Newspace parameters
Level: | \( N \) | \(=\) | \( 77 = 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 77.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.614848095564\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-5})\) |
Defining polynomial: |
\( x^{4} - 4x^{2} + 9 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 4x^{2} + 9 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} - \nu ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{2} - 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} + 2 \)
|
\(\nu^{3}\) | \(=\) |
\( 3\beta_{2} + \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/77\mathbb{Z}\right)^\times\).
\(n\) | \(45\) | \(57\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
76.1 |
|
− | 1.41421i | − | 2.23607i | 0 | 2.23607i | −3.16228 | −1.58114 | + | 2.12132i | − | 2.82843i | −2.00000 | 3.16228 | |||||||||||||||||||||||||
76.2 | − | 1.41421i | 2.23607i | 0 | − | 2.23607i | 3.16228 | 1.58114 | + | 2.12132i | − | 2.82843i | −2.00000 | −3.16228 | ||||||||||||||||||||||||||
76.3 | 1.41421i | − | 2.23607i | 0 | 2.23607i | 3.16228 | 1.58114 | − | 2.12132i | 2.82843i | −2.00000 | −3.16228 | ||||||||||||||||||||||||||||
76.4 | 1.41421i | 2.23607i | 0 | − | 2.23607i | −3.16228 | −1.58114 | − | 2.12132i | 2.82843i | −2.00000 | 3.16228 | ||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
77.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 77.2.b.b | ✓ | 4 |
3.b | odd | 2 | 1 | 693.2.c.b | 4 | ||
4.b | odd | 2 | 1 | 1232.2.e.c | 4 | ||
7.b | odd | 2 | 1 | inner | 77.2.b.b | ✓ | 4 |
7.c | even | 3 | 2 | 539.2.i.b | 8 | ||
7.d | odd | 6 | 2 | 539.2.i.b | 8 | ||
11.b | odd | 2 | 1 | inner | 77.2.b.b | ✓ | 4 |
11.c | even | 5 | 4 | 847.2.l.g | 16 | ||
11.d | odd | 10 | 4 | 847.2.l.g | 16 | ||
21.c | even | 2 | 1 | 693.2.c.b | 4 | ||
28.d | even | 2 | 1 | 1232.2.e.c | 4 | ||
33.d | even | 2 | 1 | 693.2.c.b | 4 | ||
44.c | even | 2 | 1 | 1232.2.e.c | 4 | ||
77.b | even | 2 | 1 | inner | 77.2.b.b | ✓ | 4 |
77.h | odd | 6 | 2 | 539.2.i.b | 8 | ||
77.i | even | 6 | 2 | 539.2.i.b | 8 | ||
77.j | odd | 10 | 4 | 847.2.l.g | 16 | ||
77.l | even | 10 | 4 | 847.2.l.g | 16 | ||
231.h | odd | 2 | 1 | 693.2.c.b | 4 | ||
308.g | odd | 2 | 1 | 1232.2.e.c | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
77.2.b.b | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
77.2.b.b | ✓ | 4 | 7.b | odd | 2 | 1 | inner |
77.2.b.b | ✓ | 4 | 11.b | odd | 2 | 1 | inner |
77.2.b.b | ✓ | 4 | 77.b | even | 2 | 1 | inner |
539.2.i.b | 8 | 7.c | even | 3 | 2 | ||
539.2.i.b | 8 | 7.d | odd | 6 | 2 | ||
539.2.i.b | 8 | 77.h | odd | 6 | 2 | ||
539.2.i.b | 8 | 77.i | even | 6 | 2 | ||
693.2.c.b | 4 | 3.b | odd | 2 | 1 | ||
693.2.c.b | 4 | 21.c | even | 2 | 1 | ||
693.2.c.b | 4 | 33.d | even | 2 | 1 | ||
693.2.c.b | 4 | 231.h | odd | 2 | 1 | ||
847.2.l.g | 16 | 11.c | even | 5 | 4 | ||
847.2.l.g | 16 | 11.d | odd | 10 | 4 | ||
847.2.l.g | 16 | 77.j | odd | 10 | 4 | ||
847.2.l.g | 16 | 77.l | even | 10 | 4 | ||
1232.2.e.c | 4 | 4.b | odd | 2 | 1 | ||
1232.2.e.c | 4 | 28.d | even | 2 | 1 | ||
1232.2.e.c | 4 | 44.c | even | 2 | 1 | ||
1232.2.e.c | 4 | 308.g | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 2 \)
acting on \(S_{2}^{\mathrm{new}}(77, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 2)^{2} \)
$3$
\( (T^{2} + 5)^{2} \)
$5$
\( (T^{2} + 5)^{2} \)
$7$
\( T^{4} + 4T^{2} + 49 \)
$11$
\( (T^{2} + 6 T + 11)^{2} \)
$13$
\( (T^{2} - 40)^{2} \)
$17$
\( T^{4} \)
$19$
\( (T^{2} - 10)^{2} \)
$23$
\( (T + 3)^{4} \)
$29$
\( (T^{2} + 2)^{2} \)
$31$
\( (T^{2} + 45)^{2} \)
$37$
\( (T + 1)^{4} \)
$41$
\( (T^{2} - 90)^{2} \)
$43$
\( (T^{2} + 18)^{2} \)
$47$
\( (T^{2} + 20)^{2} \)
$53$
\( T^{4} \)
$59$
\( (T^{2} + 5)^{2} \)
$61$
\( (T^{2} - 10)^{2} \)
$67$
\( (T - 11)^{4} \)
$71$
\( (T - 9)^{4} \)
$73$
\( (T^{2} - 10)^{2} \)
$79$
\( (T^{2} + 72)^{2} \)
$83$
\( (T^{2} - 90)^{2} \)
$89$
\( (T^{2} + 5)^{2} \)
$97$
\( (T^{2} + 45)^{2} \)
show more
show less