Properties

Label 768.4.c.b
Level $768$
Weight $4$
Character orbit 768.c
Analytic conductor $45.313$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,4,Mod(767,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.767"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 768.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,0,0,0,0,-18,0,-60,0,-144,0,-48,0,0,0,0,0,144,0,288, 0,186] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.3134668844\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 384)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \beta - 3) q^{3} + 4 \beta q^{5} - 12 \beta q^{7} + ( - 18 \beta - 9) q^{9} - 30 q^{11} - 72 q^{13} + ( - 12 \beta - 24) q^{15} - 36 \beta q^{17} + 18 \beta q^{19} + (36 \beta + 72) q^{21} + 144 q^{23} + \cdots + (540 \beta + 270) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 18 q^{9} - 60 q^{11} - 144 q^{13} - 48 q^{15} + 144 q^{21} + 288 q^{23} + 186 q^{25} + 270 q^{27} + 180 q^{33} + 192 q^{35} - 144 q^{37} + 432 q^{39} + 288 q^{45} - 1152 q^{47} + 110 q^{49}+ \cdots + 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
767.1
1.41421i
1.41421i
0 −3.00000 4.24264i 0 5.65685i 0 16.9706i 0 −9.00000 + 25.4558i 0
767.2 0 −3.00000 + 4.24264i 0 5.65685i 0 16.9706i 0 −9.00000 25.4558i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.4.c.b 2
3.b odd 2 1 768.4.c.h 2
4.b odd 2 1 768.4.c.h 2
8.b even 2 1 768.4.c.i 2
8.d odd 2 1 768.4.c.c 2
12.b even 2 1 inner 768.4.c.b 2
16.e even 4 2 384.4.f.c 4
16.f odd 4 2 384.4.f.d yes 4
24.f even 2 1 768.4.c.i 2
24.h odd 2 1 768.4.c.c 2
48.i odd 4 2 384.4.f.d yes 4
48.k even 4 2 384.4.f.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.4.f.c 4 16.e even 4 2
384.4.f.c 4 48.k even 4 2
384.4.f.d yes 4 16.f odd 4 2
384.4.f.d yes 4 48.i odd 4 2
768.4.c.b 2 1.a even 1 1 trivial
768.4.c.b 2 12.b even 2 1 inner
768.4.c.c 2 8.d odd 2 1
768.4.c.c 2 24.h odd 2 1
768.4.c.h 2 3.b odd 2 1
768.4.c.h 2 4.b odd 2 1
768.4.c.i 2 8.b even 2 1
768.4.c.i 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(768, [\chi])\):

\( T_{5}^{2} + 32 \) Copy content Toggle raw display
\( T_{7}^{2} + 288 \) Copy content Toggle raw display
\( T_{11} + 30 \) Copy content Toggle raw display
\( T_{13} + 72 \) Copy content Toggle raw display
\( T_{23} - 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 6T + 27 \) Copy content Toggle raw display
$5$ \( T^{2} + 32 \) Copy content Toggle raw display
$7$ \( T^{2} + 288 \) Copy content Toggle raw display
$11$ \( (T + 30)^{2} \) Copy content Toggle raw display
$13$ \( (T + 72)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 2592 \) Copy content Toggle raw display
$19$ \( T^{2} + 648 \) Copy content Toggle raw display
$23$ \( (T - 144)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 32 \) Copy content Toggle raw display
$31$ \( T^{2} + 48672 \) Copy content Toggle raw display
$37$ \( (T + 72)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 93312 \) Copy content Toggle raw display
$43$ \( T^{2} + 52488 \) Copy content Toggle raw display
$47$ \( (T + 576)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 264992 \) Copy content Toggle raw display
$59$ \( (T - 414)^{2} \) Copy content Toggle raw display
$61$ \( (T - 504)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 622728 \) Copy content Toggle raw display
$71$ \( (T - 720)^{2} \) Copy content Toggle raw display
$73$ \( (T - 178)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 935712 \) Copy content Toggle raw display
$83$ \( (T - 438)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 749088 \) Copy content Toggle raw display
$97$ \( (T - 650)^{2} \) Copy content Toggle raw display
show more
show less