Properties

Label 768.4.d.i
Level $768$
Weight $4$
Character orbit 768.d
Analytic conductor $45.313$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,4,Mod(385,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.385");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 768.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.3134668844\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 i q^{3} + 10 i q^{5} + 4 q^{7} - 9 q^{9} + 20 i q^{11} - 70 i q^{13} - 30 q^{15} + 90 q^{17} - 140 i q^{19} + 12 i q^{21} + 192 q^{23} + 25 q^{25} - 27 i q^{27} + 134 i q^{29} + 100 q^{31} - 60 q^{33} + \cdots - 180 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{7} - 18 q^{9} - 60 q^{15} + 180 q^{17} + 384 q^{23} + 50 q^{25} + 200 q^{31} - 120 q^{33} + 420 q^{39} + 220 q^{41} - 112 q^{47} - 654 q^{49} - 400 q^{55} + 840 q^{57} - 72 q^{63} + 1400 q^{65}+ \cdots - 1180 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
385.1
1.00000i
1.00000i
0 3.00000i 0 10.0000i 0 4.00000 0 −9.00000 0
385.2 0 3.00000i 0 10.0000i 0 4.00000 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.4.d.i 2
4.b odd 2 1 768.4.d.h 2
8.b even 2 1 inner 768.4.d.i 2
8.d odd 2 1 768.4.d.h 2
16.e even 4 1 96.4.a.c 1
16.e even 4 1 192.4.a.h 1
16.f odd 4 1 96.4.a.f yes 1
16.f odd 4 1 192.4.a.b 1
48.i odd 4 1 288.4.a.b 1
48.i odd 4 1 576.4.a.s 1
48.k even 4 1 288.4.a.c 1
48.k even 4 1 576.4.a.t 1
80.k odd 4 1 2400.4.a.e 1
80.q even 4 1 2400.4.a.r 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.4.a.c 1 16.e even 4 1
96.4.a.f yes 1 16.f odd 4 1
192.4.a.b 1 16.f odd 4 1
192.4.a.h 1 16.e even 4 1
288.4.a.b 1 48.i odd 4 1
288.4.a.c 1 48.k even 4 1
576.4.a.s 1 48.i odd 4 1
576.4.a.t 1 48.k even 4 1
768.4.d.h 2 4.b odd 2 1
768.4.d.h 2 8.d odd 2 1
768.4.d.i 2 1.a even 1 1 trivial
768.4.d.i 2 8.b even 2 1 inner
2400.4.a.e 1 80.k odd 4 1
2400.4.a.r 1 80.q even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(768, [\chi])\):

\( T_{5}^{2} + 100 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} + 100 \) Copy content Toggle raw display
$7$ \( (T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 400 \) Copy content Toggle raw display
$13$ \( T^{2} + 4900 \) Copy content Toggle raw display
$17$ \( (T - 90)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 19600 \) Copy content Toggle raw display
$23$ \( (T - 192)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 17956 \) Copy content Toggle raw display
$31$ \( (T - 100)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 28900 \) Copy content Toggle raw display
$41$ \( (T - 110)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 283024 \) Copy content Toggle raw display
$47$ \( (T + 56)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 184900 \) Copy content Toggle raw display
$59$ \( T^{2} + 400 \) Copy content Toggle raw display
$61$ \( T^{2} + 72900 \) Copy content Toggle raw display
$67$ \( T^{2} + 274576 \) Copy content Toggle raw display
$71$ \( (T - 80)^{2} \) Copy content Toggle raw display
$73$ \( (T + 330)^{2} \) Copy content Toggle raw display
$79$ \( (T - 1060)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1411344 \) Copy content Toggle raw display
$89$ \( (T + 1274)^{2} \) Copy content Toggle raw display
$97$ \( (T + 590)^{2} \) Copy content Toggle raw display
show more
show less