Properties

Label 768.4.a.q
Level $768$
Weight $4$
Character orbit 768.a
Self dual yes
Analytic conductor $45.313$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,4,Mod(1,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 768.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-9,0,-10,0,14,0,27,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.3134668844\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1436.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 11x - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta_{2} - 3) q^{5} + ( - \beta_1 + 5) q^{7} + 9 q^{9} + ( - 2 \beta_{2} + 2 \beta_1) q^{11} + (3 \beta_{2} - \beta_1 - 18) q^{13} + (3 \beta_{2} + 9) q^{15} + (6 \beta_{2} + 2 \beta_1 + 6) q^{17}+ \cdots + ( - 18 \beta_{2} + 18 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} - 10 q^{5} + 14 q^{7} + 27 q^{9} - 52 q^{13} + 30 q^{15} + 26 q^{17} - 28 q^{19} - 42 q^{21} + 164 q^{23} + 53 q^{25} - 81 q^{27} - 174 q^{29} + 318 q^{31} + 92 q^{35} - 296 q^{37} + 156 q^{39}+ \cdots - 1222 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 11x - 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu^{2} - 29 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 4\nu^{2} - 8\nu - 29 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta _1 + 29 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.48361
3.76644
−1.28282
0 −3.00000 0 −18.5422 0 9.32669 0 9.00000 0
1.2 0 −3.00000 0 −0.612661 0 −22.7441 0 9.00000 0
1.3 0 −3.00000 0 9.15486 0 27.4175 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.4.a.q 3
3.b odd 2 1 2304.4.a.bw 3
4.b odd 2 1 768.4.a.s 3
8.b even 2 1 768.4.a.t 3
8.d odd 2 1 768.4.a.r 3
12.b even 2 1 2304.4.a.bv 3
16.e even 4 2 96.4.d.a 6
16.f odd 4 2 24.4.d.a 6
24.f even 2 1 2304.4.a.bt 3
24.h odd 2 1 2304.4.a.bu 3
48.i odd 4 2 288.4.d.d 6
48.k even 4 2 72.4.d.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.4.d.a 6 16.f odd 4 2
72.4.d.d 6 48.k even 4 2
96.4.d.a 6 16.e even 4 2
288.4.d.d 6 48.i odd 4 2
768.4.a.q 3 1.a even 1 1 trivial
768.4.a.r 3 8.d odd 2 1
768.4.a.s 3 4.b odd 2 1
768.4.a.t 3 8.b even 2 1
2304.4.a.bt 3 24.f even 2 1
2304.4.a.bu 3 24.h odd 2 1
2304.4.a.bv 3 12.b even 2 1
2304.4.a.bw 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(768))\):

\( T_{5}^{3} + 10T_{5}^{2} - 164T_{5} - 104 \) Copy content Toggle raw display
\( T_{7}^{3} - 14T_{7}^{2} - 580T_{7} + 5816 \) Copy content Toggle raw display
\( T_{11}^{3} - 2816T_{11} - 49152 \) Copy content Toggle raw display
\( T_{19}^{3} + 28T_{19}^{2} - 11088T_{19} + 274752 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 10 T^{2} + \cdots - 104 \) Copy content Toggle raw display
$7$ \( T^{3} - 14 T^{2} + \cdots + 5816 \) Copy content Toggle raw display
$11$ \( T^{3} - 2816T - 49152 \) Copy content Toggle raw display
$13$ \( T^{3} + 52 T^{2} + \cdots - 55872 \) Copy content Toggle raw display
$17$ \( T^{3} - 26 T^{2} + \cdots + 477576 \) Copy content Toggle raw display
$19$ \( T^{3} + 28 T^{2} + \cdots + 274752 \) Copy content Toggle raw display
$23$ \( T^{3} - 164 T^{2} + \cdots - 45504 \) Copy content Toggle raw display
$29$ \( T^{3} + 174 T^{2} + \cdots - 61368 \) Copy content Toggle raw display
$31$ \( T^{3} - 318 T^{2} + \cdots + 3749624 \) Copy content Toggle raw display
$37$ \( T^{3} + 296 T^{2} + \cdots - 82944 \) Copy content Toggle raw display
$41$ \( T^{3} + 118 T^{2} + \cdots - 19985976 \) Copy content Toggle raw display
$43$ \( T^{3} - 260 T^{2} + \cdots + 8601408 \) Copy content Toggle raw display
$47$ \( T^{3} - 204 T^{2} + \cdots + 1964736 \) Copy content Toggle raw display
$53$ \( T^{3} + 1086 T^{2} + \cdots + 20665224 \) Copy content Toggle raw display
$59$ \( T^{3} + 196 T^{2} + \cdots - 8523584 \) Copy content Toggle raw display
$61$ \( T^{3} + 1536 T^{2} + \cdots + 104841216 \) Copy content Toggle raw display
$67$ \( T^{3} - 660 T^{2} + \cdots + 32228928 \) Copy content Toggle raw display
$71$ \( T^{3} + 852 T^{2} + \cdots - 85084992 \) Copy content Toggle raw display
$73$ \( T^{3} + 478 T^{2} + \cdots - 120833304 \) Copy content Toggle raw display
$79$ \( T^{3} - 22 T^{2} + \cdots + 7902616 \) Copy content Toggle raw display
$83$ \( T^{3} + 1136 T^{2} + \cdots + 37953536 \) Copy content Toggle raw display
$89$ \( T^{3} - 110 T^{2} + \cdots - 1423656 \) Copy content Toggle raw display
$97$ \( T^{3} + 1222 T^{2} + \cdots - 74802424 \) Copy content Toggle raw display
show more
show less