Defining parameters
| Level: | \( N \) | \(=\) | \( 768 = 2^{8} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 768.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 22 \) | ||
| Sturm bound: | \(512\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\), \(11\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(768))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 408 | 48 | 360 |
| Cusp forms | 360 | 48 | 312 |
| Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(104\) | \(12\) | \(92\) | \(92\) | \(12\) | \(80\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(-\) | \(100\) | \(10\) | \(90\) | \(88\) | \(10\) | \(78\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(-\) | \(100\) | \(12\) | \(88\) | \(88\) | \(12\) | \(76\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(+\) | \(104\) | \(14\) | \(90\) | \(92\) | \(14\) | \(78\) | \(12\) | \(0\) | \(12\) | |||
| Plus space | \(+\) | \(208\) | \(26\) | \(182\) | \(184\) | \(26\) | \(158\) | \(24\) | \(0\) | \(24\) | ||||
| Minus space | \(-\) | \(200\) | \(22\) | \(178\) | \(176\) | \(22\) | \(154\) | \(24\) | \(0\) | \(24\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(768))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(768))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(768)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(384))\)\(^{\oplus 2}\)