Properties

Label 77.2.a
Level $77$
Weight $2$
Character orbit 77.a
Rep. character $\chi_{77}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $4$
Sturm bound $16$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 77 = 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 77.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(16\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(77))\).

Total New Old
Modular forms 10 5 5
Cusp forms 7 5 2
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(3\)
Plus space\(+\)\(1\)
Minus space\(-\)\(4\)

Trace form

\( 5 q + q^{2} + 2 q^{3} + q^{4} - 4 q^{5} - 8 q^{6} + q^{7} - 3 q^{8} + 11 q^{9} - 2 q^{10} - 3 q^{11} + 8 q^{12} - 2 q^{13} - q^{14} - 2 q^{15} + 5 q^{16} - 2 q^{17} - 19 q^{18} - 14 q^{20} + 4 q^{21}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(77))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 11
77.2.a.a 77.a 1.a $1$ $0.615$ \(\Q\) None 77.2.a.a \(0\) \(-3\) \(-1\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-2q^{4}-q^{5}-q^{7}+6q^{9}-q^{11}+\cdots\)
77.2.a.b 77.a 1.a $1$ $0.615$ \(\Q\) None 77.2.a.b \(0\) \(1\) \(3\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}+3q^{5}+q^{7}-2q^{9}-q^{11}+\cdots\)
77.2.a.c 77.a 1.a $1$ $0.615$ \(\Q\) None 77.2.a.c \(1\) \(2\) \(-2\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}-q^{4}-2q^{5}+2q^{6}-q^{7}+\cdots\)
77.2.a.d 77.a 1.a $2$ $0.615$ \(\Q(\sqrt{5}) \) None 77.2.a.d \(0\) \(2\) \(-4\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(1+\beta )q^{3}+3q^{4}-2q^{5}+(-5+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(77))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(77)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)