Defining parameters
Level: | \( N \) | = | \( 77 = 7 \cdot 11 \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 1 \) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(77))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 48 | 16 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 60 | 44 | 16 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(77))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
77.1.c | \(\chi_{77}(43, \cdot)\) | None | 0 | 1 |
77.1.d | \(\chi_{77}(34, \cdot)\) | None | 0 | 1 |
77.1.g | \(\chi_{77}(12, \cdot)\) | None | 0 | 2 |
77.1.h | \(\chi_{77}(32, \cdot)\) | None | 0 | 2 |
77.1.j | \(\chi_{77}(20, \cdot)\) | 77.1.j.a | 4 | 4 |
77.1.k | \(\chi_{77}(8, \cdot)\) | None | 0 | 4 |
77.1.o | \(\chi_{77}(2, \cdot)\) | None | 0 | 8 |
77.1.p | \(\chi_{77}(3, \cdot)\) | None | 0 | 8 |