Properties

Label 768.4.a.c
Level $768$
Weight $4$
Character orbit 768.a
Self dual yes
Analytic conductor $45.313$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,4,Mod(1,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 768.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.3134668844\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 384)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} - 8 q^{5} - 12 q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} - 8 q^{5} - 12 q^{7} + 9 q^{9} - 12 q^{11} + 20 q^{13} - 24 q^{15} + 62 q^{17} + 108 q^{19} - 36 q^{21} + 72 q^{23} - 61 q^{25} + 27 q^{27} - 128 q^{29} - 204 q^{31} - 36 q^{33} + 96 q^{35} - 228 q^{37} + 60 q^{39} + 22 q^{41} - 204 q^{43} - 72 q^{45} - 600 q^{47} - 199 q^{49} + 186 q^{51} + 256 q^{53} + 96 q^{55} + 324 q^{57} - 828 q^{59} - 84 q^{61} - 108 q^{63} - 160 q^{65} + 348 q^{67} + 216 q^{69} - 456 q^{71} - 822 q^{73} - 183 q^{75} + 144 q^{77} - 1356 q^{79} + 81 q^{81} + 108 q^{83} - 496 q^{85} - 384 q^{87} + 938 q^{89} - 240 q^{91} - 612 q^{93} - 864 q^{95} + 1278 q^{97} - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −8.00000 0 −12.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.4.a.c 1
3.b odd 2 1 2304.4.a.k 1
4.b odd 2 1 768.4.a.a 1
8.b even 2 1 768.4.a.b 1
8.d odd 2 1 768.4.a.d 1
12.b even 2 1 2304.4.a.l 1
16.e even 4 2 384.4.d.b yes 2
16.f odd 4 2 384.4.d.a 2
24.f even 2 1 2304.4.a.f 1
24.h odd 2 1 2304.4.a.e 1
48.i odd 4 2 1152.4.d.g 2
48.k even 4 2 1152.4.d.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.4.d.a 2 16.f odd 4 2
384.4.d.b yes 2 16.e even 4 2
768.4.a.a 1 4.b odd 2 1
768.4.a.b 1 8.b even 2 1
768.4.a.c 1 1.a even 1 1 trivial
768.4.a.d 1 8.d odd 2 1
1152.4.d.b 2 48.k even 4 2
1152.4.d.g 2 48.i odd 4 2
2304.4.a.e 1 24.h odd 2 1
2304.4.a.f 1 24.f even 2 1
2304.4.a.k 1 3.b odd 2 1
2304.4.a.l 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(768))\):

\( T_{5} + 8 \) Copy content Toggle raw display
\( T_{7} + 12 \) Copy content Toggle raw display
\( T_{11} + 12 \) Copy content Toggle raw display
\( T_{19} - 108 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 8 \) Copy content Toggle raw display
$7$ \( T + 12 \) Copy content Toggle raw display
$11$ \( T + 12 \) Copy content Toggle raw display
$13$ \( T - 20 \) Copy content Toggle raw display
$17$ \( T - 62 \) Copy content Toggle raw display
$19$ \( T - 108 \) Copy content Toggle raw display
$23$ \( T - 72 \) Copy content Toggle raw display
$29$ \( T + 128 \) Copy content Toggle raw display
$31$ \( T + 204 \) Copy content Toggle raw display
$37$ \( T + 228 \) Copy content Toggle raw display
$41$ \( T - 22 \) Copy content Toggle raw display
$43$ \( T + 204 \) Copy content Toggle raw display
$47$ \( T + 600 \) Copy content Toggle raw display
$53$ \( T - 256 \) Copy content Toggle raw display
$59$ \( T + 828 \) Copy content Toggle raw display
$61$ \( T + 84 \) Copy content Toggle raw display
$67$ \( T - 348 \) Copy content Toggle raw display
$71$ \( T + 456 \) Copy content Toggle raw display
$73$ \( T + 822 \) Copy content Toggle raw display
$79$ \( T + 1356 \) Copy content Toggle raw display
$83$ \( T - 108 \) Copy content Toggle raw display
$89$ \( T - 938 \) Copy content Toggle raw display
$97$ \( T - 1278 \) Copy content Toggle raw display
show more
show less