# Properties

 Label 768.4.a.j Level $768$ Weight $4$ Character orbit 768.a Self dual yes Analytic conductor $45.313$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [768,4,Mod(1,768)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(768, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("768.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$768 = 2^{8} \cdot 3$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 768.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$45.3134668844$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{13})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 3$$ x^2 - x - 3 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2^{3}$$ Twist minimal: no (minimal twist has level 384) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 4\sqrt{13}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - 3 q^{3} + (\beta + 4) q^{5} + (\beta + 8) q^{7} + 9 q^{9}+O(q^{10})$$ q - 3 * q^3 + (b + 4) * q^5 + (b + 8) * q^7 + 9 * q^9 $$q - 3 q^{3} + (\beta + 4) q^{5} + (\beta + 8) q^{7} + 9 q^{9} + (4 \beta - 4) q^{11} + (2 \beta - 36) q^{13} + ( - 3 \beta - 12) q^{15} + (4 \beta - 18) q^{17} + (4 \beta + 68) q^{19} + ( - 3 \beta - 24) q^{21} + ( - 2 \beta + 128) q^{23} + (8 \beta + 99) q^{25} - 27 q^{27} + ( - 9 \beta - 76) q^{29} + (13 \beta - 40) q^{31} + ( - 12 \beta + 12) q^{33} + (12 \beta + 240) q^{35} + ( - 4 \beta - 68) q^{37} + ( - 6 \beta + 108) q^{39} + ( - 20 \beta - 218) q^{41} + ( - 4 \beta - 356) q^{43} + (9 \beta + 36) q^{45} + ( - 14 \beta - 112) q^{47} + (16 \beta - 71) q^{49} + ( - 12 \beta + 54) q^{51} + (15 \beta - 172) q^{53} + (12 \beta + 816) q^{55} + ( - 12 \beta - 204) q^{57} - 324 q^{59} - 324 q^{61} + (9 \beta + 72) q^{63} + ( - 28 \beta + 272) q^{65} + ( - 48 \beta + 228) q^{67} + (6 \beta - 384) q^{69} + (2 \beta + 1024) q^{71} + (48 \beta + 330) q^{73} + ( - 24 \beta - 297) q^{75} + (28 \beta + 800) q^{77} + ( - 59 \beta + 248) q^{79} + 81 q^{81} + ( - 28 \beta + 388) q^{83} + ( - 2 \beta + 760) q^{85} + (27 \beta + 228) q^{87} + (8 \beta + 266) q^{89} + ( - 20 \beta + 128) q^{91} + ( - 39 \beta + 120) q^{93} + (84 \beta + 1104) q^{95} + (88 \beta - 610) q^{97} + (36 \beta - 36) q^{99}+O(q^{100})$$ q - 3 * q^3 + (b + 4) * q^5 + (b + 8) * q^7 + 9 * q^9 + (4*b - 4) * q^11 + (2*b - 36) * q^13 + (-3*b - 12) * q^15 + (4*b - 18) * q^17 + (4*b + 68) * q^19 + (-3*b - 24) * q^21 + (-2*b + 128) * q^23 + (8*b + 99) * q^25 - 27 * q^27 + (-9*b - 76) * q^29 + (13*b - 40) * q^31 + (-12*b + 12) * q^33 + (12*b + 240) * q^35 + (-4*b - 68) * q^37 + (-6*b + 108) * q^39 + (-20*b - 218) * q^41 + (-4*b - 356) * q^43 + (9*b + 36) * q^45 + (-14*b - 112) * q^47 + (16*b - 71) * q^49 + (-12*b + 54) * q^51 + (15*b - 172) * q^53 + (12*b + 816) * q^55 + (-12*b - 204) * q^57 - 324 * q^59 - 324 * q^61 + (9*b + 72) * q^63 + (-28*b + 272) * q^65 + (-48*b + 228) * q^67 + (6*b - 384) * q^69 + (2*b + 1024) * q^71 + (48*b + 330) * q^73 + (-24*b - 297) * q^75 + (28*b + 800) * q^77 + (-59*b + 248) * q^79 + 81 * q^81 + (-28*b + 388) * q^83 + (-2*b + 760) * q^85 + (27*b + 228) * q^87 + (8*b + 266) * q^89 + (-20*b + 128) * q^91 + (-39*b + 120) * q^93 + (84*b + 1104) * q^95 + (88*b - 610) * q^97 + (36*b - 36) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 6 q^{3} + 8 q^{5} + 16 q^{7} + 18 q^{9}+O(q^{10})$$ 2 * q - 6 * q^3 + 8 * q^5 + 16 * q^7 + 18 * q^9 $$2 q - 6 q^{3} + 8 q^{5} + 16 q^{7} + 18 q^{9} - 8 q^{11} - 72 q^{13} - 24 q^{15} - 36 q^{17} + 136 q^{19} - 48 q^{21} + 256 q^{23} + 198 q^{25} - 54 q^{27} - 152 q^{29} - 80 q^{31} + 24 q^{33} + 480 q^{35} - 136 q^{37} + 216 q^{39} - 436 q^{41} - 712 q^{43} + 72 q^{45} - 224 q^{47} - 142 q^{49} + 108 q^{51} - 344 q^{53} + 1632 q^{55} - 408 q^{57} - 648 q^{59} - 648 q^{61} + 144 q^{63} + 544 q^{65} + 456 q^{67} - 768 q^{69} + 2048 q^{71} + 660 q^{73} - 594 q^{75} + 1600 q^{77} + 496 q^{79} + 162 q^{81} + 776 q^{83} + 1520 q^{85} + 456 q^{87} + 532 q^{89} + 256 q^{91} + 240 q^{93} + 2208 q^{95} - 1220 q^{97} - 72 q^{99}+O(q^{100})$$ 2 * q - 6 * q^3 + 8 * q^5 + 16 * q^7 + 18 * q^9 - 8 * q^11 - 72 * q^13 - 24 * q^15 - 36 * q^17 + 136 * q^19 - 48 * q^21 + 256 * q^23 + 198 * q^25 - 54 * q^27 - 152 * q^29 - 80 * q^31 + 24 * q^33 + 480 * q^35 - 136 * q^37 + 216 * q^39 - 436 * q^41 - 712 * q^43 + 72 * q^45 - 224 * q^47 - 142 * q^49 + 108 * q^51 - 344 * q^53 + 1632 * q^55 - 408 * q^57 - 648 * q^59 - 648 * q^61 + 144 * q^63 + 544 * q^65 + 456 * q^67 - 768 * q^69 + 2048 * q^71 + 660 * q^73 - 594 * q^75 + 1600 * q^77 + 496 * q^79 + 162 * q^81 + 776 * q^83 + 1520 * q^85 + 456 * q^87 + 532 * q^89 + 256 * q^91 + 240 * q^93 + 2208 * q^95 - 1220 * q^97 - 72 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.30278 2.30278
0 −3.00000 0 −10.4222 0 −6.42221 0 9.00000 0
1.2 0 −3.00000 0 18.4222 0 22.4222 0 9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.4.a.j 2
3.b odd 2 1 2304.4.a.t 2
4.b odd 2 1 768.4.a.p 2
8.b even 2 1 768.4.a.k 2
8.d odd 2 1 768.4.a.e 2
12.b even 2 1 2304.4.a.s 2
16.e even 4 2 384.4.d.c 4
16.f odd 4 2 384.4.d.e yes 4
24.f even 2 1 2304.4.a.bp 2
24.h odd 2 1 2304.4.a.bq 2
48.i odd 4 2 1152.4.d.i 4
48.k even 4 2 1152.4.d.o 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.4.d.c 4 16.e even 4 2
384.4.d.e yes 4 16.f odd 4 2
768.4.a.e 2 8.d odd 2 1
768.4.a.j 2 1.a even 1 1 trivial
768.4.a.k 2 8.b even 2 1
768.4.a.p 2 4.b odd 2 1
1152.4.d.i 4 48.i odd 4 2
1152.4.d.o 4 48.k even 4 2
2304.4.a.s 2 12.b even 2 1
2304.4.a.t 2 3.b odd 2 1
2304.4.a.bp 2 24.f even 2 1
2304.4.a.bq 2 24.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(768))$$:

 $$T_{5}^{2} - 8T_{5} - 192$$ T5^2 - 8*T5 - 192 $$T_{7}^{2} - 16T_{7} - 144$$ T7^2 - 16*T7 - 144 $$T_{11}^{2} + 8T_{11} - 3312$$ T11^2 + 8*T11 - 3312 $$T_{19}^{2} - 136T_{19} + 1296$$ T19^2 - 136*T19 + 1296

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$(T + 3)^{2}$$
$5$ $$T^{2} - 8T - 192$$
$7$ $$T^{2} - 16T - 144$$
$11$ $$T^{2} + 8T - 3312$$
$13$ $$T^{2} + 72T + 464$$
$17$ $$T^{2} + 36T - 3004$$
$19$ $$T^{2} - 136T + 1296$$
$23$ $$T^{2} - 256T + 15552$$
$29$ $$T^{2} + 152T - 11072$$
$31$ $$T^{2} + 80T - 33552$$
$37$ $$T^{2} + 136T + 1296$$
$41$ $$T^{2} + 436T - 35676$$
$43$ $$T^{2} + 712T + 123408$$
$47$ $$T^{2} + 224T - 28224$$
$53$ $$T^{2} + 344T - 17216$$
$59$ $$(T + 324)^{2}$$
$61$ $$(T + 324)^{2}$$
$67$ $$T^{2} - 456T - 427248$$
$71$ $$T^{2} - 2048 T + 1047744$$
$73$ $$T^{2} - 660T - 370332$$
$79$ $$T^{2} - 496T - 662544$$
$83$ $$T^{2} - 776T - 12528$$
$89$ $$T^{2} - 532T + 57444$$
$97$ $$T^{2} + 1220 T - 1238652$$