Defining parameters
| Level: | \( N \) | \(=\) | \( 768 = 2^{8} \cdot 3 \) | 
| Weight: | \( k \) | \(=\) | \( 4 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 768.v (of order \(32\) and degree \(16\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 128 \) | 
| Character field: | \(\Q(\zeta_{32})\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(512\) | ||
| Trace bound: | \(0\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(768, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6208 | 0 | 6208 | 
| Cusp forms | 6080 | 0 | 6080 | 
| Eisenstein series | 128 | 0 | 128 | 
Decomposition of \(S_{4}^{\mathrm{old}}(768, [\chi])\) into lower level spaces
  \( S_{4}^{\mathrm{old}}(768, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)