Properties

Label 77.2.e.b.23.1
Level $77$
Weight $2$
Character 77.23
Analytic conductor $0.615$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [77,2,Mod(23,77)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("77.23"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(77, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 77.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.614848095564\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1783323.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 23.1
Root \(1.09935 + 1.90412i\) of defining polynomial
Character \(\chi\) \(=\) 77.23
Dual form 77.2.e.b.67.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.917122 + 1.58850i) q^{2} +(1.09935 + 1.90412i) q^{3} +(-0.682224 - 1.18165i) q^{4} +(0.317776 - 0.550404i) q^{5} -4.03293 q^{6} +(0.317776 - 2.62660i) q^{7} -1.16576 q^{8} +(-0.917122 + 1.58850i) q^{9} +(0.582878 + 1.00958i) q^{10} +(0.500000 + 0.866025i) q^{11} +(1.50000 - 2.59808i) q^{12} -1.80131 q^{13} +(3.88092 + 2.91370i) q^{14} +1.39738 q^{15} +(2.43359 - 4.21510i) q^{16} +(1.41712 + 2.45453i) q^{17} +(-1.68222 - 2.91370i) q^{18} +(2.78157 - 4.81782i) q^{19} -0.867178 q^{20} +(5.35071 - 2.28245i) q^{21} -1.83424 q^{22} +(-1.08288 + 1.87560i) q^{23} +(-1.28157 - 2.21974i) q^{24} +(2.29804 + 3.98032i) q^{25} +(1.65202 - 2.86138i) q^{26} +2.56314 q^{27} +(-3.32051 + 1.41643i) q^{28} -10.4303 q^{29} +(-1.28157 + 2.21974i) q^{30} +(-3.21516 - 5.56882i) q^{31} +(3.29804 + 5.71237i) q^{32} +(-1.09935 + 1.90412i) q^{33} -5.19869 q^{34} +(-1.34471 - 1.00958i) q^{35} +2.50273 q^{36} +(-3.03293 + 5.25320i) q^{37} +(5.10208 + 8.83705i) q^{38} +(-1.98026 - 3.42991i) q^{39} +(-0.370450 + 0.641637i) q^{40} +7.53566 q^{41} +(-1.28157 + 10.5929i) q^{42} -4.86718 q^{43} +(0.682224 - 1.18165i) q^{44} +(0.582878 + 1.00958i) q^{45} +(-1.98626 - 3.44031i) q^{46} +(1.41712 - 2.45453i) q^{47} +10.7014 q^{48} +(-6.79804 - 1.66934i) q^{49} -8.43032 q^{50} +(-3.11581 + 5.39675i) q^{51} +(1.22890 + 2.12851i) q^{52} +(-3.73490 - 6.46903i) q^{53} +(-2.35071 + 4.07155i) q^{54} +0.635552 q^{55} +(-0.370450 + 3.06197i) q^{56} +12.2316 q^{57} +(9.56587 - 16.5686i) q^{58} +(-5.90338 - 10.2250i) q^{59} +(-0.953328 - 1.65121i) q^{60} +(2.16576 - 3.75120i) q^{61} +11.7948 q^{62} +(3.88092 + 2.91370i) q^{63} -2.36445 q^{64} +(-0.572413 + 0.991448i) q^{65} +(-2.01647 - 3.49262i) q^{66} +(0.801309 + 1.38791i) q^{67} +(1.93359 - 3.34907i) q^{68} -4.76183 q^{69} +(2.83697 - 1.21017i) q^{70} +4.29204 q^{71} +(1.06914 - 1.85181i) q^{72} +(7.99673 + 13.8507i) q^{73} +(-5.56314 - 9.63564i) q^{74} +(-5.05267 + 8.75149i) q^{75} -7.59061 q^{76} +(2.43359 - 1.03810i) q^{77} +7.26456 q^{78} +(-2.38092 + 4.12387i) q^{79} +(-1.54667 - 2.67891i) q^{80} +(5.56914 + 9.64603i) q^{81} +(-6.91112 + 11.9704i) q^{82} -9.23163 q^{83} +(-6.34744 - 4.76550i) q^{84} +1.80131 q^{85} +(4.46379 - 7.73152i) q^{86} +(-11.4665 - 19.8606i) q^{87} +(-0.582878 - 1.00958i) q^{88} +(-0.182224 + 0.315621i) q^{89} -2.13828 q^{90} +(-0.572413 + 4.73131i) q^{91} +2.95506 q^{92} +(7.06914 - 12.2441i) q^{93} +(2.59935 + 4.50220i) q^{94} +(-1.76783 - 3.06197i) q^{95} +(-7.25136 + 12.5597i) q^{96} -2.59607 q^{97} +(8.88637 - 9.26770i) q^{98} -1.83424 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} - 4 q^{4} + 2 q^{5} - 2 q^{6} + 2 q^{7} - 18 q^{8} + 9 q^{10} + 3 q^{11} + 9 q^{12} - 22 q^{13} + 12 q^{14} - 14 q^{15} - 2 q^{16} + 3 q^{17} - 10 q^{18} + 11 q^{19} + 28 q^{20} + 10 q^{21}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/77\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.917122 + 1.58850i −0.648503 + 1.12324i 0.334978 + 0.942226i \(0.391271\pi\)
−0.983481 + 0.181014i \(0.942062\pi\)
\(3\) 1.09935 + 1.90412i 0.634707 + 1.09935i 0.986577 + 0.163297i \(0.0522127\pi\)
−0.351870 + 0.936049i \(0.614454\pi\)
\(4\) −0.682224 1.18165i −0.341112 0.590823i
\(5\) 0.317776 0.550404i 0.142114 0.246148i −0.786179 0.617999i \(-0.787943\pi\)
0.928292 + 0.371851i \(0.121277\pi\)
\(6\) −4.03293 −1.64644
\(7\) 0.317776 2.62660i 0.120108 0.992761i
\(8\) −1.16576 −0.412157
\(9\) −0.917122 + 1.58850i −0.305707 + 0.529500i
\(10\) 0.582878 + 1.00958i 0.184322 + 0.319256i
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i
\(12\) 1.50000 2.59808i 0.433013 0.750000i
\(13\) −1.80131 −0.499593 −0.249797 0.968298i \(-0.580364\pi\)
−0.249797 + 0.968298i \(0.580364\pi\)
\(14\) 3.88092 + 2.91370i 1.03722 + 0.778718i
\(15\) 1.39738 0.360803
\(16\) 2.43359 4.21510i 0.608397 1.05377i
\(17\) 1.41712 + 2.45453i 0.343702 + 0.595310i 0.985117 0.171884i \(-0.0549855\pi\)
−0.641415 + 0.767194i \(0.721652\pi\)
\(18\) −1.68222 2.91370i −0.396504 0.686765i
\(19\) 2.78157 4.81782i 0.638136 1.10528i −0.347706 0.937604i \(-0.613039\pi\)
0.985841 0.167680i \(-0.0536275\pi\)
\(20\) −0.867178 −0.193907
\(21\) 5.35071 2.28245i 1.16762 0.498073i
\(22\) −1.83424 −0.391062
\(23\) −1.08288 + 1.87560i −0.225796 + 0.391090i −0.956558 0.291542i \(-0.905832\pi\)
0.730762 + 0.682632i \(0.239165\pi\)
\(24\) −1.28157 2.21974i −0.261599 0.453103i
\(25\) 2.29804 + 3.98032i 0.459607 + 0.796063i
\(26\) 1.65202 2.86138i 0.323988 0.561163i
\(27\) 2.56314 0.493276
\(28\) −3.32051 + 1.41643i −0.627517 + 0.267680i
\(29\) −10.4303 −1.93686 −0.968431 0.249283i \(-0.919805\pi\)
−0.968431 + 0.249283i \(0.919805\pi\)
\(30\) −1.28157 + 2.21974i −0.233982 + 0.405268i
\(31\) −3.21516 5.56882i −0.577460 1.00019i −0.995770 0.0918849i \(-0.970711\pi\)
0.418310 0.908304i \(-0.362623\pi\)
\(32\) 3.29804 + 5.71237i 0.583016 + 1.00981i
\(33\) −1.09935 + 1.90412i −0.191372 + 0.331465i
\(34\) −5.19869 −0.891568
\(35\) −1.34471 1.00958i −0.227297 0.170649i
\(36\) 2.50273 0.417122
\(37\) −3.03293 + 5.25320i −0.498611 + 0.863620i −0.999999 0.00160274i \(-0.999490\pi\)
0.501387 + 0.865223i \(0.332823\pi\)
\(38\) 5.10208 + 8.83705i 0.827666 + 1.43356i
\(39\) −1.98026 3.42991i −0.317096 0.549226i
\(40\) −0.370450 + 0.641637i −0.0585732 + 0.101452i
\(41\) 7.53566 1.17687 0.588436 0.808543i \(-0.299744\pi\)
0.588436 + 0.808543i \(0.299744\pi\)
\(42\) −1.28157 + 10.5929i −0.197750 + 1.63452i
\(43\) −4.86718 −0.742238 −0.371119 0.928585i \(-0.621026\pi\)
−0.371119 + 0.928585i \(0.621026\pi\)
\(44\) 0.682224 1.18165i 0.102849 0.178140i
\(45\) 0.582878 + 1.00958i 0.0868904 + 0.150499i
\(46\) −1.98626 3.44031i −0.292858 0.507246i
\(47\) 1.41712 2.45453i 0.206708 0.358030i −0.743967 0.668216i \(-0.767058\pi\)
0.950676 + 0.310187i \(0.100392\pi\)
\(48\) 10.7014 1.54462
\(49\) −6.79804 1.66934i −0.971148 0.238477i
\(50\) −8.43032 −1.19223
\(51\) −3.11581 + 5.39675i −0.436301 + 0.755696i
\(52\) 1.22890 + 2.12851i 0.170417 + 0.295171i
\(53\) −3.73490 6.46903i −0.513028 0.888590i −0.999886 0.0151089i \(-0.995190\pi\)
0.486858 0.873481i \(-0.338143\pi\)
\(54\) −2.35071 + 4.07155i −0.319891 + 0.554068i
\(55\) 0.635552 0.0856978
\(56\) −0.370450 + 3.06197i −0.0495034 + 0.409174i
\(57\) 12.2316 1.62012
\(58\) 9.56587 16.5686i 1.25606 2.17556i
\(59\) −5.90338 10.2250i −0.768555 1.33118i −0.938346 0.345696i \(-0.887643\pi\)
0.169791 0.985480i \(-0.445691\pi\)
\(60\) −0.953328 1.65121i −0.123074 0.213171i
\(61\) 2.16576 3.75120i 0.277297 0.480292i −0.693415 0.720538i \(-0.743895\pi\)
0.970712 + 0.240246i \(0.0772282\pi\)
\(62\) 11.7948 1.49794
\(63\) 3.88092 + 2.91370i 0.488949 + 0.367091i
\(64\) −2.36445 −0.295556
\(65\) −0.572413 + 0.991448i −0.0709990 + 0.122974i
\(66\) −2.01647 3.49262i −0.248210 0.429912i
\(67\) 0.801309 + 1.38791i 0.0978954 + 0.169560i 0.910813 0.412818i \(-0.135456\pi\)
−0.812918 + 0.582378i \(0.802122\pi\)
\(68\) 1.93359 3.34907i 0.234482 0.406135i
\(69\) −4.76183 −0.573257
\(70\) 2.83697 1.21017i 0.339083 0.144643i
\(71\) 4.29204 0.509371 0.254685 0.967024i \(-0.418028\pi\)
0.254685 + 0.967024i \(0.418028\pi\)
\(72\) 1.06914 1.85181i 0.125999 0.218237i
\(73\) 7.99673 + 13.8507i 0.935946 + 1.62111i 0.772938 + 0.634482i \(0.218786\pi\)
0.163008 + 0.986625i \(0.447880\pi\)
\(74\) −5.56314 9.63564i −0.646702 1.12012i
\(75\) −5.05267 + 8.75149i −0.583432 + 1.01053i
\(76\) −7.59061 −0.870703
\(77\) 2.43359 1.03810i 0.277333 0.118302i
\(78\) 7.26456 0.822549
\(79\) −2.38092 + 4.12387i −0.267874 + 0.463971i −0.968313 0.249741i \(-0.919654\pi\)
0.700439 + 0.713713i \(0.252988\pi\)
\(80\) −1.54667 2.67891i −0.172923 0.299512i
\(81\) 5.56914 + 9.64603i 0.618793 + 1.07178i
\(82\) −6.91112 + 11.9704i −0.763206 + 1.32191i
\(83\) −9.23163 −1.01330 −0.506651 0.862151i \(-0.669117\pi\)
−0.506651 + 0.862151i \(0.669117\pi\)
\(84\) −6.34744 4.76550i −0.692562 0.519959i
\(85\) 1.80131 0.195379
\(86\) 4.46379 7.73152i 0.481343 0.833711i
\(87\) −11.4665 19.8606i −1.22934 2.12928i
\(88\) −0.582878 1.00958i −0.0621350 0.107621i
\(89\) −0.182224 + 0.315621i −0.0193157 + 0.0334558i −0.875522 0.483179i \(-0.839482\pi\)
0.856206 + 0.516635i \(0.172815\pi\)
\(90\) −2.13828 −0.225395
\(91\) −0.572413 + 4.73131i −0.0600051 + 0.495977i
\(92\) 2.95506 0.308087
\(93\) 7.06914 12.2441i 0.733036 1.26966i
\(94\) 2.59935 + 4.50220i 0.268102 + 0.464366i
\(95\) −1.76783 3.06197i −0.181376 0.314152i
\(96\) −7.25136 + 12.5597i −0.740089 + 1.28187i
\(97\) −2.59607 −0.263591 −0.131796 0.991277i \(-0.542074\pi\)
−0.131796 + 0.991277i \(0.542074\pi\)
\(98\) 8.88637 9.26770i 0.897659 0.936179i
\(99\) −1.83424 −0.184348
\(100\) 3.13555 5.43094i 0.313555 0.543094i
\(101\) 4.95006 + 8.57375i 0.492549 + 0.853120i 0.999963 0.00858243i \(-0.00273191\pi\)
−0.507414 + 0.861702i \(0.669399\pi\)
\(102\) −5.71516 9.89894i −0.565885 0.980142i
\(103\) −3.11581 + 5.39675i −0.307010 + 0.531757i −0.977707 0.209975i \(-0.932662\pi\)
0.670697 + 0.741732i \(0.265995\pi\)
\(104\) 2.09989 0.205911
\(105\) 0.444055 3.67036i 0.0433353 0.358191i
\(106\) 13.7014 1.33080
\(107\) −5.54940 + 9.61185i −0.536481 + 0.929212i 0.462609 + 0.886562i \(0.346913\pi\)
−0.999090 + 0.0426499i \(0.986420\pi\)
\(108\) −1.74864 3.02873i −0.168263 0.291439i
\(109\) 7.15202 + 12.3877i 0.685039 + 1.18652i 0.973424 + 0.229008i \(0.0735483\pi\)
−0.288385 + 0.957514i \(0.593118\pi\)
\(110\) −0.582878 + 1.00958i −0.0555753 + 0.0962592i
\(111\) −13.3370 −1.26589
\(112\) −10.2980 7.73152i −0.973073 0.730560i
\(113\) −8.68942 −0.817432 −0.408716 0.912662i \(-0.634023\pi\)
−0.408716 + 0.912662i \(0.634023\pi\)
\(114\) −11.2179 + 19.4300i −1.05065 + 1.81978i
\(115\) 0.688225 + 1.19204i 0.0641774 + 0.111158i
\(116\) 7.11581 + 12.3249i 0.660687 + 1.14434i
\(117\) 1.65202 2.86138i 0.152729 0.264535i
\(118\) 21.6565 1.99364
\(119\) 6.89738 2.94222i 0.632282 0.269713i
\(120\) −1.62901 −0.148707
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 3.97252 + 6.88061i 0.359655 + 0.622942i
\(123\) 8.28430 + 14.3488i 0.746970 + 1.29379i
\(124\) −4.38692 + 7.59836i −0.393957 + 0.682353i
\(125\) 6.09880 0.545494
\(126\) −8.18768 + 3.49262i −0.729417 + 0.311148i
\(127\) 20.9989 1.86335 0.931676 0.363290i \(-0.118346\pi\)
0.931676 + 0.363290i \(0.118346\pi\)
\(128\) −4.42759 + 7.66881i −0.391347 + 0.677833i
\(129\) −5.35071 9.26770i −0.471104 0.815976i
\(130\) −1.04994 1.81856i −0.0920862 0.159498i
\(131\) 6.85071 11.8658i 0.598549 1.03672i −0.394486 0.918902i \(-0.629077\pi\)
0.993035 0.117816i \(-0.0375893\pi\)
\(132\) 3.00000 0.261116
\(133\) −11.7706 8.83705i −1.02064 0.766270i
\(134\) −2.93959 −0.253942
\(135\) 0.814504 1.41076i 0.0701013 0.121419i
\(136\) −1.65202 2.86138i −0.141659 0.245361i
\(137\) −3.63228 6.29129i −0.310327 0.537501i 0.668106 0.744066i \(-0.267105\pi\)
−0.978433 + 0.206564i \(0.933772\pi\)
\(138\) 4.36718 7.56417i 0.371759 0.643905i
\(139\) −2.60262 −0.220751 −0.110376 0.993890i \(-0.535205\pi\)
−0.110376 + 0.993890i \(0.535205\pi\)
\(140\) −0.275568 + 2.27773i −0.0232898 + 0.192503i
\(141\) 6.23163 0.524798
\(142\) −3.93632 + 6.81790i −0.330328 + 0.572146i
\(143\) −0.900654 1.55998i −0.0753165 0.130452i
\(144\) 4.46379 + 7.73152i 0.371983 + 0.644293i
\(145\) −3.31450 + 5.74089i −0.275255 + 0.476755i
\(146\) −29.3359 −2.42786
\(147\) −4.29476 14.7795i −0.354226 1.21899i
\(148\) 8.27656 0.680329
\(149\) 0.500000 0.866025i 0.0409616 0.0709476i −0.844818 0.535054i \(-0.820291\pi\)
0.885779 + 0.464107i \(0.153625\pi\)
\(150\) −9.26783 16.0524i −0.756715 1.31067i
\(151\) −0.867720 1.50294i −0.0706140 0.122307i 0.828557 0.559905i \(-0.189163\pi\)
−0.899171 + 0.437598i \(0.855829\pi\)
\(152\) −3.24263 + 5.61641i −0.263012 + 0.455551i
\(153\) −5.19869 −0.420289
\(154\) −0.582878 + 4.81782i −0.0469697 + 0.388231i
\(155\) −4.08680 −0.328260
\(156\) −2.70196 + 4.67994i −0.216330 + 0.374695i
\(157\) 3.96980 + 6.87589i 0.316824 + 0.548756i 0.979824 0.199864i \(-0.0640502\pi\)
−0.662999 + 0.748620i \(0.730717\pi\)
\(158\) −4.36718 7.56417i −0.347434 0.601773i
\(159\) 8.21189 14.2234i 0.651245 1.12799i
\(160\) 4.19215 0.331418
\(161\) 4.58234 + 3.44031i 0.361139 + 0.271134i
\(162\) −20.4303 −1.60516
\(163\) 8.00273 13.8611i 0.626822 1.08569i −0.361363 0.932425i \(-0.617689\pi\)
0.988185 0.153263i \(-0.0489781\pi\)
\(164\) −5.14101 8.90449i −0.401446 0.695324i
\(165\) 0.698691 + 1.21017i 0.0543930 + 0.0942115i
\(166\) 8.46652 14.6644i 0.657130 1.13818i
\(167\) 1.15921 0.0897026 0.0448513 0.998994i \(-0.485719\pi\)
0.0448513 + 0.998994i \(0.485719\pi\)
\(168\) −6.23763 + 2.66079i −0.481243 + 0.205284i
\(169\) −9.75529 −0.750407
\(170\) −1.65202 + 2.86138i −0.126704 + 0.219458i
\(171\) 5.10208 + 8.83705i 0.390165 + 0.675786i
\(172\) 3.32051 + 5.75128i 0.253186 + 0.438531i
\(173\) 0.496728 0.860358i 0.0377655 0.0654118i −0.846525 0.532349i \(-0.821309\pi\)
0.884290 + 0.466937i \(0.154643\pi\)
\(174\) 42.0648 3.18892
\(175\) 11.1850 4.77117i 0.845503 0.360667i
\(176\) 4.86718 0.366877
\(177\) 12.9797 22.4815i 0.975615 1.68982i
\(178\) −0.334243 0.578926i −0.0250526 0.0433924i
\(179\) 9.83097 + 17.0277i 0.734801 + 1.27271i 0.954810 + 0.297215i \(0.0960579\pi\)
−0.220009 + 0.975498i \(0.570609\pi\)
\(180\) 0.795307 1.37751i 0.0592787 0.102674i
\(181\) −23.8726 −1.77444 −0.887220 0.461347i \(-0.847366\pi\)
−0.887220 + 0.461347i \(0.847366\pi\)
\(182\) −6.99073 5.24847i −0.518187 0.389042i
\(183\) 9.52366 0.704009
\(184\) 1.26237 2.18649i 0.0930634 0.161190i
\(185\) 1.92759 + 3.33868i 0.141719 + 0.245465i
\(186\) 12.9665 + 22.4587i 0.950752 + 1.64675i
\(187\) −1.41712 + 2.45453i −0.103630 + 0.179493i
\(188\) −3.86718 −0.282043
\(189\) 0.814504 6.73234i 0.0592465 0.489705i
\(190\) 6.48527 0.470491
\(191\) 5.56587 9.64037i 0.402732 0.697553i −0.591322 0.806435i \(-0.701394\pi\)
0.994055 + 0.108883i \(0.0347273\pi\)
\(192\) −2.59935 4.50220i −0.187592 0.324918i
\(193\) −1.80731 3.13035i −0.130093 0.225328i 0.793619 0.608415i \(-0.208194\pi\)
−0.923712 + 0.383087i \(0.874861\pi\)
\(194\) 2.38092 4.12387i 0.170940 0.296076i
\(195\) −2.51712 −0.180255
\(196\) 2.66521 + 9.17174i 0.190372 + 0.655124i
\(197\) 2.41831 0.172298 0.0861489 0.996282i \(-0.472544\pi\)
0.0861489 + 0.996282i \(0.472544\pi\)
\(198\) 1.68222 2.91370i 0.119550 0.207067i
\(199\) 9.24809 + 16.0182i 0.655580 + 1.13550i 0.981748 + 0.190186i \(0.0609091\pi\)
−0.326168 + 0.945312i \(0.605758\pi\)
\(200\) −2.67895 4.64008i −0.189431 0.328103i
\(201\) −1.76183 + 3.05158i −0.124270 + 0.215242i
\(202\) −18.1592 −1.27768
\(203\) −3.31450 + 27.3963i −0.232633 + 1.92284i
\(204\) 8.50273 0.595310
\(205\) 2.39465 4.14766i 0.167250 0.289685i
\(206\) −5.71516 9.89894i −0.398194 0.689692i
\(207\) −1.98626 3.44031i −0.138055 0.239118i
\(208\) −4.38364 + 7.59270i −0.303951 + 0.526459i
\(209\) 5.56314 0.384810
\(210\) 5.42312 + 4.07155i 0.374231 + 0.280964i
\(211\) −7.85517 −0.540773 −0.270386 0.962752i \(-0.587151\pi\)
−0.270386 + 0.962752i \(0.587151\pi\)
\(212\) −5.09607 + 8.82666i −0.350000 + 0.606217i
\(213\) 4.71843 + 8.17256i 0.323302 + 0.559975i
\(214\) −10.1790 17.6305i −0.695819 1.20519i
\(215\) −1.54667 + 2.67891i −0.105482 + 0.182700i
\(216\) −2.98800 −0.203307
\(217\) −15.6487 + 6.67529i −1.06231 + 0.453148i
\(218\) −26.2371 −1.77700
\(219\) −17.5823 + 30.4535i −1.18810 + 2.05786i
\(220\) −0.433589 0.750998i −0.0292326 0.0506323i
\(221\) −2.55267 4.42136i −0.171711 0.297413i
\(222\) 12.2316 21.1858i 0.820933 1.42190i
\(223\) 20.3370 1.36186 0.680932 0.732346i \(-0.261575\pi\)
0.680932 + 0.732346i \(0.261575\pi\)
\(224\) 16.0521 6.84736i 1.07253 0.457509i
\(225\) −8.43032 −0.562021
\(226\) 7.96925 13.8032i 0.530107 0.918172i
\(227\) −3.60981 6.25238i −0.239592 0.414985i 0.721006 0.692929i \(-0.243680\pi\)
−0.960597 + 0.277944i \(0.910347\pi\)
\(228\) −8.34471 14.4535i −0.552642 0.957204i
\(229\) −6.03566 + 10.4541i −0.398848 + 0.690825i −0.993584 0.113096i \(-0.963923\pi\)
0.594736 + 0.803921i \(0.297257\pi\)
\(230\) −2.52475 −0.166477
\(231\) 4.65202 + 3.49262i 0.306080 + 0.229798i
\(232\) 12.1592 0.798291
\(233\) 3.77110 6.53174i 0.247053 0.427909i −0.715654 0.698455i \(-0.753871\pi\)
0.962707 + 0.270547i \(0.0872044\pi\)
\(234\) 3.03020 + 5.24847i 0.198091 + 0.343103i
\(235\) −0.900654 1.55998i −0.0587522 0.101762i
\(236\) −8.05486 + 13.9514i −0.524327 + 0.908161i
\(237\) −10.4698 −0.680086
\(238\) −1.65202 + 13.6549i −0.107084 + 0.885114i
\(239\) −9.84625 −0.636901 −0.318450 0.947940i \(-0.603162\pi\)
−0.318450 + 0.947940i \(0.603162\pi\)
\(240\) 3.40065 5.89011i 0.219511 0.380205i
\(241\) 0.837515 + 1.45062i 0.0539491 + 0.0934426i 0.891739 0.452551i \(-0.149486\pi\)
−0.837790 + 0.545993i \(0.816152\pi\)
\(242\) −0.917122 1.58850i −0.0589548 0.102113i
\(243\) −8.40011 + 14.5494i −0.538867 + 0.933346i
\(244\) −5.91013 −0.378357
\(245\) −3.07906 + 3.21119i −0.196714 + 0.205156i
\(246\) −30.3908 −1.93765
\(247\) −5.01047 + 8.67838i −0.318808 + 0.552192i
\(248\) 3.74809 + 6.49189i 0.238004 + 0.412235i
\(249\) −10.1487 17.5781i −0.643151 1.11397i
\(250\) −5.59334 + 9.68796i −0.353754 + 0.612720i
\(251\) 19.7738 1.24811 0.624057 0.781379i \(-0.285483\pi\)
0.624057 + 0.781379i \(0.285483\pi\)
\(252\) 0.795307 6.57367i 0.0500997 0.414102i
\(253\) −2.16576 −0.136160
\(254\) −19.2586 + 33.3568i −1.20839 + 2.09299i
\(255\) 1.98026 + 3.42991i 0.124009 + 0.214789i
\(256\) −10.4857 18.1618i −0.655358 1.13511i
\(257\) −1.35998 + 2.35556i −0.0848335 + 0.146936i −0.905320 0.424730i \(-0.860369\pi\)
0.820487 + 0.571665i \(0.193702\pi\)
\(258\) 19.6290 1.22205
\(259\) 12.8342 + 9.63564i 0.797481 + 0.598730i
\(260\) 1.56205 0.0968745
\(261\) 9.56587 16.5686i 0.592112 1.02557i
\(262\) 12.5659 + 21.7647i 0.776322 + 1.34463i
\(263\) −6.34744 10.9941i −0.391400 0.677924i 0.601235 0.799073i \(-0.294676\pi\)
−0.992634 + 0.121148i \(0.961342\pi\)
\(264\) 1.28157 2.21974i 0.0788752 0.136616i
\(265\) −4.74744 −0.291633
\(266\) 24.8327 10.5929i 1.52259 0.649492i
\(267\) −0.801309 −0.0490393
\(268\) 1.09334 1.89373i 0.0667866 0.115678i
\(269\) 3.54667 + 6.14302i 0.216244 + 0.374546i 0.953657 0.300896i \(-0.0972859\pi\)
−0.737412 + 0.675443i \(0.763953\pi\)
\(270\) 1.49400 + 2.58768i 0.0909219 + 0.157481i
\(271\) 9.10808 15.7757i 0.553276 0.958303i −0.444759 0.895650i \(-0.646711\pi\)
0.998035 0.0626524i \(-0.0199559\pi\)
\(272\) 13.7948 0.836430
\(273\) −9.63828 + 4.11141i −0.583335 + 0.248834i
\(274\) 13.3250 0.804991
\(275\) −2.29804 + 3.98032i −0.138577 + 0.240022i
\(276\) 3.24864 + 5.62680i 0.195545 + 0.338694i
\(277\) −6.92432 11.9933i −0.416042 0.720606i 0.579495 0.814976i \(-0.303250\pi\)
−0.995537 + 0.0943700i \(0.969916\pi\)
\(278\) 2.38692 4.13426i 0.143158 0.247956i
\(279\) 11.7948 0.706134
\(280\) 1.56760 + 1.17692i 0.0936822 + 0.0703344i
\(281\) 21.0329 1.25472 0.627360 0.778730i \(-0.284136\pi\)
0.627360 + 0.778730i \(0.284136\pi\)
\(282\) −5.71516 + 9.89894i −0.340333 + 0.589474i
\(283\) −0.176223 0.305226i −0.0104753 0.0181438i 0.860740 0.509044i \(-0.170001\pi\)
−0.871216 + 0.490901i \(0.836668\pi\)
\(284\) −2.92813 5.07167i −0.173753 0.300948i
\(285\) 3.88692 6.73234i 0.230241 0.398789i
\(286\) 3.30404 0.195372
\(287\) 2.39465 19.7932i 0.141352 1.16835i
\(288\) −12.0988 −0.712929
\(289\) 4.48353 7.76571i 0.263737 0.456806i
\(290\) −6.07961 10.5302i −0.357007 0.618354i
\(291\) −2.85398 4.94324i −0.167303 0.289778i
\(292\) 10.9111 18.8986i 0.638525 1.10596i
\(293\) −3.46325 −0.202325 −0.101163 0.994870i \(-0.532256\pi\)
−0.101163 + 0.994870i \(0.532256\pi\)
\(294\) 27.4160 + 6.73234i 1.59894 + 0.392638i
\(295\) −7.50381 −0.436889
\(296\) 3.53566 6.12395i 0.205506 0.355947i
\(297\) 1.28157 + 2.21974i 0.0743642 + 0.128803i
\(298\) 0.917122 + 1.58850i 0.0531274 + 0.0920194i
\(299\) 1.95060 3.37854i 0.112806 0.195386i
\(300\) 13.7882 0.796063
\(301\) −1.54667 + 12.7841i −0.0891487 + 0.736864i
\(302\) 3.18322 0.183174
\(303\) −10.8836 + 18.8510i −0.625249 + 1.08296i
\(304\) −13.5384 23.4492i −0.776480 1.34490i
\(305\) −1.37645 2.38408i −0.0788154 0.136512i
\(306\) 4.76783 8.25813i 0.272559 0.472086i
\(307\) −6.51473 −0.371815 −0.185908 0.982567i \(-0.559523\pi\)
−0.185908 + 0.982567i \(0.559523\pi\)
\(308\) −2.88692 2.16743i −0.164497 0.123501i
\(309\) −13.7014 −0.779447
\(310\) 3.74809 6.49189i 0.212877 0.368714i
\(311\) −5.81505 10.0720i −0.329741 0.571128i 0.652719 0.757600i \(-0.273628\pi\)
−0.982460 + 0.186472i \(0.940295\pi\)
\(312\) 2.30850 + 3.99844i 0.130693 + 0.226367i
\(313\) 13.5489 23.4673i 0.765827 1.32645i −0.173982 0.984749i \(-0.555663\pi\)
0.939808 0.341702i \(-0.111003\pi\)
\(314\) −14.5631 −0.821845
\(315\) 2.83697 1.21017i 0.159845 0.0681853i
\(316\) 6.49727 0.365500
\(317\) −1.93086 + 3.34435i −0.108448 + 0.187837i −0.915142 0.403132i \(-0.867921\pi\)
0.806694 + 0.590970i \(0.201255\pi\)
\(318\) 15.0626 + 26.0892i 0.844668 + 1.46301i
\(319\) −5.21516 9.03292i −0.291993 0.505746i
\(320\) −0.751365 + 1.30140i −0.0420026 + 0.0727506i
\(321\) −24.4028 −1.36203
\(322\) −9.66749 + 4.12387i −0.538748 + 0.229814i
\(323\) 15.7673 0.877315
\(324\) 7.59880 13.1615i 0.422156 0.731195i
\(325\) −4.13947 7.16978i −0.229617 0.397708i
\(326\) 14.6790 + 25.4247i 0.812992 + 1.40814i
\(327\) −15.7251 + 27.2366i −0.869599 + 1.50619i
\(328\) −8.78475 −0.485057
\(329\) −5.99673 4.50220i −0.330610 0.248214i
\(330\) −2.56314 −0.141096
\(331\) −3.07514 + 5.32630i −0.169025 + 0.292760i −0.938077 0.346426i \(-0.887395\pi\)
0.769052 + 0.639186i \(0.220729\pi\)
\(332\) 6.29804 + 10.9085i 0.345650 + 0.598683i
\(333\) −5.56314 9.63564i −0.304858 0.528030i
\(334\) −1.06314 + 1.84141i −0.0581724 + 0.100758i
\(335\) 1.01855 0.0556491
\(336\) 3.40065 28.1083i 0.185521 1.53344i
\(337\) −11.7607 −0.640649 −0.320324 0.947308i \(-0.603792\pi\)
−0.320324 + 0.947308i \(0.603792\pi\)
\(338\) 8.94678 15.4963i 0.486641 0.842887i
\(339\) −9.55267 16.5457i −0.518830 0.898640i
\(340\) −1.22890 2.12851i −0.0666462 0.115435i
\(341\) 3.21516 5.56882i 0.174111 0.301568i
\(342\) −18.7169 −1.01209
\(343\) −6.54494 + 17.3252i −0.353393 + 0.935475i
\(344\) 5.67395 0.305919
\(345\) −1.51320 + 2.62093i −0.0814677 + 0.141106i
\(346\) 0.911120 + 1.57811i 0.0489821 + 0.0848395i
\(347\) 0.420393 + 0.728143i 0.0225679 + 0.0390888i 0.877089 0.480328i \(-0.159482\pi\)
−0.854521 + 0.519417i \(0.826149\pi\)
\(348\) −15.6455 + 27.0988i −0.838686 + 1.45265i
\(349\) 9.13174 0.488811 0.244405 0.969673i \(-0.421407\pi\)
0.244405 + 0.969673i \(0.421407\pi\)
\(350\) −2.67895 + 22.1431i −0.143196 + 1.18360i
\(351\) −4.61701 −0.246438
\(352\) −3.29804 + 5.71237i −0.175786 + 0.304470i
\(353\) −11.3639 19.6829i −0.604840 1.04761i −0.992077 0.125633i \(-0.959904\pi\)
0.387237 0.921980i \(-0.373429\pi\)
\(354\) 23.8080 + 41.2366i 1.26538 + 2.19170i
\(355\) 1.36391 2.36235i 0.0723886 0.125381i
\(356\) 0.497270 0.0263553
\(357\) 13.1850 + 9.89894i 0.697822 + 0.523908i
\(358\) −36.0648 −1.90608
\(359\) 13.1093 22.7059i 0.691881 1.19837i −0.279340 0.960192i \(-0.590116\pi\)
0.971221 0.238180i \(-0.0765510\pi\)
\(360\) −0.679494 1.17692i −0.0358125 0.0620291i
\(361\) −5.97426 10.3477i −0.314435 0.544617i
\(362\) 21.8941 37.9217i 1.15073 1.99312i
\(363\) −2.19869 −0.115401
\(364\) 5.98126 2.55143i 0.313503 0.133731i
\(365\) 10.1647 0.532043
\(366\) −8.73436 + 15.1283i −0.456552 + 0.790771i
\(367\) 1.91112 + 3.31016i 0.0997597 + 0.172789i 0.911585 0.411111i \(-0.134859\pi\)
−0.811825 + 0.583900i \(0.801526\pi\)
\(368\) 5.27056 + 9.12888i 0.274747 + 0.475876i
\(369\) −6.91112 + 11.9704i −0.359779 + 0.623155i
\(370\) −7.07133 −0.367621
\(371\) −18.1784 + 7.75437i −0.943776 + 0.402587i
\(372\) −19.2910 −1.00019
\(373\) −7.55387 + 13.0837i −0.391124 + 0.677447i −0.992598 0.121445i \(-0.961247\pi\)
0.601474 + 0.798893i \(0.294580\pi\)
\(374\) −2.59935 4.50220i −0.134409 0.232803i
\(375\) 6.70469 + 11.6129i 0.346229 + 0.599686i
\(376\) −1.65202 + 2.86138i −0.0851964 + 0.147564i
\(377\) 18.7882 0.967643
\(378\) 9.94733 + 7.46821i 0.511635 + 0.384123i
\(379\) −11.3765 −0.584369 −0.292185 0.956362i \(-0.594382\pi\)
−0.292185 + 0.956362i \(0.594382\pi\)
\(380\) −2.41211 + 4.17791i −0.123739 + 0.214322i
\(381\) 23.0851 + 39.9845i 1.18268 + 2.04847i
\(382\) 10.2092 + 17.6828i 0.522346 + 0.904730i
\(383\) −4.44286 + 7.69526i −0.227020 + 0.393210i −0.956923 0.290340i \(-0.906231\pi\)
0.729904 + 0.683550i \(0.239565\pi\)
\(384\) −19.4698 −0.993564
\(385\) 0.201963 1.66934i 0.0102930 0.0850774i
\(386\) 6.63009 0.337463
\(387\) 4.46379 7.73152i 0.226907 0.393015i
\(388\) 1.77110 + 3.06764i 0.0899142 + 0.155736i
\(389\) 9.94951 + 17.2331i 0.504460 + 0.873751i 0.999987 + 0.00515807i \(0.00164187\pi\)
−0.495526 + 0.868593i \(0.665025\pi\)
\(390\) 2.30850 3.99844i 0.116896 0.202469i
\(391\) −6.13828 −0.310426
\(392\) 7.92486 + 1.94604i 0.400266 + 0.0982901i
\(393\) 30.1252 1.51962
\(394\) −2.21789 + 3.84149i −0.111736 + 0.193532i
\(395\) 1.51320 + 2.62093i 0.0761371 + 0.131873i
\(396\) 1.25136 + 2.16743i 0.0628834 + 0.108917i
\(397\) 17.4303 30.1902i 0.874803 1.51520i 0.0178296 0.999841i \(-0.494324\pi\)
0.856973 0.515361i \(-0.172342\pi\)
\(398\) −33.9265 −1.70058
\(399\) 3.88692 32.1276i 0.194589 1.60839i
\(400\) 22.3699 1.11850
\(401\) −5.69815 + 9.86948i −0.284552 + 0.492858i −0.972500 0.232901i \(-0.925178\pi\)
0.687948 + 0.725760i \(0.258511\pi\)
\(402\) −3.23163 5.59734i −0.161179 0.279170i
\(403\) 5.79149 + 10.0312i 0.288495 + 0.499688i
\(404\) 6.75409 11.6984i 0.336029 0.582019i
\(405\) 7.07896 0.351756
\(406\) −40.4792 30.3908i −2.00895 1.50827i
\(407\) −6.06587 −0.300674
\(408\) 3.63228 6.29129i 0.179825 0.311465i
\(409\) 2.04394 + 3.54021i 0.101066 + 0.175052i 0.912124 0.409914i \(-0.134441\pi\)
−0.811058 + 0.584966i \(0.801108\pi\)
\(410\) 4.39238 + 7.60782i 0.216924 + 0.375723i
\(411\) 7.98626 13.8326i 0.393933 0.682312i
\(412\) 8.50273 0.418899
\(413\) −28.7328 + 12.2566i −1.41385 + 0.603106i
\(414\) 7.28658 0.358116
\(415\) −2.93359 + 5.08112i −0.144004 + 0.249423i
\(416\) −5.94078 10.2897i −0.291271 0.504496i
\(417\) −2.86118 4.95570i −0.140112 0.242682i
\(418\) −5.10208 + 8.83705i −0.249551 + 0.432234i
\(419\) 32.8002 1.60240 0.801198 0.598399i \(-0.204196\pi\)
0.801198 + 0.598399i \(0.204196\pi\)
\(420\) −4.64002 + 1.97929i −0.226410 + 0.0965796i
\(421\) −8.52128 −0.415302 −0.207651 0.978203i \(-0.566582\pi\)
−0.207651 + 0.978203i \(0.566582\pi\)
\(422\) 7.20415 12.4780i 0.350693 0.607417i
\(423\) 2.59935 + 4.50220i 0.126385 + 0.218904i
\(424\) 4.35398 + 7.54132i 0.211448 + 0.366239i
\(425\) −6.51320 + 11.2812i −0.315936 + 0.547218i
\(426\) −17.3095 −0.838648
\(427\) −9.16467 6.88061i −0.443510 0.332976i
\(428\) 15.1437 0.732000
\(429\) 1.98026 3.42991i 0.0956079 0.165598i
\(430\) −2.83697 4.91378i −0.136811 0.236964i
\(431\) 8.36718 + 14.4924i 0.403033 + 0.698073i 0.994090 0.108556i \(-0.0346227\pi\)
−0.591058 + 0.806629i \(0.701289\pi\)
\(432\) 6.23763 10.8039i 0.300108 0.519802i
\(433\) −25.8661 −1.24305 −0.621523 0.783396i \(-0.713486\pi\)
−0.621523 + 0.783396i \(0.713486\pi\)
\(434\) 3.74809 30.9801i 0.179914 1.48709i
\(435\) −14.5751 −0.698825
\(436\) 9.75856 16.9023i 0.467350 0.809474i
\(437\) 6.02420 + 10.4342i 0.288177 + 0.499137i
\(438\) −32.2503 55.8591i −1.54098 2.66905i
\(439\) 4.78430 8.28665i 0.228342 0.395500i −0.728975 0.684541i \(-0.760003\pi\)
0.957317 + 0.289040i \(0.0933362\pi\)
\(440\) −0.740899 −0.0353210
\(441\) 8.88637 9.26770i 0.423161 0.441319i
\(442\) 9.36445 0.445421
\(443\) −9.51647 + 16.4830i −0.452141 + 0.783131i −0.998519 0.0544076i \(-0.982673\pi\)
0.546378 + 0.837539i \(0.316006\pi\)
\(444\) 9.09880 + 15.7596i 0.431810 + 0.747917i
\(445\) 0.115813 + 0.200594i 0.00549005 + 0.00950905i
\(446\) −18.6515 + 32.3053i −0.883173 + 1.52970i
\(447\) 2.19869 0.103995
\(448\) −0.751365 + 6.21046i −0.0354986 + 0.293416i
\(449\) 33.3424 1.57353 0.786763 0.617255i \(-0.211755\pi\)
0.786763 + 0.617255i \(0.211755\pi\)
\(450\) 7.73163 13.3916i 0.364472 0.631285i
\(451\) 3.76783 + 6.52608i 0.177420 + 0.307301i
\(452\) 5.92813 + 10.2678i 0.278836 + 0.482958i
\(453\) 1.90785 3.30449i 0.0896385 0.155258i
\(454\) 13.2425 0.621503
\(455\) 2.42224 + 1.81856i 0.113556 + 0.0852552i
\(456\) −14.2591 −0.667744
\(457\) −5.98026 + 10.3581i −0.279745 + 0.484532i −0.971321 0.237771i \(-0.923583\pi\)
0.691576 + 0.722303i \(0.256917\pi\)
\(458\) −11.0709 19.1753i −0.517308 0.896004i
\(459\) 3.63228 + 6.29129i 0.169540 + 0.293652i
\(460\) 0.939048 1.62648i 0.0437833 0.0758350i
\(461\) 12.4896 0.581701 0.290850 0.956769i \(-0.406062\pi\)
0.290850 + 0.956769i \(0.406062\pi\)
\(462\) −9.81450 + 4.18658i −0.456612 + 0.194777i
\(463\) 12.3095 0.572071 0.286035 0.958219i \(-0.407662\pi\)
0.286035 + 0.958219i \(0.407662\pi\)
\(464\) −25.3831 + 43.9648i −1.17838 + 2.04102i
\(465\) −4.49281 7.78177i −0.208349 0.360871i
\(466\) 6.91712 + 11.9808i 0.320429 + 0.555000i
\(467\) −16.3804 + 28.3716i −0.757993 + 1.31288i 0.185879 + 0.982573i \(0.440487\pi\)
−0.943872 + 0.330310i \(0.892847\pi\)
\(468\) −4.50819 −0.208391
\(469\) 3.90011 1.66367i 0.180090 0.0768213i
\(470\) 3.30404 0.152404
\(471\) −8.72835 + 15.1180i −0.402181 + 0.696598i
\(472\) 6.88191 + 11.9198i 0.316766 + 0.548654i
\(473\) −2.43359 4.21510i −0.111897 0.193810i
\(474\) 9.60208 16.6313i 0.441038 0.763900i
\(475\) 25.5686 1.17317
\(476\) −8.18222 6.14302i −0.375032 0.281565i
\(477\) 13.7014 0.627345
\(478\) 9.03020 15.6408i 0.413032 0.715392i
\(479\) −12.9890 22.4976i −0.593482 1.02794i −0.993759 0.111547i \(-0.964419\pi\)
0.400277 0.916394i \(-0.368914\pi\)
\(480\) 4.60862 + 7.98236i 0.210354 + 0.364343i
\(481\) 5.46325 9.46263i 0.249103 0.431459i
\(482\) −3.07241 −0.139945
\(483\) −1.51320 + 12.5074i −0.0688528 + 0.569107i
\(484\) 1.36445 0.0620204
\(485\) −0.824970 + 1.42889i −0.0374600 + 0.0648825i
\(486\) −15.4078 26.6872i −0.698914 1.21055i
\(487\) −7.26783 12.5883i −0.329337 0.570428i 0.653044 0.757320i \(-0.273492\pi\)
−0.982380 + 0.186892i \(0.940159\pi\)
\(488\) −2.52475 + 4.37299i −0.114290 + 0.197956i
\(489\) 35.1911 1.59139
\(490\) −2.27711 7.83615i −0.102869 0.354001i
\(491\) −39.3952 −1.77788 −0.888941 0.458023i \(-0.848558\pi\)
−0.888941 + 0.458023i \(0.848558\pi\)
\(492\) 11.3035 19.5782i 0.509601 0.882655i
\(493\) −14.7810 25.6015i −0.665704 1.15303i
\(494\) −9.19041 15.9183i −0.413496 0.716196i
\(495\) −0.582878 + 1.00958i −0.0261984 + 0.0453770i
\(496\) −31.2975 −1.40530
\(497\) 1.36391 11.2735i 0.0611795 0.505683i
\(498\) 37.2305 1.66834
\(499\) 13.1153 22.7163i 0.587120 1.01692i −0.407487 0.913211i \(-0.633595\pi\)
0.994607 0.103711i \(-0.0330717\pi\)
\(500\) −4.16075 7.20663i −0.186074 0.322290i
\(501\) 1.27438 + 2.20728i 0.0569349 + 0.0986142i
\(502\) −18.1350 + 31.4108i −0.809405 + 1.40193i
\(503\) 3.94613 0.175949 0.0879747 0.996123i \(-0.471961\pi\)
0.0879747 + 0.996123i \(0.471961\pi\)
\(504\) −4.52420 3.39666i −0.201524 0.151299i
\(505\) 6.29204 0.279992
\(506\) 1.98626 3.44031i 0.0883001 0.152940i
\(507\) −10.7244 18.5753i −0.476289 0.824956i
\(508\) −14.3260 24.8133i −0.635612 1.10091i
\(509\) −8.45279 + 14.6407i −0.374663 + 0.648936i −0.990277 0.139113i \(-0.955575\pi\)
0.615613 + 0.788048i \(0.288908\pi\)
\(510\) −7.26456 −0.321680
\(511\) 38.9215 16.6028i 1.72179 0.734463i
\(512\) 20.7564 0.917311
\(513\) 7.12955 12.3487i 0.314777 0.545210i
\(514\) −2.49454 4.32067i −0.110029 0.190577i
\(515\) 1.98026 + 3.42991i 0.0872607 + 0.151140i
\(516\) −7.30077 + 12.6453i −0.321398 + 0.556678i
\(517\) 2.83424 0.124650
\(518\) −27.0768 + 11.5502i −1.18969 + 0.507485i
\(519\) 2.18430 0.0958803
\(520\) 0.667294 1.15579i 0.0292628 0.0506846i
\(521\) −0.778840 1.34899i −0.0341216 0.0591004i 0.848460 0.529259i \(-0.177530\pi\)
−0.882582 + 0.470159i \(0.844197\pi\)
\(522\) 17.5461 + 30.3908i 0.767973 + 1.33017i
\(523\) 6.25136 10.8277i 0.273353 0.473461i −0.696365 0.717688i \(-0.745201\pi\)
0.969718 + 0.244226i \(0.0785339\pi\)
\(524\) −18.6949 −0.816689
\(525\) 21.3810 + 16.0524i 0.933144 + 0.700582i
\(526\) 23.2855 1.01530
\(527\) 9.11254 15.7834i 0.396949 0.687535i
\(528\) 5.35071 + 9.26770i 0.232860 + 0.403325i
\(529\) 9.15475 + 15.8565i 0.398033 + 0.689413i
\(530\) 4.35398 7.54132i 0.189125 0.327574i
\(531\) 21.6565 0.939811
\(532\) −2.41211 + 19.9375i −0.104578 + 0.864400i
\(533\) −13.5741 −0.587958
\(534\) 0.734898 1.27288i 0.0318021 0.0550829i
\(535\) 3.52693 + 6.10883i 0.152483 + 0.264108i
\(536\) −0.934131 1.61796i −0.0403483 0.0698853i
\(537\) −21.6153 + 37.4387i −0.932768 + 1.61560i
\(538\) −13.0109 −0.560941
\(539\) −1.95333 6.72194i −0.0841358 0.289535i
\(540\) −2.22270 −0.0956497
\(541\) 8.28103 14.3432i 0.356029 0.616661i −0.631264 0.775568i \(-0.717464\pi\)
0.987294 + 0.158907i \(0.0507970\pi\)
\(542\) 16.7064 + 28.9364i 0.717603 + 1.24292i
\(543\) −26.2443 45.4564i −1.12625 1.95072i
\(544\) −9.34744 + 16.1902i −0.400768 + 0.694151i
\(545\) 9.09096 0.389414
\(546\) 2.30850 19.0811i 0.0987948 0.816595i
\(547\) −6.64448 −0.284097 −0.142049 0.989860i \(-0.545369\pi\)
−0.142049 + 0.989860i \(0.545369\pi\)
\(548\) −4.95606 + 8.58414i −0.211712 + 0.366696i
\(549\) 3.97252 + 6.88061i 0.169543 + 0.293657i
\(550\) −4.21516 7.30087i −0.179735 0.311310i
\(551\) −29.0127 + 50.2514i −1.23598 + 2.14078i
\(552\) 5.55114 0.236272
\(553\) 10.0751 + 7.56417i 0.428439 + 0.321661i
\(554\) 25.4018 1.07922
\(555\) −4.23817 + 7.34072i −0.179900 + 0.311596i
\(556\) 1.77557 + 3.07537i 0.0753009 + 0.130425i
\(557\) −6.55595 11.3552i −0.277784 0.481137i 0.693049 0.720890i \(-0.256267\pi\)
−0.970834 + 0.239753i \(0.922933\pi\)
\(558\) −10.8172 + 18.7360i −0.457930 + 0.793158i
\(559\) 8.76729 0.370817
\(560\) −7.52793 + 3.21119i −0.318113 + 0.135698i
\(561\) −6.23163 −0.263099
\(562\) −19.2898 + 33.4108i −0.813689 + 1.40935i
\(563\) −15.2443 26.4039i −0.642470 1.11279i −0.984880 0.173240i \(-0.944577\pi\)
0.342410 0.939551i \(-0.388757\pi\)
\(564\) −4.25136 7.36358i −0.179015 0.310063i
\(565\) −2.76129 + 4.78269i −0.116168 + 0.201209i
\(566\) 0.646470 0.0271732
\(567\) 27.1060 11.5626i 1.13834 0.485584i
\(568\) −5.00347 −0.209941
\(569\) 17.6790 30.6208i 0.741140 1.28369i −0.210836 0.977521i \(-0.567619\pi\)
0.951976 0.306171i \(-0.0990480\pi\)
\(570\) 7.12955 + 12.3487i 0.298624 + 0.517232i
\(571\) 20.6422 + 35.7533i 0.863849 + 1.49623i 0.868185 + 0.496240i \(0.165287\pi\)
−0.00433587 + 0.999991i \(0.501380\pi\)
\(572\) −1.22890 + 2.12851i −0.0513827 + 0.0889975i
\(573\) 24.4753 1.02247
\(574\) 29.2453 + 21.9566i 1.22067 + 0.916453i
\(575\) −9.95398 −0.415110
\(576\) 2.16849 3.75593i 0.0903536 0.156497i
\(577\) −4.35125 7.53659i −0.181145 0.313752i 0.761126 0.648604i \(-0.224647\pi\)
−0.942271 + 0.334852i \(0.891314\pi\)
\(578\) 8.22389 + 14.2442i 0.342069 + 0.592480i
\(579\) 3.97372 6.88268i 0.165142 0.286034i
\(580\) 9.04494 0.375571
\(581\) −2.93359 + 24.2478i −0.121706 + 1.00597i
\(582\) 10.4698 0.433987
\(583\) 3.73490 6.46903i 0.154684 0.267920i
\(584\) −9.32224 16.1466i −0.385757 0.668151i
\(585\) −1.04994 1.81856i −0.0434098 0.0751881i
\(586\) 3.17622 5.50138i 0.131209 0.227260i
\(587\) −23.0539 −0.951535 −0.475767 0.879571i \(-0.657830\pi\)
−0.475767 + 0.879571i \(0.657830\pi\)
\(588\) −14.5341 + 15.1578i −0.599377 + 0.625097i
\(589\) −35.7727 −1.47399
\(590\) 6.88191 11.9198i 0.283324 0.490731i
\(591\) 2.65856 + 4.60477i 0.109359 + 0.189415i
\(592\) 14.7618 + 25.5682i 0.606707 + 1.05085i
\(593\) −15.0494 + 26.0663i −0.618005 + 1.07042i 0.371844 + 0.928295i \(0.378725\pi\)
−0.989849 + 0.142121i \(0.954608\pi\)
\(594\) −4.70142 −0.192902
\(595\) 0.572413 4.73131i 0.0234666 0.193965i
\(596\) −1.36445 −0.0558900
\(597\) −20.3337 + 35.2190i −0.832203 + 1.44142i
\(598\) 3.57787 + 6.19706i 0.146310 + 0.253416i
\(599\) −14.6257 25.3325i −0.597591 1.03506i −0.993176 0.116629i \(-0.962791\pi\)
0.395584 0.918430i \(-0.370542\pi\)
\(600\) 5.89019 10.2021i 0.240466 0.416499i
\(601\) −26.8222 −1.09410 −0.547051 0.837099i \(-0.684250\pi\)
−0.547051 + 0.837099i \(0.684250\pi\)
\(602\) −18.8891 14.1815i −0.769862 0.577994i
\(603\) −2.93959 −0.119709
\(604\) −1.18396 + 2.05068i −0.0481746 + 0.0834409i
\(605\) 0.317776 + 0.550404i 0.0129194 + 0.0223771i
\(606\) −19.9633 34.5774i −0.810952 1.40461i
\(607\) −16.1048 + 27.8943i −0.653674 + 1.13220i 0.328551 + 0.944486i \(0.393440\pi\)
−0.982224 + 0.187710i \(0.939893\pi\)
\(608\) 36.6949 1.48817
\(609\) −55.8096 + 23.8067i −2.26152 + 0.964697i
\(610\) 5.04949 0.204448
\(611\) −2.55267 + 4.42136i −0.103270 + 0.178869i
\(612\) 3.54667 + 6.14302i 0.143366 + 0.248317i
\(613\) −22.2975 38.6204i −0.900587 1.55986i −0.826733 0.562594i \(-0.809803\pi\)
−0.0738539 0.997269i \(-0.523530\pi\)
\(614\) 5.97480 10.3487i 0.241123 0.417638i
\(615\) 10.5302 0.424619
\(616\) −2.83697 + 1.21017i −0.114305 + 0.0487591i
\(617\) −0.531290 −0.0213889 −0.0106945 0.999943i \(-0.503404\pi\)
−0.0106945 + 0.999943i \(0.503404\pi\)
\(618\) 12.5659 21.7647i 0.505473 0.875506i
\(619\) −20.8726 36.1525i −0.838942 1.45309i −0.890780 0.454435i \(-0.849841\pi\)
0.0518379 0.998656i \(-0.483492\pi\)
\(620\) 2.78811 + 4.82915i 0.111973 + 0.193943i
\(621\) −2.77557 + 4.80743i −0.111380 + 0.192915i
\(622\) 21.3324 0.855352
\(623\) 0.771104 + 0.578926i 0.0308936 + 0.0231942i
\(624\) −19.2766 −0.771680
\(625\) −9.55213 + 16.5448i −0.382085 + 0.661791i
\(626\) 24.8519 + 43.0448i 0.993282 + 1.72041i
\(627\) 6.11581 + 10.5929i 0.244242 + 0.423040i
\(628\) 5.41658 9.38179i 0.216145 0.374374i
\(629\) −17.1921 −0.685496
\(630\) −0.679494 + 5.61641i −0.0270717 + 0.223763i
\(631\) −0.217238 −0.00864810 −0.00432405 0.999991i \(-0.501376\pi\)
−0.00432405 + 0.999991i \(0.501376\pi\)
\(632\) 2.77557 4.80743i 0.110406 0.191229i
\(633\) −8.63555 14.9572i −0.343232 0.594496i
\(634\) −3.54167 6.13434i −0.140658 0.243626i
\(635\) 6.67295 11.5579i 0.264808 0.458661i
\(636\) −22.4094 −0.888590
\(637\) 12.2454 + 3.00700i 0.485179 + 0.119142i
\(638\) 19.1317 0.757433
\(639\) −3.93632 + 6.81790i −0.155718 + 0.269712i
\(640\) 2.81396 + 4.87392i 0.111232 + 0.192659i
\(641\) 4.84525 + 8.39222i 0.191376 + 0.331473i 0.945706 0.325022i \(-0.105372\pi\)
−0.754331 + 0.656495i \(0.772038\pi\)
\(642\) 22.3804 38.7639i 0.883283 1.52989i
\(643\) 16.4633 0.649247 0.324624 0.945843i \(-0.394762\pi\)
0.324624 + 0.945843i \(0.394762\pi\)
\(644\) 0.939048 7.76176i 0.0370037 0.305856i
\(645\) −6.80131 −0.267801
\(646\) −14.4605 + 25.0464i −0.568942 + 0.985436i
\(647\) −0.436861 0.756665i −0.0171748 0.0297476i 0.857310 0.514800i \(-0.172134\pi\)
−0.874485 + 0.485052i \(0.838801\pi\)
\(648\) −6.49226 11.2449i −0.255040 0.441743i
\(649\) 5.90338 10.2250i 0.231728 0.401365i
\(650\) 15.1856 0.595628
\(651\) −29.9140 22.4587i −1.17242 0.880225i
\(652\) −21.8386 −0.855266
\(653\) 19.9665 34.5830i 0.781350 1.35334i −0.149805 0.988716i \(-0.547865\pi\)
0.931155 0.364623i \(-0.118802\pi\)
\(654\) −28.8436 49.9586i −1.12787 1.95354i
\(655\) −4.35398 7.54132i −0.170124 0.294664i
\(656\) 18.3387 31.7636i 0.716006 1.24016i
\(657\) −29.3359 −1.14450
\(658\) 12.6515 5.39675i 0.493206 0.210387i
\(659\) −6.89465 −0.268578 −0.134289 0.990942i \(-0.542875\pi\)
−0.134289 + 0.990942i \(0.542875\pi\)
\(660\) 0.953328 1.65121i 0.0371082 0.0642734i
\(661\) 20.0072 + 34.6535i 0.778190 + 1.34786i 0.932984 + 0.359917i \(0.117195\pi\)
−0.154795 + 0.987947i \(0.549472\pi\)
\(662\) −5.64056 9.76973i −0.219227 0.379711i
\(663\) 5.61254 9.72121i 0.217973 0.377540i
\(664\) 10.7618 0.417640
\(665\) −8.60435 + 3.67036i −0.333662 + 0.142331i
\(666\) 20.4083 0.790806
\(667\) 11.2948 19.5631i 0.437335 0.757487i
\(668\) −0.790843 1.36978i −0.0305986 0.0529984i
\(669\) 22.3574 + 38.7241i 0.864386 + 1.49716i
\(670\) −0.934131 + 1.61796i −0.0360886 + 0.0625073i
\(671\) 4.33151 0.167216
\(672\) 30.6851 + 23.0376i 1.18370 + 0.888695i
\(673\) 31.3788 1.20957 0.604783 0.796391i \(-0.293260\pi\)
0.604783 + 0.796391i \(0.293260\pi\)
\(674\) 10.7860 18.6820i 0.415463 0.719602i
\(675\) 5.89019 + 10.2021i 0.226713 + 0.392679i
\(676\) 6.65529 + 11.5273i 0.255973 + 0.443358i
\(677\) 18.2658 31.6372i 0.702010 1.21592i −0.265750 0.964042i \(-0.585620\pi\)
0.967760 0.251875i \(-0.0810471\pi\)
\(678\) 35.0439 1.34585
\(679\) −0.824970 + 6.81884i −0.0316594 + 0.261683i
\(680\) −2.09989 −0.0805270
\(681\) 7.93686 13.7470i 0.304141 0.526788i
\(682\) 5.89738 + 10.2146i 0.225822 + 0.391136i
\(683\) 7.63501 + 13.2242i 0.292146 + 0.506011i 0.974317 0.225181i \(-0.0722975\pi\)
−0.682171 + 0.731192i \(0.738964\pi\)
\(684\) 6.96152 12.0577i 0.266180 0.461038i
\(685\) −4.61701 −0.176407
\(686\) −21.5187 26.2860i −0.821586 1.00360i
\(687\) −26.5411 −1.01261
\(688\) −11.8447 + 20.5156i −0.451575 + 0.782151i
\(689\) 6.72770 + 11.6527i 0.256305 + 0.443933i
\(690\) −2.77557 4.80743i −0.105664 0.183016i
\(691\) 19.1921 33.2418i 0.730104 1.26458i −0.226735 0.973957i \(-0.572805\pi\)
0.956839 0.290620i \(-0.0938616\pi\)
\(692\) −1.35552 −0.0515291
\(693\) −0.582878 + 4.81782i −0.0221417 + 0.183014i
\(694\) −1.54221 −0.0585414
\(695\) −0.827049 + 1.43249i −0.0313718 + 0.0543375i
\(696\) 13.3672 + 23.1526i 0.506682 + 0.877598i
\(697\) 10.6790 + 18.4965i 0.404494 + 0.700604i
\(698\) −8.37491 + 14.5058i −0.316995 + 0.549052i
\(699\) 16.5830 0.627226
\(700\) −13.2685 9.96166i −0.501501 0.376515i
\(701\) 17.9056 0.676284 0.338142 0.941095i \(-0.390202\pi\)
0.338142 + 0.941095i \(0.390202\pi\)
\(702\) 4.23436 7.33412i 0.159815 0.276808i
\(703\) 16.8726 + 29.2243i 0.636364 + 1.10221i
\(704\) −1.18222 2.04767i −0.0445567 0.0771745i
\(705\) 1.98026 3.42991i 0.0745809 0.129178i
\(706\) 41.6883 1.56896
\(707\) 24.0928 10.2773i 0.906103 0.386517i
\(708\) −35.4203 −1.33118
\(709\) −17.1997 + 29.7907i −0.645948 + 1.11881i 0.338134 + 0.941098i \(0.390204\pi\)
−0.984082 + 0.177716i \(0.943129\pi\)
\(710\) 2.50173 + 4.33313i 0.0938884 + 0.162620i
\(711\) −4.36718 7.56417i −0.163782 0.283679i
\(712\) 0.212429 0.367938i 0.00796111 0.0137890i
\(713\) 13.9265 0.521552
\(714\) −27.8167 + 11.8658i −1.04101 + 0.444066i
\(715\) −1.14483 −0.0428140
\(716\) 13.4138 23.2335i 0.501299 0.868276i
\(717\) −10.8244 18.7485i −0.404246 0.700174i
\(718\) 24.0456 + 41.6482i 0.897373 + 1.55430i
\(719\) −24.7086 + 42.7966i −0.921476 + 1.59604i −0.124343 + 0.992239i \(0.539682\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(720\) 5.67395 0.211455
\(721\) 13.1850 + 9.89894i 0.491033 + 0.368656i
\(722\) 21.9165 0.815647
\(723\) −1.84144 + 3.18946i −0.0684838 + 0.118617i
\(724\) 16.2865 + 28.2090i 0.605283 + 1.04838i
\(725\) −23.9693 41.5160i −0.890196 1.54186i
\(726\) 2.01647 3.49262i 0.0748381 0.129623i
\(727\) −19.8201 −0.735086 −0.367543 0.930007i \(-0.619801\pi\)
−0.367543 + 0.930007i \(0.619801\pi\)
\(728\) 0.667294 5.51556i 0.0247316 0.204420i
\(729\) −3.52366 −0.130506
\(730\) −9.32224 + 16.1466i −0.345032 + 0.597612i
\(731\) −6.89738 11.9466i −0.255109 0.441862i
\(732\) −6.49727 11.2536i −0.240146 0.415945i
\(733\) 15.3238 26.5416i 0.565997 0.980335i −0.430960 0.902371i \(-0.641825\pi\)
0.996956 0.0779637i \(-0.0248418\pi\)
\(734\) −7.01092 −0.258778
\(735\) −9.49946 2.33271i −0.350393 0.0860432i
\(736\) −14.2855 −0.526570
\(737\) −0.801309 + 1.38791i −0.0295166 + 0.0511242i
\(738\) −12.6767 21.9566i −0.466635 0.808235i
\(739\) −8.55094 14.8107i −0.314551 0.544819i 0.664791 0.747030i \(-0.268521\pi\)
−0.979342 + 0.202211i \(0.935187\pi\)
\(740\) 2.63009 4.55545i 0.0966841 0.167462i
\(741\) −22.0329 −0.809400
\(742\) 4.35398 35.9881i 0.159840 1.32117i
\(743\) −6.97252 −0.255797 −0.127899 0.991787i \(-0.540823\pi\)
−0.127899 + 0.991787i \(0.540823\pi\)
\(744\) −8.24090 + 14.2737i −0.302126 + 0.523298i
\(745\) −0.317776 0.550404i −0.0116424 0.0201652i
\(746\) −13.8556 23.9987i −0.507291 0.878653i
\(747\) 8.46652 14.6644i 0.309774 0.536544i
\(748\) 3.86718 0.141398
\(749\) 23.4830 + 17.6305i 0.858050 + 0.644203i
\(750\) −24.5961 −0.898122
\(751\) −7.61636 + 13.1919i −0.277925 + 0.481380i −0.970869 0.239612i \(-0.922980\pi\)
0.692944 + 0.720991i \(0.256313\pi\)
\(752\) −6.89738 11.9466i −0.251522 0.435648i
\(753\) 21.7383 + 37.6518i 0.792187 + 1.37211i
\(754\) −17.2311 + 29.8451i −0.627519 + 1.08689i
\(755\) −1.10296 −0.0401409
\(756\) −8.51092 + 3.63051i −0.309539 + 0.132040i
\(757\) −14.5326 −0.528196 −0.264098 0.964496i \(-0.585074\pi\)
−0.264098 + 0.964496i \(0.585074\pi\)
\(758\) 10.4336 18.0715i 0.378965 0.656387i
\(759\) −2.38092 4.12387i −0.0864217 0.149687i
\(760\) 2.06086 + 3.56952i 0.0747553 + 0.129480i
\(761\) 0.856712 1.48387i 0.0310558 0.0537902i −0.850080 0.526654i \(-0.823446\pi\)
0.881136 + 0.472864i \(0.156780\pi\)
\(762\) −84.6872 −3.06790
\(763\) 34.8101 14.8490i 1.26021 0.537569i
\(764\) −15.1887 −0.549507
\(765\) −1.65202 + 2.86138i −0.0597289 + 0.103453i
\(766\) −8.14929 14.1150i −0.294446 0.509995i
\(767\) 10.6338 + 18.4183i 0.383965 + 0.665047i
\(768\) 23.0549 39.9322i 0.831921 1.44093i
\(769\) −36.5874 −1.31937 −0.659687 0.751540i \(-0.729311\pi\)
−0.659687 + 0.751540i \(0.729311\pi\)
\(770\) 2.46652 + 1.85181i 0.0888873 + 0.0667345i
\(771\) −5.98037 −0.215378
\(772\) −2.46598 + 4.27120i −0.0887526 + 0.153724i
\(773\) −13.4106 23.2278i −0.482345 0.835446i 0.517450 0.855714i \(-0.326881\pi\)
−0.999795 + 0.0202677i \(0.993548\pi\)
\(774\) 8.18768 + 14.1815i 0.294300 + 0.509743i
\(775\) 14.7771 25.5947i 0.530809 0.919389i
\(776\) 3.02639 0.108641
\(777\) −4.23817 + 35.0309i −0.152043 + 1.25673i
\(778\) −36.4997 −1.30858
\(779\) 20.9610 36.3055i 0.751005 1.30078i
\(780\) 1.71724 + 2.97434i 0.0614870 + 0.106499i
\(781\) 2.14602 + 3.71701i 0.0767906 + 0.133005i
\(782\) 5.62955 9.75067i 0.201312 0.348683i
\(783\) −26.7344 −0.955408
\(784\) −23.5801 + 24.5919i −0.842145 + 0.878283i
\(785\) 5.04602 0.180100
\(786\) −27.6285 + 47.8539i −0.985475 + 1.70689i
\(787\) −2.47580 4.28821i −0.0882526 0.152858i 0.818520 0.574478i \(-0.194795\pi\)
−0.906773 + 0.421620i \(0.861462\pi\)
\(788\) −1.64983 2.85759i −0.0587728 0.101798i
\(789\) 13.9561 24.1726i 0.496849 0.860567i
\(790\) −5.55114 −0.197501
\(791\) −2.76129 + 22.8236i −0.0981801 + 0.811514i
\(792\) 2.13828 0.0759805
\(793\) −3.90120 + 6.75707i −0.138536 + 0.239951i
\(794\) 31.9714 + 55.3762i 1.13462 + 1.96523i
\(795\) −5.21908 9.03971i −0.185102 0.320606i
\(796\) 12.6185 21.8560i 0.447252 0.774664i
\(797\) −26.6818 −0.945117 −0.472559 0.881299i \(-0.656670\pi\)
−0.472559 + 0.881299i \(0.656670\pi\)
\(798\) 47.4699 + 35.6393i 1.68042 + 1.26162i
\(799\) 8.03293 0.284185
\(800\) −15.1580 + 26.2545i −0.535917 + 0.928235i
\(801\) −0.334243 0.578926i −0.0118099 0.0204554i
\(802\) −10.4518 18.1030i −0.369066 0.639240i
\(803\) −7.99673 + 13.8507i −0.282198 + 0.488782i
\(804\) 4.80785 0.169560
\(805\) 3.34972 1.42889i 0.118062 0.0503617i
\(806\) −21.2460 −0.748359
\(807\) −7.79804 + 13.5066i −0.274504 + 0.475455i
\(808\) −5.77056 9.99491i −0.203008 0.351620i
\(809\) 19.7700 + 34.2427i 0.695077 + 1.20391i 0.970155 + 0.242487i \(0.0779630\pi\)
−0.275078 + 0.961422i \(0.588704\pi\)
\(810\) −6.49226 + 11.2449i −0.228115 + 0.395107i
\(811\) −33.4543 −1.17474 −0.587370 0.809318i \(-0.699837\pi\)
−0.587370 + 0.809318i \(0.699837\pi\)
\(812\) 34.6339 14.7738i 1.21541 0.518459i
\(813\) 40.0517 1.40467
\(814\) 5.56314 9.63564i 0.194988 0.337729i
\(815\) −5.08615 8.80947i −0.178160 0.308582i
\(816\) 15.1652 + 26.2669i 0.530889 + 0.919526i
\(817\) −13.5384 + 23.4492i −0.473648 + 0.820383i
\(818\) −7.49818 −0.262168
\(819\) −6.99073 5.24847i −0.244276 0.183396i
\(820\) −6.53476 −0.228204
\(821\) −28.4310 + 49.2439i −0.992248 + 1.71862i −0.388497 + 0.921450i \(0.627006\pi\)
−0.603751 + 0.797173i \(0.706328\pi\)
\(822\) 14.6487 + 25.3724i 0.510934 + 0.884963i
\(823\) 20.0878 + 34.7931i 0.700217 + 1.21281i 0.968390 + 0.249440i \(0.0802465\pi\)
−0.268174 + 0.963371i \(0.586420\pi\)
\(824\) 3.63228 6.29129i 0.126536 0.219168i
\(825\) −10.1053 −0.351823
\(826\) 6.88191 56.8829i 0.239452 1.97921i
\(827\) −5.73544 −0.199441 −0.0997204 0.995015i \(-0.531795\pi\)
−0.0997204 + 0.995015i \(0.531795\pi\)
\(828\) −2.71015 + 4.69412i −0.0941843 + 0.163132i
\(829\) 17.7980 + 30.8271i 0.618151 + 1.07067i 0.989823 + 0.142305i \(0.0454515\pi\)
−0.371671 + 0.928364i \(0.621215\pi\)
\(830\) −5.38092 9.32002i −0.186774 0.323503i
\(831\) 15.2244 26.3695i 0.528130 0.914747i
\(832\) 4.25910 0.147658
\(833\) −5.53621 19.0516i −0.191818 0.660099i
\(834\) 10.4962 0.363453
\(835\) 0.368370 0.638036i 0.0127480 0.0220801i
\(836\) −3.79531 6.57367i −0.131263 0.227355i
\(837\) −8.24090 14.2737i −0.284847 0.493370i
\(838\) −30.0818 + 52.1032i −1.03916 + 1.79988i
\(839\) −41.7727 −1.44216 −0.721078 0.692854i \(-0.756353\pi\)
−0.721078 + 0.692854i \(0.756353\pi\)
\(840\) −0.517660 + 4.27875i −0.0178610 + 0.147631i
\(841\) 79.7915 2.75143
\(842\) 7.81505 13.5361i 0.269324 0.466483i
\(843\) 23.1225 + 40.0493i 0.796380 + 1.37937i
\(844\) 5.35899 + 9.28204i 0.184464 + 0.319501i
\(845\) −3.10000 + 5.36935i −0.106643 + 0.184711i
\(846\) −9.53566 −0.327843
\(847\) 2.11581 + 1.58850i 0.0727002 + 0.0545815i
\(848\) −36.3568 −1.24850
\(849\) 0.387459 0.671099i 0.0132976 0.0230321i
\(850\) −11.9468 20.6924i −0.409771 0.709745i
\(851\) −6.56860 11.3771i −0.225169 0.390004i
\(852\) 6.43805 11.1510i 0.220564 0.382028i
\(853\) 49.7871 1.70468 0.852340 0.522989i \(-0.175183\pi\)
0.852340 + 0.522989i \(0.175183\pi\)
\(854\) 19.3350 8.24773i 0.661630 0.282232i
\(855\) 6.48527 0.221791
\(856\) 6.46925 11.2051i 0.221115 0.382982i
\(857\) −12.7394 22.0652i −0.435168 0.753734i 0.562141 0.827041i \(-0.309978\pi\)
−0.997309 + 0.0733077i \(0.976644\pi\)
\(858\) 3.63228 + 6.29129i 0.124004 + 0.214781i
\(859\) −8.08080 + 13.9964i −0.275713 + 0.477549i −0.970315 0.241845i \(-0.922247\pi\)
0.694602 + 0.719395i \(0.255581\pi\)
\(860\) 4.22071 0.143925
\(861\) 40.3212 17.1998i 1.37414 0.586168i
\(862\) −30.6949 −1.04547
\(863\) −1.44951 + 2.51063i −0.0493420 + 0.0854629i −0.889642 0.456660i \(-0.849046\pi\)
0.840300 + 0.542122i \(0.182379\pi\)
\(864\) 8.45333 + 14.6416i 0.287588 + 0.498117i
\(865\) −0.315697 0.546802i −0.0107340 0.0185918i
\(866\) 23.7224 41.0883i 0.806118 1.39624i
\(867\) 19.7158 0.669584
\(868\) 18.5638 + 13.9372i 0.630096 + 0.473061i
\(869\) −4.76183 −0.161534
\(870\) 13.3672 23.1526i 0.453190 0.784948i
\(871\) −1.44340 2.50005i −0.0489079 0.0847110i
\(872\) −8.33752 14.4410i −0.282344 0.489034i
\(873\) 2.38092 4.12387i 0.0805818 0.139572i
\(874\) −22.0997 −0.747534
\(875\) 1.93805 16.0191i 0.0655182 0.541545i
\(876\) 47.9804 1.62111
\(877\) 4.20742 7.28747i 0.142075 0.246080i −0.786203 0.617968i \(-0.787956\pi\)
0.928278 + 0.371888i \(0.121289\pi\)
\(878\) 8.77557 + 15.1997i 0.296161 + 0.512966i
\(879\) −3.80731 6.59445i −0.128417 0.222425i
\(880\) 1.54667 2.67891i 0.0521383 0.0903062i
\(881\) 41.5335 1.39930 0.699649 0.714486i \(-0.253340\pi\)
0.699649 + 0.714486i \(0.253340\pi\)
\(882\) 6.57187 + 22.6156i 0.221286 + 0.761508i
\(883\) −56.4753 −1.90054 −0.950272 0.311422i \(-0.899195\pi\)
−0.950272 + 0.311422i \(0.899195\pi\)
\(884\) −3.48299 + 6.03272i −0.117146 + 0.202902i
\(885\) −8.24929 14.2882i −0.277297 0.480292i
\(886\) −17.4555 30.2338i −0.586429 1.01573i
\(887\) 17.2898 29.9467i 0.580533 1.00551i −0.414883 0.909875i \(-0.636177\pi\)
0.995416 0.0956383i \(-0.0304892\pi\)
\(888\) 15.5477 0.521746
\(889\) 6.67295 55.1557i 0.223804 1.84986i
\(890\) −0.424858 −0.0142413
\(891\) −5.56914 + 9.64603i −0.186573 + 0.323154i
\(892\) −13.8744 24.0311i −0.464548 0.804621i
\(893\) −7.88364 13.6549i −0.263816 0.456943i
\(894\) −2.01647 + 3.49262i −0.0674408 + 0.116811i
\(895\) 12.4962 0.417701
\(896\) 18.7359 + 14.0665i 0.625922 + 0.469927i
\(897\) 8.57753 0.286395
\(898\) −30.5791 + 52.9645i −1.02044 + 1.76745i
\(899\) 33.5351 + 58.0845i 1.11846 + 1.93723i
\(900\) 5.75136 + 9.96166i 0.191712 + 0.332055i
\(901\) 10.5856 18.3348i 0.352658 0.610821i
\(902\) −13.8222 −0.460230
\(903\) −26.0429 + 11.1091i −0.866652 + 0.369688i
\(904\) 10.1297 0.336910
\(905\) −7.58615 + 13.1396i −0.252172 + 0.436775i
\(906\) 3.49946 + 6.06124i 0.116262 + 0.201371i
\(907\) −4.20142 7.27707i −0.139506 0.241631i 0.787804 0.615926i \(-0.211218\pi\)
−0.927310 + 0.374295i \(0.877885\pi\)
\(908\) −4.92540 + 8.53104i −0.163455 + 0.283113i
\(909\) −18.1592 −0.602303
\(910\) −5.11026 + 2.17989i −0.169404 + 0.0722626i
\(911\) −0.593689 −0.0196698 −0.00983489 0.999952i \(-0.503131\pi\)
−0.00983489 + 0.999952i \(0.503131\pi\)
\(912\) 29.7667 51.5575i 0.985675 1.70724i
\(913\) −4.61581 7.99482i −0.152761 0.264590i
\(914\) −10.9693 18.9993i −0.362831 0.628441i
\(915\) 3.02639 5.24186i 0.100049 0.173291i
\(916\) 16.4707 0.544207
\(917\) −28.9896 21.7647i −0.957322 0.718734i
\(918\) −13.3250 −0.439790
\(919\) 8.16849 14.1482i 0.269454 0.466707i −0.699267 0.714860i \(-0.746490\pi\)
0.968721 + 0.248153i \(0.0798236\pi\)
\(920\) −0.802304 1.38963i −0.0264512 0.0458148i
\(921\) −7.16194 12.4048i −0.235994 0.408754i
\(922\) −11.4545 + 19.8398i −0.377235 + 0.653389i
\(923\) −7.73128 −0.254478
\(924\) 0.953328 7.87979i 0.0313622 0.259226i
\(925\) −27.8792 −0.916662
\(926\) −11.2893 + 19.5537i −0.370990 + 0.642573i
\(927\) −5.71516 9.89894i −0.187710 0.325124i
\(928\) −34.3996 59.5818i −1.12922 1.95587i
\(929\) −4.45060 + 7.70866i −0.146019 + 0.252913i −0.929753 0.368184i \(-0.879980\pi\)
0.783733 + 0.621097i \(0.213313\pi\)
\(930\) 16.4818 0.540459
\(931\) −26.9518 + 28.1083i −0.883309 + 0.921213i
\(932\) −10.2910 −0.337091
\(933\) 12.7855 22.1451i 0.418578 0.724999i
\(934\) −30.0456 52.0405i −0.983122 1.70282i
\(935\) 0.900654 + 1.55998i 0.0294545 + 0.0510168i
\(936\) −1.92585 + 3.33567i −0.0629485 + 0.109030i
\(937\) 45.2360 1.47780 0.738898 0.673817i \(-0.235347\pi\)
0.738898 + 0.673817i \(0.235347\pi\)
\(938\) −0.934131 + 7.72112i −0.0305005 + 0.252104i
\(939\) 59.5795 1.94430
\(940\) −1.22890 + 2.12851i −0.0400822 + 0.0694244i
\(941\) 3.46652 + 6.00419i 0.113005 + 0.195731i 0.916981 0.398932i \(-0.130619\pi\)
−0.803975 + 0.594663i \(0.797286\pi\)
\(942\) −16.0099 27.7300i −0.521631 0.903492i
\(943\) −8.16021 + 14.1339i −0.265733 + 0.460263i
\(944\) −57.4656 −1.87035
\(945\) −3.44668 2.58768i −0.112120 0.0841773i
\(946\) 8.92759 0.290261
\(947\) −10.3716 + 17.9642i −0.337033 + 0.583758i −0.983873 0.178867i \(-0.942757\pi\)
0.646840 + 0.762626i \(0.276090\pi\)
\(948\) 7.14275 + 12.3716i 0.231986 + 0.401811i
\(949\) −14.4046 24.9495i −0.467592 0.809894i
\(950\) −23.4495 + 40.6157i −0.760803 + 1.31775i
\(951\) −8.49073 −0.275331
\(952\) −8.04067 + 3.42991i −0.260600 + 0.111164i
\(953\) 20.2076 0.654589 0.327295 0.944922i \(-0.393863\pi\)
0.327295 + 0.944922i \(0.393863\pi\)
\(954\) −12.5659 + 21.7647i −0.406835 + 0.704659i
\(955\) −3.53740 6.12695i −0.114468 0.198264i
\(956\) 6.71735 + 11.6348i 0.217254 + 0.376296i
\(957\) 11.4665 19.8606i 0.370660 0.642002i
\(958\) 47.6499 1.53950
\(959\) −17.6790 + 7.54132i −0.570883 + 0.243522i
\(960\) −3.30404 −0.106637
\(961\) −5.17449 + 8.96248i −0.166919 + 0.289112i
\(962\) 10.0209 + 17.3568i 0.323088 + 0.559604i
\(963\) −10.1790 17.6305i −0.328012 0.568134i
\(964\) 1.14275 1.97929i 0.0368054 0.0637488i
\(965\) −2.29728 −0.0739520
\(966\) −18.4803 13.8745i −0.594593 0.446406i
\(967\) −7.98254 −0.256701 −0.128351 0.991729i \(-0.540968\pi\)
−0.128351 + 0.991729i \(0.540968\pi\)
\(968\) 0.582878 1.00958i 0.0187344 0.0324490i
\(969\) 17.3337 + 30.0229i 0.556839 + 0.964473i
\(970\) −1.51320 2.62093i −0.0485858 0.0841530i
\(971\) 6.88965 11.9332i 0.221099 0.382955i −0.734043 0.679103i \(-0.762369\pi\)
0.955142 + 0.296148i \(0.0957022\pi\)
\(972\) 22.9230 0.735257
\(973\) −0.827049 + 6.83603i −0.0265140 + 0.219153i
\(974\) 26.6619 0.854304
\(975\) 9.10143 15.7641i 0.291479 0.504856i
\(976\) −10.5411 18.2578i −0.337413 0.584417i
\(977\) −6.01047 10.4104i −0.192292 0.333059i 0.753718 0.657199i \(-0.228259\pi\)
−0.946009 + 0.324139i \(0.894925\pi\)
\(978\) −32.2745 + 55.9010i −1.03202 + 1.78752i
\(979\) −0.364448 −0.0116478
\(980\) 5.89511 + 1.44761i 0.188312 + 0.0462423i
\(981\) −26.2371 −0.837686
\(982\) 36.1302 62.5793i 1.15296 1.99699i
\(983\) 22.3272 + 38.6718i 0.712126 + 1.23344i 0.964058 + 0.265693i \(0.0856007\pi\)
−0.251932 + 0.967745i \(0.581066\pi\)
\(984\) −9.65748 16.7272i −0.307869 0.533245i
\(985\) 0.768482 1.33105i 0.0244859 0.0424108i
\(986\) 54.2240 1.72684
\(987\) 1.98026 16.3680i 0.0630324 0.520998i
\(988\) 13.6730 0.434997
\(989\) 5.27056 9.12888i 0.167594 0.290282i
\(990\) −1.06914 1.85181i −0.0339795 0.0588543i
\(991\) 11.4830 + 19.8891i 0.364769 + 0.631799i 0.988739 0.149650i \(-0.0478146\pi\)
−0.623970 + 0.781448i \(0.714481\pi\)
\(992\) 21.2074 36.7323i 0.673336 1.16625i
\(993\) −13.5226 −0.429126
\(994\) 16.6570 + 12.5057i 0.528329 + 0.396656i
\(995\) 11.7553 0.372668
\(996\) −13.8474 + 23.9845i −0.438773 + 0.759977i
\(997\) −0.674488 1.16825i −0.0213612 0.0369988i 0.855147 0.518385i \(-0.173467\pi\)
−0.876508 + 0.481387i \(0.840133\pi\)
\(998\) 24.0566 + 41.6672i 0.761498 + 1.31895i
\(999\) −7.77383 + 13.4647i −0.245953 + 0.426003i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 77.2.e.b.23.1 6
3.2 odd 2 693.2.i.g.100.3 6
4.3 odd 2 1232.2.q.k.177.1 6
7.2 even 3 539.2.a.h.1.3 3
7.3 odd 6 539.2.e.l.67.1 6
7.4 even 3 inner 77.2.e.b.67.1 yes 6
7.5 odd 6 539.2.a.i.1.3 3
7.6 odd 2 539.2.e.l.177.1 6
11.2 odd 10 847.2.n.d.807.1 24
11.3 even 5 847.2.n.e.9.3 24
11.4 even 5 847.2.n.e.632.1 24
11.5 even 5 847.2.n.e.366.1 24
11.6 odd 10 847.2.n.d.366.3 24
11.7 odd 10 847.2.n.d.632.3 24
11.8 odd 10 847.2.n.d.9.1 24
11.9 even 5 847.2.n.e.807.3 24
11.10 odd 2 847.2.e.d.485.3 6
21.2 odd 6 4851.2.a.bo.1.1 3
21.5 even 6 4851.2.a.bn.1.1 3
21.11 odd 6 693.2.i.g.298.3 6
28.11 odd 6 1232.2.q.k.529.1 6
28.19 even 6 8624.2.a.ck.1.1 3
28.23 odd 6 8624.2.a.cl.1.3 3
77.4 even 15 847.2.n.e.753.3 24
77.18 odd 30 847.2.n.d.753.1 24
77.25 even 15 847.2.n.e.130.1 24
77.32 odd 6 847.2.e.d.606.3 6
77.39 odd 30 847.2.n.d.487.1 24
77.46 odd 30 847.2.n.d.81.3 24
77.53 even 15 847.2.n.e.81.1 24
77.54 even 6 5929.2.a.w.1.1 3
77.60 even 15 847.2.n.e.487.3 24
77.65 odd 6 5929.2.a.v.1.1 3
77.74 odd 30 847.2.n.d.130.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.b.23.1 6 1.1 even 1 trivial
77.2.e.b.67.1 yes 6 7.4 even 3 inner
539.2.a.h.1.3 3 7.2 even 3
539.2.a.i.1.3 3 7.5 odd 6
539.2.e.l.67.1 6 7.3 odd 6
539.2.e.l.177.1 6 7.6 odd 2
693.2.i.g.100.3 6 3.2 odd 2
693.2.i.g.298.3 6 21.11 odd 6
847.2.e.d.485.3 6 11.10 odd 2
847.2.e.d.606.3 6 77.32 odd 6
847.2.n.d.9.1 24 11.8 odd 10
847.2.n.d.81.3 24 77.46 odd 30
847.2.n.d.130.3 24 77.74 odd 30
847.2.n.d.366.3 24 11.6 odd 10
847.2.n.d.487.1 24 77.39 odd 30
847.2.n.d.632.3 24 11.7 odd 10
847.2.n.d.753.1 24 77.18 odd 30
847.2.n.d.807.1 24 11.2 odd 10
847.2.n.e.9.3 24 11.3 even 5
847.2.n.e.81.1 24 77.53 even 15
847.2.n.e.130.1 24 77.25 even 15
847.2.n.e.366.1 24 11.5 even 5
847.2.n.e.487.3 24 77.60 even 15
847.2.n.e.632.1 24 11.4 even 5
847.2.n.e.753.3 24 77.4 even 15
847.2.n.e.807.3 24 11.9 even 5
1232.2.q.k.177.1 6 4.3 odd 2
1232.2.q.k.529.1 6 28.11 odd 6
4851.2.a.bn.1.1 3 21.5 even 6
4851.2.a.bo.1.1 3 21.2 odd 6
5929.2.a.v.1.1 3 77.65 odd 6
5929.2.a.w.1.1 3 77.54 even 6
8624.2.a.ck.1.1 3 28.19 even 6
8624.2.a.cl.1.3 3 28.23 odd 6