# Properties

 Label 77.2.i Level $77$ Weight $2$ Character orbit 77.i Rep. character $\chi_{77}(10,\cdot)$ Character field $\Q(\zeta_{6})$ Dimension $12$ Newform subspaces $1$ Sturm bound $16$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$77 = 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 77.i (of order $$6$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$77$$ Character field: $$\Q(\zeta_{6})$$ Newform subspaces: $$1$$ Sturm bound: $$16$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(77, [\chi])$$.

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

## Trace form

 $$12q - 6q^{3} + 4q^{4} - 4q^{9} + O(q^{10})$$ $$12q - 6q^{3} + 4q^{4} - 4q^{9} - 4q^{11} - 18q^{12} + 8q^{14} - 20q^{15} + 12q^{16} - 4q^{22} - 20q^{23} + 14q^{25} + 18q^{26} + 6q^{31} + 18q^{33} - 12q^{36} + 16q^{37} - 48q^{38} + 16q^{42} + 20q^{44} + 54q^{45} - 18q^{47} + 16q^{49} - 2q^{53} + 18q^{56} - 6q^{58} - 12q^{59} + 28q^{64} - 42q^{66} - 24q^{67} - 58q^{70} + 20q^{71} - 78q^{75} - 50q^{77} + 8q^{78} + 30q^{80} + 14q^{81} + 54q^{82} - 38q^{86} - 4q^{88} - 66q^{89} + 22q^{91} - 20q^{92} + 12q^{93} + 12q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(77, [\chi])$$ into newform subspaces

Label Dim. $$A$$ Field CM Traces $q$-expansion
$$a_2$$ $$a_3$$ $$a_5$$ $$a_7$$
77.2.i.a $$12$$ $$0.615$$ $$\mathbb{Q}[x]/(x^{12} - \cdots)$$ None $$0$$ $$-6$$ $$0$$ $$0$$ $$q+(\beta _{1}+\beta _{7})q^{2}+(-1+\beta _{2}-\beta _{8}-\beta _{9}+\cdots)q^{3}+\cdots$$