Newspace parameters
Level: | \( N \) | \(=\) | \( 77 = 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 77.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.614848095564\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\zeta_{18})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - x^{3} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/77\mathbb{Z}\right)^\times\).
\(n\) | \(45\) | \(57\) |
\(\chi(n)\) | \(-\zeta_{18}^{3}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 |
|
−0.939693 | + | 1.62760i | −0.326352 | − | 0.565258i | −0.766044 | − | 1.32683i | −1.76604 | + | 3.05888i | 1.22668 | 0.418748 | + | 2.61240i | −0.879385 | 1.28699 | − | 2.22913i | −3.31908 | − | 5.74881i | ||||||||||||||||||||||
23.2 | 0.173648 | − | 0.300767i | 0.266044 | + | 0.460802i | 0.939693 | + | 1.62760i | −0.0603074 | + | 0.104455i | 0.184793 | −2.47178 | − | 0.943555i | 1.34730 | 1.35844 | − | 2.35289i | 0.0209445 | + | 0.0362770i | |||||||||||||||||||||||
23.3 | 0.766044 | − | 1.32683i | −1.43969 | − | 2.49362i | −0.173648 | − | 0.300767i | −1.17365 | + | 2.03282i | −4.41147 | 2.05303 | − | 1.66885i | 2.53209 | −2.64543 | + | 4.58202i | 1.79813 | + | 3.11446i | |||||||||||||||||||||||
67.1 | −0.939693 | − | 1.62760i | −0.326352 | + | 0.565258i | −0.766044 | + | 1.32683i | −1.76604 | − | 3.05888i | 1.22668 | 0.418748 | − | 2.61240i | −0.879385 | 1.28699 | + | 2.22913i | −3.31908 | + | 5.74881i | |||||||||||||||||||||||
67.2 | 0.173648 | + | 0.300767i | 0.266044 | − | 0.460802i | 0.939693 | − | 1.62760i | −0.0603074 | − | 0.104455i | 0.184793 | −2.47178 | + | 0.943555i | 1.34730 | 1.35844 | + | 2.35289i | 0.0209445 | − | 0.0362770i | |||||||||||||||||||||||
67.3 | 0.766044 | + | 1.32683i | −1.43969 | + | 2.49362i | −0.173648 | + | 0.300767i | −1.17365 | − | 2.03282i | −4.41147 | 2.05303 | + | 1.66885i | 2.53209 | −2.64543 | − | 4.58202i | 1.79813 | − | 3.11446i | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 77.2.e.a | ✓ | 6 |
3.b | odd | 2 | 1 | 693.2.i.h | 6 | ||
4.b | odd | 2 | 1 | 1232.2.q.m | 6 | ||
7.b | odd | 2 | 1 | 539.2.e.m | 6 | ||
7.c | even | 3 | 1 | inner | 77.2.e.a | ✓ | 6 |
7.c | even | 3 | 1 | 539.2.a.j | 3 | ||
7.d | odd | 6 | 1 | 539.2.a.g | 3 | ||
7.d | odd | 6 | 1 | 539.2.e.m | 6 | ||
11.b | odd | 2 | 1 | 847.2.e.c | 6 | ||
11.c | even | 5 | 4 | 847.2.n.g | 24 | ||
11.d | odd | 10 | 4 | 847.2.n.f | 24 | ||
21.g | even | 6 | 1 | 4851.2.a.bk | 3 | ||
21.h | odd | 6 | 1 | 693.2.i.h | 6 | ||
21.h | odd | 6 | 1 | 4851.2.a.bj | 3 | ||
28.f | even | 6 | 1 | 8624.2.a.co | 3 | ||
28.g | odd | 6 | 1 | 1232.2.q.m | 6 | ||
28.g | odd | 6 | 1 | 8624.2.a.ch | 3 | ||
77.h | odd | 6 | 1 | 847.2.e.c | 6 | ||
77.h | odd | 6 | 1 | 5929.2.a.x | 3 | ||
77.i | even | 6 | 1 | 5929.2.a.u | 3 | ||
77.m | even | 15 | 4 | 847.2.n.g | 24 | ||
77.o | odd | 30 | 4 | 847.2.n.f | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
77.2.e.a | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
77.2.e.a | ✓ | 6 | 7.c | even | 3 | 1 | inner |
539.2.a.g | 3 | 7.d | odd | 6 | 1 | ||
539.2.a.j | 3 | 7.c | even | 3 | 1 | ||
539.2.e.m | 6 | 7.b | odd | 2 | 1 | ||
539.2.e.m | 6 | 7.d | odd | 6 | 1 | ||
693.2.i.h | 6 | 3.b | odd | 2 | 1 | ||
693.2.i.h | 6 | 21.h | odd | 6 | 1 | ||
847.2.e.c | 6 | 11.b | odd | 2 | 1 | ||
847.2.e.c | 6 | 77.h | odd | 6 | 1 | ||
847.2.n.f | 24 | 11.d | odd | 10 | 4 | ||
847.2.n.f | 24 | 77.o | odd | 30 | 4 | ||
847.2.n.g | 24 | 11.c | even | 5 | 4 | ||
847.2.n.g | 24 | 77.m | even | 15 | 4 | ||
1232.2.q.m | 6 | 4.b | odd | 2 | 1 | ||
1232.2.q.m | 6 | 28.g | odd | 6 | 1 | ||
4851.2.a.bj | 3 | 21.h | odd | 6 | 1 | ||
4851.2.a.bk | 3 | 21.g | even | 6 | 1 | ||
5929.2.a.u | 3 | 77.i | even | 6 | 1 | ||
5929.2.a.x | 3 | 77.h | odd | 6 | 1 | ||
8624.2.a.ch | 3 | 28.g | odd | 6 | 1 | ||
8624.2.a.co | 3 | 28.f | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + 3T_{2}^{4} - 2T_{2}^{3} + 9T_{2}^{2} - 3T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(77, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} + 3 T^{4} - 2 T^{3} + 9 T^{2} + \cdots + 1 \)
$3$
\( T^{6} + 3 T^{5} + 9 T^{4} + 2 T^{3} + \cdots + 1 \)
$5$
\( T^{6} + 6 T^{5} + 27 T^{4} + 52 T^{3} + \cdots + 1 \)
$7$
\( T^{6} + 17T^{3} + 343 \)
$11$
\( (T^{2} + T + 1)^{3} \)
$13$
\( (T^{3} - 3 T^{2} - 6 T - 1)^{2} \)
$17$
\( T^{6} - 3 T^{5} + 45 T^{4} + \cdots + 16129 \)
$19$
\( T^{6} + 9 T^{5} + 63 T^{4} + 144 T^{3} + \cdots + 81 \)
$23$
\( T^{6} + 57 T^{4} - 214 T^{3} + \cdots + 11449 \)
$29$
\( (T^{3} + 3 T^{2} - 36 T + 51)^{2} \)
$31$
\( T^{6} + 9 T^{5} + 57 T^{4} + 178 T^{3} + \cdots + 361 \)
$37$
\( T^{6} + 36 T^{4} + 144 T^{3} + \cdots + 5184 \)
$41$
\( (T^{3} - 9 T^{2} + 6 T - 1)^{2} \)
$43$
\( (T^{3} - 9 T + 9)^{2} \)
$47$
\( T^{6} - 3 T^{5} + 87 T^{4} + \cdots + 104329 \)
$53$
\( T^{6} + 9 T^{5} + 135 T^{4} + \cdots + 210681 \)
$59$
\( T^{6} + 93 T^{4} + 38 T^{3} + \cdots + 361 \)
$61$
\( T^{6} + 12 T^{5} + 180 T^{4} + \cdots + 576 \)
$67$
\( T^{6} + 12 T^{4} - 16 T^{3} + 144 T^{2} + \cdots + 64 \)
$71$
\( (T^{3} + 9 T^{2} - 90 T - 801)^{2} \)
$73$
\( T^{6} + 6 T^{5} + 27 T^{4} + 52 T^{3} + \cdots + 1 \)
$79$
\( T^{6} - 3 T^{5} + 123 T^{4} + \cdots + 1369 \)
$83$
\( (T^{3} + 15 T^{2} + 18 T - 267)^{2} \)
$89$
\( T^{6} - 15 T^{5} + 153 T^{4} + \cdots + 12321 \)
$97$
\( (T^{3} - 45 T^{2} + 672 T - 3329)^{2} \)
show more
show less