Properties

Label 768.4.d
Level $768$
Weight $4$
Character orbit 768.d
Rep. character $\chi_{768}(385,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $20$
Sturm bound $512$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 768.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(512\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(768, [\chi])\).

Total New Old
Modular forms 408 48 360
Cusp forms 360 48 312
Eisenstein series 48 0 48

Trace form

\( 48 q - 432 q^{9} - 1200 q^{25} + 3792 q^{49} - 672 q^{57} + 1952 q^{65} - 320 q^{73} + 3888 q^{81} + 352 q^{89} - 3168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(768, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
768.4.d.a 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 96.4.a.a \(0\) \(0\) \(0\) \(-72\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+14 i q^{5}-36 q^{7}-9 q^{9}+\cdots\)
768.4.d.b 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 24.4.a.a \(0\) \(0\) \(0\) \(-48\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+14 i q^{5}-24 q^{7}-9 q^{9}+\cdots\)
768.4.d.c 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 6.4.a.a \(0\) \(0\) \(0\) \(-32\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+6 i q^{5}-16 q^{7}-9 q^{9}+\cdots\)
768.4.d.d 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 96.4.a.b \(0\) \(0\) \(0\) \(-24\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+2 i q^{5}-12 q^{7}-9 q^{9}+\cdots\)
768.4.d.e 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 384.4.a.a \(0\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+8 i q^{5}-10 q^{7}-9 q^{9}+\cdots\)
768.4.d.f 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 384.4.a.b \(0\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+4 i q^{5}-10 q^{7}-9 q^{9}+\cdots\)
768.4.d.g 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 12.4.a.a \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+18 i q^{5}-8 q^{7}-9 q^{9}+\cdots\)
768.4.d.h 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 96.4.a.c \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+10 i q^{5}-4 q^{7}-9 q^{9}+\cdots\)
768.4.d.i 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 96.4.a.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+10 i q^{5}+4 q^{7}-9 q^{9}+\cdots\)
768.4.d.j 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 12.4.a.a \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+18 i q^{5}+8 q^{7}-9 q^{9}+\cdots\)
768.4.d.k 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 384.4.a.b \(0\) \(0\) \(0\) \(20\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+4 i q^{5}+10 q^{7}-9 q^{9}+\cdots\)
768.4.d.l 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 384.4.a.a \(0\) \(0\) \(0\) \(20\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+8 i q^{5}+10 q^{7}-9 q^{9}+\cdots\)
768.4.d.m 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 96.4.a.b \(0\) \(0\) \(0\) \(24\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+2 i q^{5}+12 q^{7}-9 q^{9}+\cdots\)
768.4.d.n 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 6.4.a.a \(0\) \(0\) \(0\) \(32\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+6 i q^{5}+16 q^{7}-9 q^{9}+\cdots\)
768.4.d.o 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 24.4.a.a \(0\) \(0\) \(0\) \(48\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+14 i q^{5}+24 q^{7}-9 q^{9}+\cdots\)
768.4.d.p 768.d 8.b $2$ $45.313$ \(\Q(\sqrt{-1}) \) None 96.4.a.a \(0\) \(0\) \(0\) \(72\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+14 i q^{5}+36 q^{7}-9 q^{9}+\cdots\)
768.4.d.q 768.d 8.b $4$ $45.313$ \(\Q(i, \sqrt{15})\) None 384.4.a.j \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta _{1}q^{3}+(-4\beta _{1}+\beta _{3})q^{5}+(-2+\cdots)q^{7}+\cdots\)
768.4.d.r 768.d 8.b $4$ $45.313$ \(\Q(i, \sqrt{7})\) None 384.4.a.i \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta _{1}q^{3}+(-8\beta _{1}-\beta _{3})q^{5}+(-2+\cdots)q^{7}+\cdots\)
768.4.d.s 768.d 8.b $4$ $45.313$ \(\Q(i, \sqrt{7})\) None 384.4.a.i \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-3\beta _{1}q^{3}+(-8\beta _{1}-\beta _{3})q^{5}+(2-3\beta _{2}+\cdots)q^{7}+\cdots\)
768.4.d.t 768.d 8.b $4$ $45.313$ \(\Q(i, \sqrt{15})\) None 384.4.a.j \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-3\beta _{1}q^{3}+(-4\beta _{1}+\beta _{3})q^{5}+(2-\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(768, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(768, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)