Properties

Label 768.6.a.h
Level $768$
Weight $6$
Character orbit 768.a
Self dual yes
Analytic conductor $123.175$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,6,Mod(1,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 768.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,9,0,-80,0,-36,0,81,0,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.174773616\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 384)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 9 q^{3} - 80 q^{5} - 36 q^{7} + 81 q^{9} - 36 q^{11} - 404 q^{13} - 720 q^{15} - 2 q^{17} + 2916 q^{19} - 324 q^{21} + 2808 q^{23} + 3275 q^{25} + 729 q^{27} + 4408 q^{29} - 5796 q^{31} - 324 q^{33}+ \cdots - 2916 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 9.00000 0 −80.0000 0 −36.0000 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.6.a.h 1
4.b odd 2 1 768.6.a.b 1
8.b even 2 1 768.6.a.e 1
8.d odd 2 1 768.6.a.k 1
16.e even 4 2 384.6.d.d yes 2
16.f odd 4 2 384.6.d.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.6.d.c 2 16.f odd 4 2
384.6.d.d yes 2 16.e even 4 2
768.6.a.b 1 4.b odd 2 1
768.6.a.e 1 8.b even 2 1
768.6.a.h 1 1.a even 1 1 trivial
768.6.a.k 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(768))\):

\( T_{5} + 80 \) Copy content Toggle raw display
\( T_{7} + 36 \) Copy content Toggle raw display
\( T_{11} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 9 \) Copy content Toggle raw display
$5$ \( T + 80 \) Copy content Toggle raw display
$7$ \( T + 36 \) Copy content Toggle raw display
$11$ \( T + 36 \) Copy content Toggle raw display
$13$ \( T + 404 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T - 2916 \) Copy content Toggle raw display
$23$ \( T - 2808 \) Copy content Toggle raw display
$29$ \( T - 4408 \) Copy content Toggle raw display
$31$ \( T + 5796 \) Copy content Toggle raw display
$37$ \( T + 2316 \) Copy content Toggle raw display
$41$ \( T + 6874 \) Copy content Toggle raw display
$43$ \( T - 17244 \) Copy content Toggle raw display
$47$ \( T - 5688 \) Copy content Toggle raw display
$53$ \( T + 32072 \) Copy content Toggle raw display
$59$ \( T - 43308 \) Copy content Toggle raw display
$61$ \( T + 18012 \) Copy content Toggle raw display
$67$ \( T + 11628 \) Copy content Toggle raw display
$71$ \( T - 8712 \) Copy content Toggle raw display
$73$ \( T + 15846 \) Copy content Toggle raw display
$79$ \( T + 40356 \) Copy content Toggle raw display
$83$ \( T + 66204 \) Copy content Toggle raw display
$89$ \( T + 66086 \) Copy content Toggle raw display
$97$ \( T + 119682 \) Copy content Toggle raw display
show more
show less