Properties

Label 768.4.d.o
Level $768$
Weight $4$
Character orbit 768.d
Analytic conductor $45.313$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,4,Mod(385,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.385"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 768.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,48,0,-18,0,0,0,0,0,84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.3134668844\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 i q^{3} + 14 i q^{5} + 24 q^{7} - 9 q^{9} - 28 i q^{11} + 74 i q^{13} + 42 q^{15} + 82 q^{17} - 92 i q^{19} - 72 i q^{21} - 8 q^{23} - 71 q^{25} + 27 i q^{27} + 138 i q^{29} + 80 q^{31} - 84 q^{33} + \cdots + 252 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 48 q^{7} - 18 q^{9} + 84 q^{15} + 164 q^{17} - 16 q^{23} - 142 q^{25} + 160 q^{31} - 168 q^{33} + 444 q^{39} - 564 q^{41} + 480 q^{47} + 466 q^{49} + 784 q^{55} - 552 q^{57} - 432 q^{63} - 2072 q^{65}+ \cdots + 1732 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
385.1
1.00000i
1.00000i
0 3.00000i 0 14.0000i 0 24.0000 0 −9.00000 0
385.2 0 3.00000i 0 14.0000i 0 24.0000 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.4.d.o 2
4.b odd 2 1 768.4.d.b 2
8.b even 2 1 inner 768.4.d.o 2
8.d odd 2 1 768.4.d.b 2
16.e even 4 1 24.4.a.a 1
16.e even 4 1 192.4.a.a 1
16.f odd 4 1 48.4.a.b 1
16.f odd 4 1 192.4.a.g 1
48.i odd 4 1 72.4.a.b 1
48.i odd 4 1 576.4.a.u 1
48.k even 4 1 144.4.a.b 1
48.k even 4 1 576.4.a.v 1
80.i odd 4 1 600.4.f.b 2
80.j even 4 1 1200.4.f.p 2
80.k odd 4 1 1200.4.a.u 1
80.q even 4 1 600.4.a.h 1
80.s even 4 1 1200.4.f.p 2
80.t odd 4 1 600.4.f.b 2
112.j even 4 1 2352.4.a.w 1
112.l odd 4 1 1176.4.a.a 1
144.w odd 12 2 648.4.i.k 2
144.x even 12 2 648.4.i.b 2
240.bb even 4 1 1800.4.f.q 2
240.bf even 4 1 1800.4.f.q 2
240.bm odd 4 1 1800.4.a.bg 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.4.a.a 1 16.e even 4 1
48.4.a.b 1 16.f odd 4 1
72.4.a.b 1 48.i odd 4 1
144.4.a.b 1 48.k even 4 1
192.4.a.a 1 16.e even 4 1
192.4.a.g 1 16.f odd 4 1
576.4.a.u 1 48.i odd 4 1
576.4.a.v 1 48.k even 4 1
600.4.a.h 1 80.q even 4 1
600.4.f.b 2 80.i odd 4 1
600.4.f.b 2 80.t odd 4 1
648.4.i.b 2 144.x even 12 2
648.4.i.k 2 144.w odd 12 2
768.4.d.b 2 4.b odd 2 1
768.4.d.b 2 8.d odd 2 1
768.4.d.o 2 1.a even 1 1 trivial
768.4.d.o 2 8.b even 2 1 inner
1176.4.a.a 1 112.l odd 4 1
1200.4.a.u 1 80.k odd 4 1
1200.4.f.p 2 80.j even 4 1
1200.4.f.p 2 80.s even 4 1
1800.4.a.bg 1 240.bm odd 4 1
1800.4.f.q 2 240.bb even 4 1
1800.4.f.q 2 240.bf even 4 1
2352.4.a.w 1 112.j even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(768, [\chi])\):

\( T_{5}^{2} + 196 \) Copy content Toggle raw display
\( T_{7} - 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} + 196 \) Copy content Toggle raw display
$7$ \( (T - 24)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 784 \) Copy content Toggle raw display
$13$ \( T^{2} + 5476 \) Copy content Toggle raw display
$17$ \( (T - 82)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 8464 \) Copy content Toggle raw display
$23$ \( (T + 8)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 19044 \) Copy content Toggle raw display
$31$ \( (T - 80)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 900 \) Copy content Toggle raw display
$41$ \( (T + 282)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T - 240)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 16900 \) Copy content Toggle raw display
$59$ \( T^{2} + 355216 \) Copy content Toggle raw display
$61$ \( T^{2} + 47524 \) Copy content Toggle raw display
$67$ \( T^{2} + 190096 \) Copy content Toggle raw display
$71$ \( (T + 856)^{2} \) Copy content Toggle raw display
$73$ \( (T - 998)^{2} \) Copy content Toggle raw display
$79$ \( (T + 32)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 2274064 \) Copy content Toggle raw display
$89$ \( (T - 246)^{2} \) Copy content Toggle raw display
$97$ \( (T - 866)^{2} \) Copy content Toggle raw display
show more
show less