta_{6} - 6 \beta_{7} + 5 \beta_{10} - 2 \beta_{11} ) q^{87} + ( -3 + 2 \beta_{1} + 3 \beta_{2} + \beta_{3} + \beta_{4} - \beta_{6} + \beta_{8} + 3 \beta_{9} - \beta_{10} ) q^{88} + ( -1 - 4 \beta_{2} - \beta_{3} - 2 \beta_{4} + 4 \beta_{8} - \beta_{9} ) q^{89} + ( 9 \beta_{1} - \beta_{5} + \beta_{6} + 5 \beta_{7} - \beta_{11} ) q^{90} + ( -\beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{8} + 2 \beta_{9} ) q^{91} + ( -3 + 3 \beta_{2} + \beta_{4} - \beta_{8} - \beta_{9} ) q^{92} + ( 2 + \beta_{2} + \beta_{8} - 2 \beta_{9} ) q^{93} + ( -3 \beta_{1} - \beta_{5} - \beta_{6} - 6 \beta_{7} + \beta_{10} + 2 \beta_{11} ) q^{94} + ( 6 \beta_{1} - 4 \beta_{5} - 3 \beta_{6} - 3 \beta_{10} ) q^{95} + ( -2 \beta_{1} - 2 \beta_{5} + 2 \beta_{7} + \beta_{11} ) q^{96} + ( -3 \beta_{8} - 3 \beta_{9} ) q^{97} + ( 8 \beta_{1} - 2 \beta_{5} + \beta_{6} + 6 \beta_{7} - 5 \beta_{10} - \beta_{11} ) q^{98} + ( 1 - \beta_{2} - 3 \beta_{4} + \beta_{5} - 3 \beta_{7} - \beta_{8} - \beta_{9} - \beta_{11} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 6q^{3} + 4q^{4} - 4q^{9} + O(q^{10}) \) \( 12q - 6q^{3} + 4q^{4} - 4q^{9} - 4q^{11} - 18q^{12} + 8q^{14} - 20q^{15} + 12q^{16} - 4q^{22} - 20q^{23} + 14q^{25} + 18q^{26} + 6q^{31} + 18q^{33} - 12q^{36} + 16q^{37} - 48q^{38} + 16q^{42} + 20q^{44} + 54q^{45} - 18q^{47} + 16q^{49} - 2q^{53} + 18q^{56} - 6q^{58} - 12q^{59} + 28q^{64} - 42q^{66} - 24q^{67} - 58q^{70} + 20q^{71} - 78q^{75} - 50q^{77} + 8q^{78} + 30q^{80} + 14q^{81} + 54q^{82} - 38q^{86} - 4q^{88} - 66q^{89} + 22q^{91} - 20q^{92} + 12q^{93} + 12q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 8 x^{10} + 47 x^{8} - 122 x^{6} + 233 x^{4} - 119 x^{2} + 49\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( 13 \nu^{10} + 113 \nu^{8} - 929 \nu^{6} + 6401 \nu^{4} - 11510 \nu^{2} + 16793 \)\()/6363\)
\(\beta_{3}\)\(=\)\((\)\( -148 \nu^{10} - 797 \nu^{8} + 1766 \nu^{6} - 27353 \nu^{4} + 2798 \nu^{2} - 55601 \)\()/69993\)
\(\beta_{4}\)\(=\)\((\)\( 305 \nu^{10} - 3875 \nu^{8} + 25682 \nu^{6} - 83459 \nu^{4} + 133274 \nu^{2} - 13895 \)\()/69993\)
\(\beta_{5}\)\(=\)\((\)\( 64 \nu^{11} - 376 \nu^{9} + 2209 \nu^{7} - 1864 \nu^{5} + 952 \nu^{3} + 34403 \nu \)\()/9999\)
\(\beta_{6}\)\(=\)\((\)\( 656 \nu^{11} - 7187 \nu^{9} + 45140 \nu^{7} - 152426 \nu^{5} + 299729 \nu^{3} - 203147 \nu \)\()/69993\)
\(\beta_{7}\)\(=\)\((\)\( -799 \nu^{11} + 5944 \nu^{9} - 34921 \nu^{7} + 82015 \nu^{5} - 173119 \nu^{3} + 18424 \nu \)\()/69993\)
\(\beta_{8}\)\(=\)\((\)\( 799 \nu^{10} - 5944 \nu^{8} + 34921 \nu^{6} - 82015 \nu^{4} + 173119 \nu^{2} - 88417 \)\()/69993\)
\(\beta_{9}\)\(=\)\((\)\( -2249 \nu^{10} + 18629 \nu^{8} - 106529 \nu^{6} + 273398 \nu^{4} - 452162 \nu^{2} + 180866 \)\()/69993\)
\(\beta_{10}\)\(=\)\((\)\( -2392 \nu^{11} + 17386 \nu^{9} - 96310 \nu^{7} + 202987 \nu^{5} - 325552 \nu^{3} - 3857 \nu \)\()/69993\)
\(\beta_{11}\)\(=\)\((\)\( -916 \nu^{11} + 7048 \nu^{9} - 41407 \nu^{7} + 105004 \nu^{5} - 205273 \nu^{3} + 104839 \nu \)\()/23331\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{9} + 3 \beta_{8} + \beta_{3} + 2\)
\(\nu^{3}\)\(=\)\(\beta_{11} - 4 \beta_{7} - \beta_{5}\)
\(\nu^{4}\)\(=\)\(5 \beta_{9} + 12 \beta_{8} + 6 \beta_{4} + 6 \beta_{3} + 5 \beta_{2} - 5\)
\(\nu^{5}\)\(=\)\(6 \beta_{11} - \beta_{10} - 16 \beta_{7} + 2 \beta_{6} - 17 \beta_{1}\)
\(\nu^{6}\)\(=\)\(8 \beta_{9} + 8 \beta_{8} + 31 \beta_{4} + 15 \beta_{2} - 44\)
\(\nu^{7}\)\(=\)\(8 \beta_{10} + 8 \beta_{6} + 31 \beta_{5} - 83 \beta_{1}\)
\(\nu^{8}\)\(=\)\(-59 \beta_{9} - 186 \beta_{8} - 153 \beta_{3} - 47 \beta_{2} - 80\)
\(\nu^{9}\)\(=\)\(-153 \beta_{11} + 94 \beta_{10} + 292 \beta_{7} - 47 \beta_{6} + 153 \beta_{5} - 47 \beta_{1}\)
\(\nu^{10}\)\(=\)\(-492 \beta_{9} - 1064 \beta_{8} - 739 \beta_{4} - 739 \beta_{3} - 492 \beta_{2} + 492\)
\(\nu^{11}\)\(=\)\(-739 \beta_{11} + 247 \beta_{10} + 1309 \beta_{7} - 494 \beta_{6} + 1556 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/77\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\)
\(\chi(n)\) \(1 + \beta_{8}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1
−1.87742 1.08393i
−1.43898 0.830794i
−0.636099 0.367252i
0.636099 + 0.367252i
1.43898 + 0.830794i
1.87742 + 1.08393i
−1.87742 + 1.08393i
−1.43898 + 0.830794i
−0.636099 + 0.367252i
0.636099 0.367252i
1.43898 0.830794i
1.87742 1.08393i
−1.87742 + 1.08393i −0.555632 0.320794i 1.34981 2.33795i −2.93818 + 1.69636i 1.39088 −2.49548 0.878952i 1.51670i −1.29418 2.24159i 3.67747 6.36957i
10.2 −1.43898 + 0.830794i −1.97141 1.13819i 0.380438 0.658939i 2.80150 1.61745i 3.78242 2.23530 1.41542i 2.05891i 1.09097 + 1.88962i −2.68754 + 4.65495i
10.3 −0.636099 + 0.367252i 1.02704 + 0.592963i −0.730252 + 1.26483i 0.136673 0.0789082i −0.871067 1.12959 + 2.39249i 2.54175i −0.796790 1.38008i −0.0579584 + 0.100387i
10.4 0.636099 0.367252i 1.02704 + 0.592963i −0.730252 + 1.26483i 0.136673 0.0789082i 0.871067 −1.12959 2.39249i 2.54175i −0.796790 1.38008i 0.0579584 0.100387i
10.5 1.43898 0.830794i −1.97141 1.13819i 0.380438 0.658939i 2.80150 1.61745i −3.78242 −2.23530 + 1.41542i 2.05891i 1.09097 + 1.88962i 2.68754 4.65495i
10.6 1.87742 1.08393i −0.555632 0.320794i 1.34981 2.33795i −2.93818 + 1.69636i −1.39088 2.49548 + 0.878952i 1.51670i −1.29418 2.24159i −3.67747 + 6.36957i
54.1 −1.87742 1.08393i −0.555632 + 0.320794i 1.34981 + 2.33795i −2.93818 1.69636i 1.39088 −2.49548 + 0.878952i 1.51670i −1.29418 + 2.24159i 3.67747 + 6.36957i
54.2 −1.43898 0.830794i −1.97141 + 1.13819i 0.380438 + 0.658939i 2.80150 + 1.61745i 3.78242 2.23530 + 1.41542i 2.05891i 1.09097 1.88962i −2.68754 4.65495i
54.3 −0.636099 0.367252i 1.02704 0.592963i −0.730252 1.26483i 0.136673 + 0.0789082i −0.871067 1.12959 2.39249i 2.54175i −0.796790 + 1.38008i −0.0579584 0.100387i
54.4 0.636099 + 0.367252i 1.02704 0.592963i −0.730252 1.26483i 0.136673 + 0.0789082i 0.871067 −1.12959 + 2.39249i 2.54175i −0.796790 + 1.38008i 0.0579584 + 0.100387i
54.5 1.43898 + 0.830794i −1.97141 + 1.13819i 0.380438 + 0.658939i 2.80150 + 1.61745i −3.78242 −2.23530 1.41542i 2.05891i 1.09097 1.88962i 2.68754 + 4.65495i
54.6 1.87742 + 1.08393i −0.555632 + 0.320794i 1.34981 + 2.33795i −2.93818 1.69636i −1.39088 2.49548 0.878952i 1.51670i −1.29418 + 2.24159i −3.67747 6.36957i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 54.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner
11.b odd 2 1 inner
77.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 77.2.i.a 12
3.b odd 2 1 693.2.bg.a 12
4.b odd 2 1 1232.2.bn.a 12
7.b odd 2 1 539.2.i.c 12
7.c even 3 1 539.2.b.b 12
7.c even 3 1 539.2.i.c 12
7.d odd 6 1 inner 77.2.i.a 12
7.d odd 6 1 539.2.b.b 12
11.b odd 2 1 inner 77.2.i.a 12
11.c even 5 4 847.2.r.b 48
11.d odd 10 4 847.2.r.b 48
21.g even 6 1 693.2.bg.a 12
28.f even 6 1 1232.2.bn.a 12
33.d even 2 1 693.2.bg.a 12
44.c even 2 1 1232.2.bn.a 12
77.b even 2 1 539.2.i.c 12
77.h odd 6 1 539.2.b.b 12
77.h odd 6 1 539.2.i.c 12
77.i even 6 1 inner 77.2.i.a 12
77.i even 6 1 539.2.b.b 12
77.n even 30 4 847.2.r.b 48
77.p odd 30 4 847.2.r.b 48
231.k odd 6 1 693.2.bg.a 12
308.m odd 6 1 1232.2.bn.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.2.i.a 12 1.a even 1 1 trivial
77.2.i.a 12 7.d odd 6 1 inner
77.2.i.a 12 11.b odd 2 1 inner
77.2.i.a 12 77.i even 6 1 inner
539.2.b.b 12 7.c even 3 1
539.2.b.b 12 7.d odd 6 1
539.2.b.b 12 77.h odd 6 1
539.2.b.b 12 77.i even 6 1
539.2.i.c 12 7.b odd 2 1
539.2.i.c 12 7.c even 3 1
539.2.i.c 12 77.b even 2 1
539.2.i.c 12 77.h odd 6 1
693.2.bg.a 12 3.b odd 2 1
693.2.bg.a 12 21.g even 6 1
693.2.bg.a 12 33.d even 2 1
693.2.bg.a 12 231.k odd 6 1
847.2.r.b 48 11.c even 5 4
847.2.r.b 48 11.d odd 10 4
847.2.r.b 48 77.n even 30 4
847.2.r.b 48 77.p odd 30 4
1232.2.bn.a 12 4.b odd 2 1
1232.2.bn.a 12 28.f even 6 1
1232.2.bn.a 12 44.c even 2 1
1232.2.bn.a 12 308.m odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(77, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 49 - 119 T^{2} + 233 T^{4} - 122 T^{6} + 47 T^{8} - 8 T^{10} + T^{12} \)
$3$ \( ( 3 + 6 T + T^{2} - 6 T^{3} + T^{4} + 3 T^{5} + T^{6} )^{2} \)
$5$ \( ( 3 - 33 T + 121 T^{2} - 11 T^{4} + T^{6} )^{2} \)
$7$ \( 117649 - 19208 T^{2} + 3038 T^{4} - 203 T^{6} + 62 T^{8} - 8 T^{10} + T^{12} \)
$11$ \( 1771561 + 644204 T - 73205 T^{2} - 58564 T^{3} - 5566 T^{4} - 220 T^{5} - 29 T^{6} - 20 T^{7} - 46 T^{8} - 44 T^{9} - 5 T^{10} + 4 T^{11} + T^{12} \)
$13$ \( ( -21 + 34 T^{2} - 11 T^{4} + T^{6} )^{2} \)
$17$ \( 2893401 + 796068 T^{2} + 152685 T^{4} + 14850 T^{6} + 1053 T^{8} + 39 T^{10} + T^{12} \)
$19$ \( 311910921 + 38430336 T^{2} + 3269113 T^{4} + 145286 T^{6} + 4713 T^{8} + 83 T^{10} + T^{12} \)
$23$ \( ( 441 + 567 T + 519 T^{2} + 228 T^{3} + 73 T^{4} + 10 T^{5} + T^{6} )^{2} \)
$29$ \( ( 5887 + 1676 T^{2} + 83 T^{4} + T^{6} )^{2} \)
$31$ \( ( 27 - 108 T + 135 T^{2} + 36 T^{3} - 9 T^{4} - 3 T^{5} + T^{6} )^{2} \)
$37$ \( ( 576 + 96 T + 208 T^{2} - 80 T^{3} + 60 T^{4} - 8 T^{5} + T^{6} )^{2} \)
$41$ \( ( -15309 + 2754 T^{2} - 99 T^{4} + T^{6} )^{2} \)
$43$ \( ( 5103 + 1431 T^{2} + 76 T^{4} + T^{6} )^{2} \)
$47$ \( ( 5043 + 1722 T - 173 T^{2} - 126 T^{3} + 13 T^{4} + 9 T^{5} + T^{6} )^{2} \)
$53$ \( ( 441 - 1386 T + 4335 T^{2} - 108 T^{3} + 67 T^{4} + T^{5} + T^{6} )^{2} \)
$59$ \( ( 10443 + 25311 T + 20095 T^{2} - 858 T^{3} - 131 T^{4} + 6 T^{5} + T^{6} )^{2} \)
$61$ \( 11851370496 + 1093865472 T^{2} + 77883136 T^{4} + 1912448 T^{6} + 34896 T^{8} + 212 T^{10} + T^{12} \)
$67$ \( ( 3136 - 3360 T + 2928 T^{2} - 832 T^{3} + 204 T^{4} + 12 T^{5} + T^{6} )^{2} \)
$71$ \( ( 63 - 12 T - 5 T^{2} + T^{3} )^{4} \)
$73$ \( 1058841 + 797475 T^{2} + 530653 T^{4} + 50642 T^{6} + 3849 T^{8} + 68 T^{10} + T^{12} \)
$79$ \( 321489 - 204120 T^{2} + 100683 T^{4} - 17226 T^{6} + 2241 T^{8} - 51 T^{10} + T^{12} \)
$83$ \( ( -3145149 + 69228 T^{2} - 471 T^{4} + T^{6} )^{2} \)
$89$ \( ( 10443 + 14514 T + 8671 T^{2} + 2706 T^{3} + 445 T^{4} + 33 T^{5} + T^{6} )^{2} \)
$97$ \( ( 2187 + 810 T^{2} + 63 T^{4} + T^{6} )^{2} \)
show more
show less