Properties

Label 768.3.h.e.641.3
Level $768$
Weight $3$
Character 768.641
Analytic conductor $20.926$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,3,Mod(641,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.641");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 768.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.9264843029\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.157351936.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 641.3
Root \(-1.28897 - 0.581861i\) of defining polynomial
Character \(\chi\) \(=\) 768.641
Dual form 768.3.h.e.641.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 + 2.64575i) q^{3} -7.48331 q^{5} -5.29150 q^{7} +(-5.00000 - 7.48331i) q^{9} -14.1421 q^{11} -10.0000i q^{13} +(10.5830 - 19.7990i) q^{15} +26.4575i q^{19} +(7.48331 - 14.0000i) q^{21} -16.9706i q^{23} +31.0000 q^{25} +(26.8701 - 2.64575i) q^{27} -37.4166 q^{29} +26.4575 q^{31} +(20.0000 - 37.4166i) q^{33} +39.5980 q^{35} +10.0000i q^{37} +(26.4575 + 14.1421i) q^{39} +14.9666i q^{41} +58.2065i q^{43} +(37.4166 + 56.0000i) q^{45} +11.3137i q^{47} -21.0000 q^{49} -37.4166 q^{53} +105.830 q^{55} +(-70.0000 - 37.4166i) q^{57} +98.9949 q^{59} -90.0000i q^{61} +(26.4575 + 39.5980i) q^{63} +74.8331i q^{65} +5.29150i q^{67} +(44.8999 + 24.0000i) q^{69} -28.2843i q^{71} +30.0000 q^{73} +(-43.8406 + 82.0183i) q^{75} +74.8331 q^{77} +26.4575 q^{79} +(-31.0000 + 74.8331i) q^{81} -25.4558 q^{83} +(52.9150 - 98.9949i) q^{87} +74.8331i q^{89} +52.9150i q^{91} +(-37.4166 + 70.0000i) q^{93} -197.990i q^{95} +10.0000 q^{97} +(70.7107 + 105.830i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 40 q^{9} + 248 q^{25} + 160 q^{33} - 168 q^{49} - 560 q^{57} + 240 q^{73} - 248 q^{81} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 + 2.64575i −0.471405 + 0.881917i
\(4\) 0 0
\(5\) −7.48331 −1.49666 −0.748331 0.663325i \(-0.769145\pi\)
−0.748331 + 0.663325i \(0.769145\pi\)
\(6\) 0 0
\(7\) −5.29150 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) −5.00000 7.48331i −0.555556 0.831479i
\(10\) 0 0
\(11\) −14.1421 −1.28565 −0.642824 0.766014i \(-0.722237\pi\)
−0.642824 + 0.766014i \(0.722237\pi\)
\(12\) 0 0
\(13\) 10.0000i 0.769231i −0.923077 0.384615i \(-0.874334\pi\)
0.923077 0.384615i \(-0.125666\pi\)
\(14\) 0 0
\(15\) 10.5830 19.7990i 0.705534 1.31993i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 26.4575i 1.39250i 0.717799 + 0.696250i \(0.245150\pi\)
−0.717799 + 0.696250i \(0.754850\pi\)
\(20\) 0 0
\(21\) 7.48331 14.0000i 0.356348 0.666667i
\(22\) 0 0
\(23\) 16.9706i 0.737851i −0.929459 0.368925i \(-0.879726\pi\)
0.929459 0.368925i \(-0.120274\pi\)
\(24\) 0 0
\(25\) 31.0000 1.24000
\(26\) 0 0
\(27\) 26.8701 2.64575i 0.995187 0.0979908i
\(28\) 0 0
\(29\) −37.4166 −1.29023 −0.645113 0.764087i \(-0.723190\pi\)
−0.645113 + 0.764087i \(0.723190\pi\)
\(30\) 0 0
\(31\) 26.4575 0.853468 0.426734 0.904377i \(-0.359664\pi\)
0.426734 + 0.904377i \(0.359664\pi\)
\(32\) 0 0
\(33\) 20.0000 37.4166i 0.606061 1.13384i
\(34\) 0 0
\(35\) 39.5980 1.13137
\(36\) 0 0
\(37\) 10.0000i 0.270270i 0.990827 + 0.135135i \(0.0431469\pi\)
−0.990827 + 0.135135i \(0.956853\pi\)
\(38\) 0 0
\(39\) 26.4575 + 14.1421i 0.678398 + 0.362619i
\(40\) 0 0
\(41\) 14.9666i 0.365040i 0.983202 + 0.182520i \(0.0584254\pi\)
−0.983202 + 0.182520i \(0.941575\pi\)
\(42\) 0 0
\(43\) 58.2065i 1.35364i 0.736148 + 0.676820i \(0.236643\pi\)
−0.736148 + 0.676820i \(0.763357\pi\)
\(44\) 0 0
\(45\) 37.4166 + 56.0000i 0.831479 + 1.24444i
\(46\) 0 0
\(47\) 11.3137i 0.240717i 0.992730 + 0.120359i \(0.0384044\pi\)
−0.992730 + 0.120359i \(0.961596\pi\)
\(48\) 0 0
\(49\) −21.0000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −37.4166 −0.705973 −0.352987 0.935628i \(-0.614834\pi\)
−0.352987 + 0.935628i \(0.614834\pi\)
\(54\) 0 0
\(55\) 105.830 1.92418
\(56\) 0 0
\(57\) −70.0000 37.4166i −1.22807 0.656431i
\(58\) 0 0
\(59\) 98.9949 1.67788 0.838940 0.544224i \(-0.183176\pi\)
0.838940 + 0.544224i \(0.183176\pi\)
\(60\) 0 0
\(61\) 90.0000i 1.47541i −0.675123 0.737705i \(-0.735910\pi\)
0.675123 0.737705i \(-0.264090\pi\)
\(62\) 0 0
\(63\) 26.4575 + 39.5980i 0.419961 + 0.628539i
\(64\) 0 0
\(65\) 74.8331i 1.15128i
\(66\) 0 0
\(67\) 5.29150i 0.0789777i 0.999220 + 0.0394888i \(0.0125730\pi\)
−0.999220 + 0.0394888i \(0.987427\pi\)
\(68\) 0 0
\(69\) 44.8999 + 24.0000i 0.650723 + 0.347826i
\(70\) 0 0
\(71\) 28.2843i 0.398370i −0.979962 0.199185i \(-0.936171\pi\)
0.979962 0.199185i \(-0.0638295\pi\)
\(72\) 0 0
\(73\) 30.0000 0.410959 0.205479 0.978661i \(-0.434125\pi\)
0.205479 + 0.978661i \(0.434125\pi\)
\(74\) 0 0
\(75\) −43.8406 + 82.0183i −0.584542 + 1.09358i
\(76\) 0 0
\(77\) 74.8331 0.971859
\(78\) 0 0
\(79\) 26.4575 0.334905 0.167453 0.985880i \(-0.446446\pi\)
0.167453 + 0.985880i \(0.446446\pi\)
\(80\) 0 0
\(81\) −31.0000 + 74.8331i −0.382716 + 0.923866i
\(82\) 0 0
\(83\) −25.4558 −0.306697 −0.153348 0.988172i \(-0.549006\pi\)
−0.153348 + 0.988172i \(0.549006\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 52.9150 98.9949i 0.608219 1.13787i
\(88\) 0 0
\(89\) 74.8331i 0.840822i 0.907334 + 0.420411i \(0.138114\pi\)
−0.907334 + 0.420411i \(0.861886\pi\)
\(90\) 0 0
\(91\) 52.9150i 0.581484i
\(92\) 0 0
\(93\) −37.4166 + 70.0000i −0.402329 + 0.752688i
\(94\) 0 0
\(95\) 197.990i 2.08410i
\(96\) 0 0
\(97\) 10.0000 0.103093 0.0515464 0.998671i \(-0.483585\pi\)
0.0515464 + 0.998671i \(0.483585\pi\)
\(98\) 0 0
\(99\) 70.7107 + 105.830i 0.714249 + 1.06899i
\(100\) 0 0
\(101\) 112.250 1.11138 0.555692 0.831388i \(-0.312454\pi\)
0.555692 + 0.831388i \(0.312454\pi\)
\(102\) 0 0
\(103\) −47.6235 −0.462364 −0.231182 0.972910i \(-0.574259\pi\)
−0.231182 + 0.972910i \(0.574259\pi\)
\(104\) 0 0
\(105\) −56.0000 + 104.766i −0.533333 + 0.997775i
\(106\) 0 0
\(107\) −2.82843 −0.0264339 −0.0132169 0.999913i \(-0.504207\pi\)
−0.0132169 + 0.999913i \(0.504207\pi\)
\(108\) 0 0
\(109\) 70.0000i 0.642202i 0.947045 + 0.321101i \(0.104053\pi\)
−0.947045 + 0.321101i \(0.895947\pi\)
\(110\) 0 0
\(111\) −26.4575 14.1421i −0.238356 0.127407i
\(112\) 0 0
\(113\) 149.666i 1.32448i −0.749292 0.662240i \(-0.769606\pi\)
0.749292 0.662240i \(-0.230394\pi\)
\(114\) 0 0
\(115\) 126.996i 1.10431i
\(116\) 0 0
\(117\) −74.8331 + 50.0000i −0.639600 + 0.427350i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 79.0000 0.652893
\(122\) 0 0
\(123\) −39.5980 21.1660i −0.321935 0.172081i
\(124\) 0 0
\(125\) −44.8999 −0.359199
\(126\) 0 0
\(127\) 153.454 1.20830 0.604148 0.796872i \(-0.293514\pi\)
0.604148 + 0.796872i \(0.293514\pi\)
\(128\) 0 0
\(129\) −154.000 82.3165i −1.19380 0.638112i
\(130\) 0 0
\(131\) −70.7107 −0.539776 −0.269888 0.962892i \(-0.586987\pi\)
−0.269888 + 0.962892i \(0.586987\pi\)
\(132\) 0 0
\(133\) 140.000i 1.05263i
\(134\) 0 0
\(135\) −201.077 + 19.7990i −1.48946 + 0.146659i
\(136\) 0 0
\(137\) 224.499i 1.63868i −0.573306 0.819341i \(-0.694340\pi\)
0.573306 0.819341i \(-0.305660\pi\)
\(138\) 0 0
\(139\) 132.288i 0.951709i −0.879524 0.475855i \(-0.842139\pi\)
0.879524 0.475855i \(-0.157861\pi\)
\(140\) 0 0
\(141\) −29.9333 16.0000i −0.212293 0.113475i
\(142\) 0 0
\(143\) 141.421i 0.988961i
\(144\) 0 0
\(145\) 280.000 1.93103
\(146\) 0 0
\(147\) 29.6985 55.5608i 0.202031 0.377964i
\(148\) 0 0
\(149\) 22.4499 0.150671 0.0753354 0.997158i \(-0.475997\pi\)
0.0753354 + 0.997158i \(0.475997\pi\)
\(150\) 0 0
\(151\) 79.3725 0.525646 0.262823 0.964844i \(-0.415346\pi\)
0.262823 + 0.964844i \(0.415346\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −197.990 −1.27735
\(156\) 0 0
\(157\) 170.000i 1.08280i −0.840764 0.541401i \(-0.817894\pi\)
0.840764 0.541401i \(-0.182106\pi\)
\(158\) 0 0
\(159\) 52.9150 98.9949i 0.332799 0.622610i
\(160\) 0 0
\(161\) 89.7998i 0.557763i
\(162\) 0 0
\(163\) 100.539i 0.616801i −0.951257 0.308400i \(-0.900206\pi\)
0.951257 0.308400i \(-0.0997937\pi\)
\(164\) 0 0
\(165\) −149.666 + 280.000i −0.907068 + 1.69697i
\(166\) 0 0
\(167\) 243.245i 1.45656i 0.685282 + 0.728278i \(0.259679\pi\)
−0.685282 + 0.728278i \(0.740321\pi\)
\(168\) 0 0
\(169\) 69.0000 0.408284
\(170\) 0 0
\(171\) 197.990 132.288i 1.15784 0.773611i
\(172\) 0 0
\(173\) 112.250 0.648842 0.324421 0.945913i \(-0.394831\pi\)
0.324421 + 0.945913i \(0.394831\pi\)
\(174\) 0 0
\(175\) −164.037 −0.937352
\(176\) 0 0
\(177\) −140.000 + 261.916i −0.790960 + 1.47975i
\(178\) 0 0
\(179\) 212.132 1.18510 0.592548 0.805535i \(-0.298122\pi\)
0.592548 + 0.805535i \(0.298122\pi\)
\(180\) 0 0
\(181\) 262.000i 1.44751i −0.690055 0.723757i \(-0.742414\pi\)
0.690055 0.723757i \(-0.257586\pi\)
\(182\) 0 0
\(183\) 238.118 + 127.279i 1.30119 + 0.695515i
\(184\) 0 0
\(185\) 74.8331i 0.404504i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −142.183 + 14.0000i −0.752291 + 0.0740741i
\(190\) 0 0
\(191\) 339.411i 1.77702i 0.458855 + 0.888511i \(0.348260\pi\)
−0.458855 + 0.888511i \(0.651740\pi\)
\(192\) 0 0
\(193\) 210.000 1.08808 0.544041 0.839058i \(-0.316893\pi\)
0.544041 + 0.839058i \(0.316893\pi\)
\(194\) 0 0
\(195\) −197.990 105.830i −1.01533 0.542718i
\(196\) 0 0
\(197\) −187.083 −0.949659 −0.474830 0.880078i \(-0.657490\pi\)
−0.474830 + 0.880078i \(0.657490\pi\)
\(198\) 0 0
\(199\) −343.948 −1.72838 −0.864190 0.503165i \(-0.832169\pi\)
−0.864190 + 0.503165i \(0.832169\pi\)
\(200\) 0 0
\(201\) −14.0000 7.48331i −0.0696517 0.0372304i
\(202\) 0 0
\(203\) 197.990 0.975320
\(204\) 0 0
\(205\) 112.000i 0.546341i
\(206\) 0 0
\(207\) −126.996 + 84.8528i −0.613508 + 0.409917i
\(208\) 0 0
\(209\) 374.166i 1.79027i
\(210\) 0 0
\(211\) 291.033i 1.37930i −0.724142 0.689651i \(-0.757764\pi\)
0.724142 0.689651i \(-0.242236\pi\)
\(212\) 0 0
\(213\) 74.8331 + 40.0000i 0.351329 + 0.187793i
\(214\) 0 0
\(215\) 435.578i 2.02594i
\(216\) 0 0
\(217\) −140.000 −0.645161
\(218\) 0 0
\(219\) −42.4264 + 79.3725i −0.193728 + 0.362432i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −312.199 −1.39999 −0.699997 0.714146i \(-0.746815\pi\)
−0.699997 + 0.714146i \(0.746815\pi\)
\(224\) 0 0
\(225\) −155.000 231.983i −0.688889 1.03103i
\(226\) 0 0
\(227\) −59.3970 −0.261661 −0.130830 0.991405i \(-0.541764\pi\)
−0.130830 + 0.991405i \(0.541764\pi\)
\(228\) 0 0
\(229\) 358.000i 1.56332i −0.623706 0.781659i \(-0.714374\pi\)
0.623706 0.781659i \(-0.285626\pi\)
\(230\) 0 0
\(231\) −105.830 + 197.990i −0.458139 + 0.857099i
\(232\) 0 0
\(233\) 224.499i 0.963517i 0.876304 + 0.481758i \(0.160002\pi\)
−0.876304 + 0.481758i \(0.839998\pi\)
\(234\) 0 0
\(235\) 84.6640i 0.360273i
\(236\) 0 0
\(237\) −37.4166 + 70.0000i −0.157876 + 0.295359i
\(238\) 0 0
\(239\) 169.706i 0.710065i −0.934854 0.355033i \(-0.884470\pi\)
0.934854 0.355033i \(-0.115530\pi\)
\(240\) 0 0
\(241\) −110.000 −0.456432 −0.228216 0.973611i \(-0.573289\pi\)
−0.228216 + 0.973611i \(0.573289\pi\)
\(242\) 0 0
\(243\) −154.149 187.848i −0.634359 0.773038i
\(244\) 0 0
\(245\) 157.150 0.641427
\(246\) 0 0
\(247\) 264.575 1.07115
\(248\) 0 0
\(249\) 36.0000 67.3498i 0.144578 0.270481i
\(250\) 0 0
\(251\) −296.985 −1.18321 −0.591603 0.806229i \(-0.701505\pi\)
−0.591603 + 0.806229i \(0.701505\pi\)
\(252\) 0 0
\(253\) 240.000i 0.948617i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 299.333i 1.16472i 0.812932 + 0.582359i \(0.197870\pi\)
−0.812932 + 0.582359i \(0.802130\pi\)
\(258\) 0 0
\(259\) 52.9150i 0.204305i
\(260\) 0 0
\(261\) 187.083 + 280.000i 0.716793 + 1.07280i
\(262\) 0 0
\(263\) 152.735i 0.580742i 0.956914 + 0.290371i \(0.0937787\pi\)
−0.956914 + 0.290371i \(0.906221\pi\)
\(264\) 0 0
\(265\) 280.000 1.05660
\(266\) 0 0
\(267\) −197.990 105.830i −0.741535 0.396367i
\(268\) 0 0
\(269\) −426.549 −1.58568 −0.792842 0.609427i \(-0.791399\pi\)
−0.792842 + 0.609427i \(0.791399\pi\)
\(270\) 0 0
\(271\) −396.863 −1.46444 −0.732219 0.681069i \(-0.761515\pi\)
−0.732219 + 0.681069i \(0.761515\pi\)
\(272\) 0 0
\(273\) −140.000 74.8331i −0.512821 0.274114i
\(274\) 0 0
\(275\) −438.406 −1.59420
\(276\) 0 0
\(277\) 490.000i 1.76895i 0.466585 + 0.884477i \(0.345484\pi\)
−0.466585 + 0.884477i \(0.654516\pi\)
\(278\) 0 0
\(279\) −132.288 197.990i −0.474149 0.709641i
\(280\) 0 0
\(281\) 134.700i 0.479358i 0.970852 + 0.239679i \(0.0770422\pi\)
−0.970852 + 0.239679i \(0.922958\pi\)
\(282\) 0 0
\(283\) 5.29150i 0.0186979i −0.999956 0.00934894i \(-0.997024\pi\)
0.999956 0.00934894i \(-0.00297590\pi\)
\(284\) 0 0
\(285\) 523.832 + 280.000i 1.83801 + 0.982456i
\(286\) 0 0
\(287\) 79.1960i 0.275944i
\(288\) 0 0
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) −14.1421 + 26.4575i −0.0485984 + 0.0909193i
\(292\) 0 0
\(293\) 112.250 0.383105 0.191552 0.981482i \(-0.438648\pi\)
0.191552 + 0.981482i \(0.438648\pi\)
\(294\) 0 0
\(295\) −740.810 −2.51122
\(296\) 0 0
\(297\) −380.000 + 37.4166i −1.27946 + 0.125982i
\(298\) 0 0
\(299\) −169.706 −0.567577
\(300\) 0 0
\(301\) 308.000i 1.02326i
\(302\) 0 0
\(303\) −158.745 + 296.985i −0.523911 + 0.980148i
\(304\) 0 0
\(305\) 673.498i 2.20819i
\(306\) 0 0
\(307\) 47.6235i 0.155125i 0.996987 + 0.0775627i \(0.0247138\pi\)
−0.996987 + 0.0775627i \(0.975286\pi\)
\(308\) 0 0
\(309\) 67.3498 126.000i 0.217961 0.407767i
\(310\) 0 0
\(311\) 254.558i 0.818516i 0.912419 + 0.409258i \(0.134212\pi\)
−0.912419 + 0.409258i \(0.865788\pi\)
\(312\) 0 0
\(313\) 230.000 0.734824 0.367412 0.930058i \(-0.380244\pi\)
0.367412 + 0.930058i \(0.380244\pi\)
\(314\) 0 0
\(315\) −197.990 296.324i −0.628539 0.940712i
\(316\) 0 0
\(317\) 561.249 1.77050 0.885250 0.465115i \(-0.153987\pi\)
0.885250 + 0.465115i \(0.153987\pi\)
\(318\) 0 0
\(319\) 529.150 1.65878
\(320\) 0 0
\(321\) 4.00000 7.48331i 0.0124611 0.0233125i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 310.000i 0.953846i
\(326\) 0 0
\(327\) −185.203 98.9949i −0.566369 0.302737i
\(328\) 0 0
\(329\) 59.8665i 0.181965i
\(330\) 0 0
\(331\) 132.288i 0.399660i −0.979831 0.199830i \(-0.935961\pi\)
0.979831 0.199830i \(-0.0640390\pi\)
\(332\) 0 0
\(333\) 74.8331 50.0000i 0.224724 0.150150i
\(334\) 0 0
\(335\) 39.5980i 0.118203i
\(336\) 0 0
\(337\) −70.0000 −0.207715 −0.103858 0.994592i \(-0.533119\pi\)
−0.103858 + 0.994592i \(0.533119\pi\)
\(338\) 0 0
\(339\) 395.980 + 211.660i 1.16808 + 0.624366i
\(340\) 0 0
\(341\) −374.166 −1.09726
\(342\) 0 0
\(343\) 370.405 1.07990
\(344\) 0 0
\(345\) −336.000 179.600i −0.973913 0.520578i
\(346\) 0 0
\(347\) 540.230 1.55686 0.778429 0.627733i \(-0.216017\pi\)
0.778429 + 0.627733i \(0.216017\pi\)
\(348\) 0 0
\(349\) 298.000i 0.853868i −0.904283 0.426934i \(-0.859594\pi\)
0.904283 0.426934i \(-0.140406\pi\)
\(350\) 0 0
\(351\) −26.4575 268.701i −0.0753775 0.765529i
\(352\) 0 0
\(353\) 299.333i 0.847968i −0.905670 0.423984i \(-0.860631\pi\)
0.905670 0.423984i \(-0.139369\pi\)
\(354\) 0 0
\(355\) 211.660i 0.596226i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 537.401i 1.49694i 0.663169 + 0.748470i \(0.269211\pi\)
−0.663169 + 0.748470i \(0.730789\pi\)
\(360\) 0 0
\(361\) −339.000 −0.939058
\(362\) 0 0
\(363\) −111.723 + 209.014i −0.307777 + 0.575797i
\(364\) 0 0
\(365\) −224.499 −0.615067
\(366\) 0 0
\(367\) 111.122 0.302784 0.151392 0.988474i \(-0.451625\pi\)
0.151392 + 0.988474i \(0.451625\pi\)
\(368\) 0 0
\(369\) 112.000 74.8331i 0.303523 0.202800i
\(370\) 0 0
\(371\) 197.990 0.533665
\(372\) 0 0
\(373\) 410.000i 1.09920i 0.835429 + 0.549598i \(0.185219\pi\)
−0.835429 + 0.549598i \(0.814781\pi\)
\(374\) 0 0
\(375\) 63.4980 118.794i 0.169328 0.316784i
\(376\) 0 0
\(377\) 374.166i 0.992482i
\(378\) 0 0
\(379\) 661.438i 1.74522i −0.488419 0.872609i \(-0.662426\pi\)
0.488419 0.872609i \(-0.337574\pi\)
\(380\) 0 0
\(381\) −217.016 + 406.000i −0.569596 + 1.06562i
\(382\) 0 0
\(383\) 158.392i 0.413556i −0.978388 0.206778i \(-0.933702\pi\)
0.978388 0.206778i \(-0.0662978\pi\)
\(384\) 0 0
\(385\) −560.000 −1.45455
\(386\) 0 0
\(387\) 435.578 291.033i 1.12552 0.752022i
\(388\) 0 0
\(389\) −246.949 −0.634831 −0.317416 0.948287i \(-0.602815\pi\)
−0.317416 + 0.948287i \(0.602815\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 100.000 187.083i 0.254453 0.476038i
\(394\) 0 0
\(395\) −197.990 −0.501240
\(396\) 0 0
\(397\) 230.000i 0.579345i 0.957126 + 0.289673i \(0.0935464\pi\)
−0.957126 + 0.289673i \(0.906454\pi\)
\(398\) 0 0
\(399\) 370.405 + 197.990i 0.928334 + 0.496215i
\(400\) 0 0
\(401\) 299.333i 0.746465i −0.927738 0.373233i \(-0.878249\pi\)
0.927738 0.373233i \(-0.121751\pi\)
\(402\) 0 0
\(403\) 264.575i 0.656514i
\(404\) 0 0
\(405\) 231.983 560.000i 0.572797 1.38272i
\(406\) 0 0
\(407\) 141.421i 0.347473i
\(408\) 0 0
\(409\) 590.000 1.44254 0.721271 0.692653i \(-0.243558\pi\)
0.721271 + 0.692653i \(0.243558\pi\)
\(410\) 0 0
\(411\) 593.970 + 317.490i 1.44518 + 0.772482i
\(412\) 0 0
\(413\) −523.832 −1.26836
\(414\) 0 0
\(415\) 190.494 0.459022
\(416\) 0 0
\(417\) 350.000 + 187.083i 0.839329 + 0.448640i
\(418\) 0 0
\(419\) 98.9949 0.236265 0.118132 0.992998i \(-0.462309\pi\)
0.118132 + 0.992998i \(0.462309\pi\)
\(420\) 0 0
\(421\) 70.0000i 0.166271i −0.996538 0.0831354i \(-0.973507\pi\)
0.996538 0.0831354i \(-0.0264934\pi\)
\(422\) 0 0
\(423\) 84.6640 56.5685i 0.200151 0.133732i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 476.235i 1.11531i
\(428\) 0 0
\(429\) −374.166 200.000i −0.872181 0.466200i
\(430\) 0 0
\(431\) 509.117i 1.18125i 0.806948 + 0.590623i \(0.201118\pi\)
−0.806948 + 0.590623i \(0.798882\pi\)
\(432\) 0 0
\(433\) 10.0000 0.0230947 0.0115473 0.999933i \(-0.496324\pi\)
0.0115473 + 0.999933i \(0.496324\pi\)
\(434\) 0 0
\(435\) −395.980 + 740.810i −0.910298 + 1.70301i
\(436\) 0 0
\(437\) 448.999 1.02746
\(438\) 0 0
\(439\) 502.693 1.14509 0.572543 0.819875i \(-0.305957\pi\)
0.572543 + 0.819875i \(0.305957\pi\)
\(440\) 0 0
\(441\) 105.000 + 157.150i 0.238095 + 0.356348i
\(442\) 0 0
\(443\) 313.955 0.708703 0.354351 0.935112i \(-0.384702\pi\)
0.354351 + 0.935112i \(0.384702\pi\)
\(444\) 0 0
\(445\) 560.000i 1.25843i
\(446\) 0 0
\(447\) −31.7490 + 59.3970i −0.0710269 + 0.132879i
\(448\) 0 0
\(449\) 209.533i 0.466666i −0.972397 0.233333i \(-0.925037\pi\)
0.972397 0.233333i \(-0.0749631\pi\)
\(450\) 0 0
\(451\) 211.660i 0.469313i
\(452\) 0 0
\(453\) −112.250 + 210.000i −0.247792 + 0.463576i
\(454\) 0 0
\(455\) 395.980i 0.870285i
\(456\) 0 0
\(457\) 430.000 0.940919 0.470460 0.882422i \(-0.344088\pi\)
0.470460 + 0.882422i \(0.344088\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 112.250 0.243492 0.121746 0.992561i \(-0.461151\pi\)
0.121746 + 0.992561i \(0.461151\pi\)
\(462\) 0 0
\(463\) −100.539 −0.217146 −0.108573 0.994088i \(-0.534628\pi\)
−0.108573 + 0.994088i \(0.534628\pi\)
\(464\) 0 0
\(465\) 280.000 523.832i 0.602151 1.12652i
\(466\) 0 0
\(467\) −138.593 −0.296773 −0.148386 0.988929i \(-0.547408\pi\)
−0.148386 + 0.988929i \(0.547408\pi\)
\(468\) 0 0
\(469\) 28.0000i 0.0597015i
\(470\) 0 0
\(471\) 449.778 + 240.416i 0.954942 + 0.510438i
\(472\) 0 0
\(473\) 823.165i 1.74031i
\(474\) 0 0
\(475\) 820.183i 1.72670i
\(476\) 0 0
\(477\) 187.083 + 280.000i 0.392207 + 0.587002i
\(478\) 0 0
\(479\) 339.411i 0.708583i −0.935135 0.354291i \(-0.884722\pi\)
0.935135 0.354291i \(-0.115278\pi\)
\(480\) 0 0
\(481\) 100.000 0.207900
\(482\) 0 0
\(483\) −237.588 126.996i −0.491900 0.262932i
\(484\) 0 0
\(485\) −74.8331 −0.154295
\(486\) 0 0
\(487\) 375.697 0.771451 0.385726 0.922614i \(-0.373951\pi\)
0.385726 + 0.922614i \(0.373951\pi\)
\(488\) 0 0
\(489\) 266.000 + 142.183i 0.543967 + 0.290763i
\(490\) 0 0
\(491\) −523.259 −1.06570 −0.532850 0.846210i \(-0.678879\pi\)
−0.532850 + 0.846210i \(0.678879\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −529.150 791.960i −1.06899 1.59992i
\(496\) 0 0
\(497\) 149.666i 0.301139i
\(498\) 0 0
\(499\) 555.608i 1.11344i 0.830699 + 0.556721i \(0.187941\pi\)
−0.830699 + 0.556721i \(0.812059\pi\)
\(500\) 0 0
\(501\) −643.565 344.000i −1.28456 0.686627i
\(502\) 0 0
\(503\) 831.558i 1.65320i −0.562793 0.826598i \(-0.690273\pi\)
0.562793 0.826598i \(-0.309727\pi\)
\(504\) 0 0
\(505\) −840.000 −1.66337
\(506\) 0 0
\(507\) −97.5807 + 182.557i −0.192467 + 0.360073i
\(508\) 0 0
\(509\) 561.249 1.10265 0.551325 0.834291i \(-0.314123\pi\)
0.551325 + 0.834291i \(0.314123\pi\)
\(510\) 0 0
\(511\) −158.745 −0.310656
\(512\) 0 0
\(513\) 70.0000 + 710.915i 0.136452 + 1.38580i
\(514\) 0 0
\(515\) 356.382 0.692004
\(516\) 0 0
\(517\) 160.000i 0.309478i
\(518\) 0 0
\(519\) −158.745 + 296.985i −0.305867 + 0.572225i
\(520\) 0 0
\(521\) 224.499i 0.430901i −0.976515 0.215451i \(-0.930878\pi\)
0.976515 0.215451i \(-0.0691220\pi\)
\(522\) 0 0
\(523\) 904.847i 1.73011i 0.501678 + 0.865054i \(0.332716\pi\)
−0.501678 + 0.865054i \(0.667284\pi\)
\(524\) 0 0
\(525\) 231.983 434.000i 0.441872 0.826667i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 241.000 0.455577
\(530\) 0 0
\(531\) −494.975 740.810i −0.932156 1.39512i
\(532\) 0 0
\(533\) 149.666 0.280800
\(534\) 0 0
\(535\) 21.1660 0.0395626
\(536\) 0 0
\(537\) −300.000 + 561.249i −0.558659 + 1.04516i
\(538\) 0 0
\(539\) 296.985 0.550992
\(540\) 0 0
\(541\) 518.000i 0.957486i 0.877955 + 0.478743i \(0.158907\pi\)
−0.877955 + 0.478743i \(0.841093\pi\)
\(542\) 0 0
\(543\) 693.187 + 370.524i 1.27659 + 0.682365i
\(544\) 0 0
\(545\) 523.832i 0.961160i
\(546\) 0 0
\(547\) 1000.09i 1.82833i 0.405347 + 0.914163i \(0.367151\pi\)
−0.405347 + 0.914163i \(0.632849\pi\)
\(548\) 0 0
\(549\) −673.498 + 450.000i −1.22677 + 0.819672i
\(550\) 0 0
\(551\) 989.949i 1.79664i
\(552\) 0 0
\(553\) −140.000 −0.253165
\(554\) 0 0
\(555\) 197.990 + 105.830i 0.356739 + 0.190685i
\(556\) 0 0
\(557\) 411.582 0.738927 0.369463 0.929245i \(-0.379541\pi\)
0.369463 + 0.929245i \(0.379541\pi\)
\(558\) 0 0
\(559\) 582.065 1.04126
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 653.367 1.16051 0.580255 0.814435i \(-0.302953\pi\)
0.580255 + 0.814435i \(0.302953\pi\)
\(564\) 0 0
\(565\) 1120.00i 1.98230i
\(566\) 0 0
\(567\) 164.037 395.980i 0.289306 0.698377i
\(568\) 0 0
\(569\) 613.632i 1.07844i −0.842165 0.539220i \(-0.818719\pi\)
0.842165 0.539220i \(-0.181281\pi\)
\(570\) 0 0
\(571\) 343.948i 0.602360i −0.953567 0.301180i \(-0.902619\pi\)
0.953567 0.301180i \(-0.0973805\pi\)
\(572\) 0 0
\(573\) −897.998 480.000i −1.56719 0.837696i
\(574\) 0 0
\(575\) 526.087i 0.914935i
\(576\) 0 0
\(577\) −390.000 −0.675910 −0.337955 0.941162i \(-0.609735\pi\)
−0.337955 + 0.941162i \(0.609735\pi\)
\(578\) 0 0
\(579\) −296.985 + 555.608i −0.512927 + 0.959599i
\(580\) 0 0
\(581\) 134.700 0.231841
\(582\) 0 0
\(583\) 529.150 0.907633
\(584\) 0 0
\(585\) 560.000 374.166i 0.957265 0.639600i
\(586\) 0 0
\(587\) 653.367 1.11306 0.556530 0.830827i \(-0.312132\pi\)
0.556530 + 0.830827i \(0.312132\pi\)
\(588\) 0 0
\(589\) 700.000i 1.18846i
\(590\) 0 0
\(591\) 264.575 494.975i 0.447674 0.837521i
\(592\) 0 0
\(593\) 448.999i 0.757165i 0.925568 + 0.378583i \(0.123588\pi\)
−0.925568 + 0.378583i \(0.876412\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 486.415 910.000i 0.814766 1.52429i
\(598\) 0 0
\(599\) 480.833i 0.802726i 0.915919 + 0.401363i \(0.131463\pi\)
−0.915919 + 0.401363i \(0.868537\pi\)
\(600\) 0 0
\(601\) −130.000 −0.216306 −0.108153 0.994134i \(-0.534494\pi\)
−0.108153 + 0.994134i \(0.534494\pi\)
\(602\) 0 0
\(603\) 39.5980 26.4575i 0.0656683 0.0438765i
\(604\) 0 0
\(605\) −591.182 −0.977160
\(606\) 0 0
\(607\) 153.454 0.252807 0.126403 0.991979i \(-0.459657\pi\)
0.126403 + 0.991979i \(0.459657\pi\)
\(608\) 0 0
\(609\) −280.000 + 523.832i −0.459770 + 0.860151i
\(610\) 0 0
\(611\) 113.137 0.185167
\(612\) 0 0
\(613\) 630.000i 1.02773i −0.857870 0.513866i \(-0.828213\pi\)
0.857870 0.513866i \(-0.171787\pi\)
\(614\) 0 0
\(615\) 296.324 + 158.392i 0.481828 + 0.257548i
\(616\) 0 0
\(617\) 1122.50i 1.81928i 0.415395 + 0.909641i \(0.363643\pi\)
−0.415395 + 0.909641i \(0.636357\pi\)
\(618\) 0 0
\(619\) 555.608i 0.897589i −0.893635 0.448795i \(-0.851853\pi\)
0.893635 0.448795i \(-0.148147\pi\)
\(620\) 0 0
\(621\) −44.8999 456.000i −0.0723026 0.734300i
\(622\) 0 0
\(623\) 395.980i 0.635602i
\(624\) 0 0
\(625\) −439.000 −0.702400
\(626\) 0 0
\(627\) 989.949 + 529.150i 1.57887 + 0.843940i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −978.928 −1.55139 −0.775696 0.631107i \(-0.782601\pi\)
−0.775696 + 0.631107i \(0.782601\pi\)
\(632\) 0 0
\(633\) 770.000 + 411.582i 1.21643 + 0.650209i
\(634\) 0 0
\(635\) −1148.34 −1.80841
\(636\) 0 0
\(637\) 210.000i 0.329670i
\(638\) 0 0
\(639\) −211.660 + 141.421i −0.331236 + 0.221317i
\(640\) 0 0
\(641\) 389.132i 0.607071i −0.952820 0.303535i \(-0.901833\pi\)
0.952820 0.303535i \(-0.0981671\pi\)
\(642\) 0 0
\(643\) 269.867i 0.419699i −0.977734 0.209850i \(-0.932703\pi\)
0.977734 0.209850i \(-0.0672974\pi\)
\(644\) 0 0
\(645\) 1152.43 + 616.000i 1.78671 + 0.955039i
\(646\) 0 0
\(647\) 1170.97i 1.80984i 0.425578 + 0.904922i \(0.360071\pi\)
−0.425578 + 0.904922i \(0.639929\pi\)
\(648\) 0 0
\(649\) −1400.00 −2.15716
\(650\) 0 0
\(651\) 197.990 370.405i 0.304132 0.568979i
\(652\) 0 0
\(653\) 710.915 1.08869 0.544345 0.838861i \(-0.316778\pi\)
0.544345 + 0.838861i \(0.316778\pi\)
\(654\) 0 0
\(655\) 529.150 0.807863
\(656\) 0 0
\(657\) −150.000 224.499i −0.228311 0.341704i
\(658\) 0 0
\(659\) −127.279 −0.193140 −0.0965700 0.995326i \(-0.530787\pi\)
−0.0965700 + 0.995326i \(0.530787\pi\)
\(660\) 0 0
\(661\) 170.000i 0.257186i 0.991697 + 0.128593i \(0.0410461\pi\)
−0.991697 + 0.128593i \(0.958954\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1047.66i 1.57543i
\(666\) 0 0
\(667\) 634.980i 0.951994i
\(668\) 0 0
\(669\) 441.516 826.000i 0.659963 1.23468i
\(670\) 0 0
\(671\) 1272.79i 1.89686i
\(672\) 0 0
\(673\) −310.000 −0.460624 −0.230312 0.973117i \(-0.573975\pi\)
−0.230312 + 0.973117i \(0.573975\pi\)
\(674\) 0 0
\(675\) 832.972 82.0183i 1.23403 0.121509i
\(676\) 0 0
\(677\) 1309.58 1.93439 0.967194 0.254041i \(-0.0817597\pi\)
0.967194 + 0.254041i \(0.0817597\pi\)
\(678\) 0 0
\(679\) −52.9150 −0.0779308
\(680\) 0 0
\(681\) 84.0000 157.150i 0.123348 0.230763i
\(682\) 0 0
\(683\) 1162.48 1.70203 0.851013 0.525145i \(-0.175989\pi\)
0.851013 + 0.525145i \(0.175989\pi\)
\(684\) 0 0
\(685\) 1680.00i 2.45255i
\(686\) 0 0
\(687\) 947.179 + 506.288i 1.37872 + 0.736956i
\(688\) 0 0
\(689\) 374.166i 0.543056i
\(690\) 0 0
\(691\) 26.4575i 0.0382887i 0.999817 + 0.0191444i \(0.00609421\pi\)
−0.999817 + 0.0191444i \(0.993906\pi\)
\(692\) 0 0
\(693\) −374.166 560.000i −0.539922 0.808081i
\(694\) 0 0
\(695\) 989.949i 1.42439i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −593.970 317.490i −0.849742 0.454206i
\(700\) 0 0
\(701\) 22.4499 0.0320256 0.0160128 0.999872i \(-0.494903\pi\)
0.0160128 + 0.999872i \(0.494903\pi\)
\(702\) 0 0
\(703\) −264.575 −0.376352
\(704\) 0 0
\(705\) 224.000 + 119.733i 0.317730 + 0.169834i
\(706\) 0 0
\(707\) −593.970 −0.840127
\(708\) 0 0
\(709\) 182.000i 0.256700i −0.991729 0.128350i \(-0.959032\pi\)
0.991729 0.128350i \(-0.0409680\pi\)
\(710\) 0 0
\(711\) −132.288 197.990i −0.186058 0.278467i
\(712\) 0 0
\(713\) 448.999i 0.629732i
\(714\) 0 0
\(715\) 1058.30i 1.48014i
\(716\) 0 0
\(717\) 448.999 + 240.000i 0.626219 + 0.334728i
\(718\) 0 0
\(719\) 395.980i 0.550737i −0.961339 0.275368i \(-0.911200\pi\)
0.961339 0.275368i \(-0.0887998\pi\)
\(720\) 0 0
\(721\) 252.000 0.349515
\(722\) 0 0
\(723\) 155.563 291.033i 0.215164 0.402535i
\(724\) 0 0
\(725\) −1159.91 −1.59988
\(726\) 0 0
\(727\) −47.6235 −0.0655069 −0.0327535 0.999463i \(-0.510428\pi\)
−0.0327535 + 0.999463i \(0.510428\pi\)
\(728\) 0 0
\(729\) 715.000 142.183i 0.980796 0.195038i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 650.000i 0.886767i −0.896332 0.443383i \(-0.853778\pi\)
0.896332 0.443383i \(-0.146222\pi\)
\(734\) 0 0
\(735\) −222.243 + 415.779i −0.302372 + 0.565685i
\(736\) 0 0
\(737\) 74.8331i 0.101538i
\(738\) 0 0
\(739\) 343.948i 0.465423i 0.972546 + 0.232712i \(0.0747598\pi\)
−0.972546 + 0.232712i \(0.925240\pi\)
\(740\) 0 0
\(741\) −374.166 + 700.000i −0.504947 + 0.944669i
\(742\) 0 0
\(743\) 661.852i 0.890783i −0.895336 0.445392i \(-0.853064\pi\)
0.895336 0.445392i \(-0.146936\pi\)
\(744\) 0 0
\(745\) −168.000 −0.225503
\(746\) 0 0
\(747\) 127.279 + 190.494i 0.170387 + 0.255012i
\(748\) 0 0
\(749\) 14.9666 0.0199821
\(750\) 0 0
\(751\) −608.523 −0.810283 −0.405142 0.914254i \(-0.632778\pi\)
−0.405142 + 0.914254i \(0.632778\pi\)
\(752\) 0 0
\(753\) 420.000 785.748i 0.557769 1.04349i
\(754\) 0 0
\(755\) −593.970 −0.786715
\(756\) 0 0
\(757\) 1050.00i 1.38705i 0.720431 + 0.693527i \(0.243944\pi\)
−0.720431 + 0.693527i \(0.756056\pi\)
\(758\) 0 0
\(759\) −634.980 339.411i −0.836601 0.447182i
\(760\) 0 0
\(761\) 673.498i 0.885018i −0.896764 0.442509i \(-0.854089\pi\)
0.896764 0.442509i \(-0.145911\pi\)
\(762\) 0 0
\(763\) 370.405i 0.485459i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 989.949i 1.29068i
\(768\) 0 0
\(769\) 1138.00 1.47984 0.739922 0.672693i \(-0.234862\pi\)
0.739922 + 0.672693i \(0.234862\pi\)
\(770\) 0 0
\(771\) −791.960 423.320i −1.02718 0.549053i
\(772\) 0 0
\(773\) −785.748 −1.01649 −0.508246 0.861212i \(-0.669706\pi\)
−0.508246 + 0.861212i \(0.669706\pi\)
\(774\) 0 0
\(775\) 820.183 1.05830
\(776\) 0 0
\(777\) 140.000 + 74.8331i 0.180180 + 0.0963104i
\(778\) 0 0
\(779\) −395.980 −0.508318
\(780\) 0 0
\(781\) 400.000i 0.512164i
\(782\) 0 0
\(783\) −1005.39 + 98.9949i −1.28402 + 0.126430i
\(784\) 0 0
\(785\) 1272.16i 1.62059i
\(786\) 0 0
\(787\) 904.847i 1.14974i −0.818244 0.574871i \(-0.805052\pi\)
0.818244 0.574871i \(-0.194948\pi\)
\(788\) 0 0
\(789\) −404.099 216.000i −0.512166 0.273764i
\(790\) 0 0
\(791\) 791.960i 1.00121i
\(792\) 0 0
\(793\) −900.000 −1.13493
\(794\) 0 0
\(795\) −395.980 + 740.810i −0.498088 + 0.931837i
\(796\) 0 0
\(797\) −1234.75 −1.54924 −0.774622 0.632425i \(-0.782060\pi\)
−0.774622 + 0.632425i \(0.782060\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 560.000 374.166i 0.699126 0.467123i
\(802\) 0 0
\(803\) −424.264 −0.528349
\(804\) 0 0
\(805\) 672.000i 0.834783i
\(806\) 0 0
\(807\) 603.231 1128.54i 0.747499 1.39844i
\(808\) 0 0
\(809\) 823.165i 1.01751i −0.860912 0.508754i \(-0.830106\pi\)
0.860912 0.508754i \(-0.169894\pi\)
\(810\) 0 0
\(811\) 26.4575i 0.0326233i −0.999867 0.0163117i \(-0.994808\pi\)
0.999867 0.0163117i \(-0.00519239\pi\)
\(812\) 0 0
\(813\) 561.249 1050.00i 0.690343 1.29151i
\(814\) 0 0
\(815\) 752.362i 0.923143i
\(816\) 0 0
\(817\) −1540.00 −1.88494
\(818\) 0 0
\(819\) 395.980 264.575i 0.483492 0.323047i
\(820\) 0 0
\(821\) −97.2831 −0.118493 −0.0592467 0.998243i \(-0.518870\pi\)
−0.0592467 + 0.998243i \(0.518870\pi\)
\(822\) 0 0
\(823\) −894.264 −1.08659 −0.543295 0.839542i \(-0.682824\pi\)
−0.543295 + 0.839542i \(0.682824\pi\)
\(824\) 0 0
\(825\) 620.000 1159.91i 0.751515 1.40596i
\(826\) 0 0
\(827\) −285.671 −0.345431 −0.172715 0.984972i \(-0.555254\pi\)
−0.172715 + 0.984972i \(0.555254\pi\)
\(828\) 0 0
\(829\) 170.000i 0.205066i −0.994730 0.102533i \(-0.967305\pi\)
0.994730 0.102533i \(-0.0326948\pi\)
\(830\) 0 0
\(831\) −1296.42 692.965i −1.56007 0.833892i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1820.28i 2.17997i
\(836\) 0 0
\(837\) 710.915 70.0000i 0.849361 0.0836320i
\(838\) 0 0
\(839\) 707.107i 0.842797i −0.906876 0.421399i \(-0.861539\pi\)
0.906876 0.421399i \(-0.138461\pi\)
\(840\) 0 0
\(841\) 559.000 0.664685
\(842\) 0 0
\(843\) −356.382 190.494i −0.422754 0.225972i
\(844\) 0 0
\(845\) −516.349 −0.611064
\(846\) 0 0
\(847\) −418.029 −0.493540
\(848\) 0 0
\(849\) 14.0000 + 7.48331i 0.0164900 + 0.00881427i
\(850\) 0 0
\(851\) 169.706 0.199419
\(852\) 0 0
\(853\) 570.000i 0.668230i 0.942532 + 0.334115i \(0.108437\pi\)
−0.942532 + 0.334115i \(0.891563\pi\)
\(854\) 0 0
\(855\) −1481.62 + 989.949i −1.73289 + 1.15784i
\(856\) 0 0
\(857\) 523.832i 0.611239i 0.952154 + 0.305620i \(0.0988636\pi\)
−0.952154 + 0.305620i \(0.901136\pi\)
\(858\) 0 0
\(859\) 1455.16i 1.69402i 0.531577 + 0.847010i \(0.321600\pi\)
−0.531577 + 0.847010i \(0.678400\pi\)
\(860\) 0 0
\(861\) 209.533 + 112.000i 0.243360 + 0.130081i
\(862\) 0 0
\(863\) 181.019i 0.209756i 0.994485 + 0.104878i \(0.0334452\pi\)
−0.994485 + 0.104878i \(0.966555\pi\)
\(864\) 0 0
\(865\) −840.000 −0.971098
\(866\) 0 0
\(867\) −408.708 + 764.622i −0.471405 + 0.881917i
\(868\) 0 0
\(869\) −374.166 −0.430570
\(870\) 0 0
\(871\) 52.9150 0.0607520
\(872\) 0 0
\(873\) −50.0000 74.8331i −0.0572738 0.0857195i
\(874\) 0 0
\(875\) 237.588 0.271529
\(876\) 0 0
\(877\) 490.000i 0.558723i −0.960186 0.279361i \(-0.909877\pi\)
0.960186 0.279361i \(-0.0901228\pi\)
\(878\) 0 0
\(879\) −158.745 + 296.985i −0.180597 + 0.337867i
\(880\) 0 0
\(881\) 987.798i 1.12122i −0.828079 0.560612i \(-0.810566\pi\)
0.828079 0.560612i \(-0.189434\pi\)
\(882\) 0 0
\(883\) 957.762i 1.08467i 0.840163 + 0.542334i \(0.182459\pi\)
−0.840163 + 0.542334i \(0.817541\pi\)
\(884\) 0 0
\(885\) 1047.66 1960.00i 1.18380 2.21469i
\(886\) 0 0
\(887\) 1374.62i 1.54974i −0.632123 0.774868i \(-0.717816\pi\)
0.632123 0.774868i \(-0.282184\pi\)
\(888\) 0 0
\(889\) −812.000 −0.913386
\(890\) 0 0
\(891\) 438.406 1058.30i 0.492038 1.18777i
\(892\) 0 0
\(893\) −299.333 −0.335199
\(894\) 0 0
\(895\) −1587.45 −1.77369
\(896\) 0 0
\(897\) 240.000 448.999i 0.267559 0.500556i
\(898\) 0 0
\(899\) −989.949 −1.10117
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 814.891 + 435.578i 0.902427 + 0.482367i
\(904\) 0 0
\(905\) 1960.63i 2.16644i
\(906\) 0 0
\(907\) 534.442i 0.589241i −0.955614 0.294621i \(-0.904807\pi\)
0.955614 0.294621i \(-0.0951933\pi\)
\(908\) 0 0
\(909\) −561.249 840.000i −0.617435 0.924092i
\(910\) 0 0
\(911\) 169.706i 0.186285i 0.995653 + 0.0931425i \(0.0296912\pi\)
−0.995653 + 0.0931425i \(0.970309\pi\)
\(912\) 0 0
\(913\) 360.000 0.394304
\(914\) 0 0
\(915\) −1781.91 952.470i −1.94744 1.04095i
\(916\) 0 0
\(917\) 374.166 0.408032
\(918\) 0 0
\(919\) −555.608 −0.604579 −0.302289 0.953216i \(-0.597751\pi\)
−0.302289 + 0.953216i \(0.597751\pi\)
\(920\) 0 0
\(921\) −126.000 67.3498i −0.136808 0.0731269i
\(922\) 0 0
\(923\) −282.843 −0.306438
\(924\) 0 0
\(925\) 310.000i 0.335135i
\(926\) 0 0
\(927\) 238.118 + 356.382i 0.256869 + 0.384446i
\(928\) 0 0
\(929\) 89.7998i 0.0966628i −0.998831 0.0483314i \(-0.984610\pi\)
0.998831 0.0483314i \(-0.0153904\pi\)
\(930\) 0 0
\(931\) 555.608i 0.596786i
\(932\) 0 0
\(933\) −673.498 360.000i −0.721863 0.385852i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1270.00 1.35539 0.677695 0.735343i \(-0.262979\pi\)
0.677695 + 0.735343i \(0.262979\pi\)
\(938\) 0 0
\(939\) −325.269 + 608.523i −0.346399 + 0.648054i
\(940\) 0 0
\(941\) −187.083 −0.198813 −0.0994064 0.995047i \(-0.531694\pi\)
−0.0994064 + 0.995047i \(0.531694\pi\)
\(942\) 0 0
\(943\) 253.992 0.269345
\(944\) 0 0
\(945\) 1064.00 104.766i 1.12593 0.110864i
\(946\) 0 0
\(947\) 280.014 0.295686 0.147843 0.989011i \(-0.452767\pi\)
0.147843 + 0.989011i \(0.452767\pi\)
\(948\) 0 0
\(949\) 300.000i 0.316122i
\(950\) 0 0
\(951\) −793.725 + 1484.92i −0.834622 + 1.56143i
\(952\) 0 0
\(953\) 224.499i 0.235571i 0.993039 + 0.117786i \(0.0375796\pi\)
−0.993039 + 0.117786i \(0.962420\pi\)
\(954\) 0 0
\(955\) 2539.92i 2.65960i
\(956\) 0 0
\(957\) −748.331 + 1400.00i −0.781956 + 1.46290i
\(958\) 0 0
\(959\) 1187.94i 1.23873i
\(960\) 0 0
\(961\) −261.000 −0.271592
\(962\) 0 0
\(963\) 14.1421 + 21.1660i 0.0146855 + 0.0219792i
\(964\) 0 0
\(965\) −1571.50 −1.62849
\(966\) 0 0
\(967\) 206.369 0.213411 0.106706 0.994291i \(-0.465970\pi\)
0.106706 + 0.994291i \(0.465970\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1711.20 −1.76231 −0.881153 0.472832i \(-0.843232\pi\)
−0.881153 + 0.472832i \(0.843232\pi\)
\(972\) 0 0
\(973\) 700.000i 0.719424i
\(974\) 0 0
\(975\) 820.183 + 438.406i 0.841213 + 0.449647i
\(976\) 0 0
\(977\) 598.665i 0.612759i −0.951910 0.306379i \(-0.900882\pi\)
0.951910 0.306379i \(-0.0991176\pi\)
\(978\) 0 0
\(979\) 1058.30i 1.08100i
\(980\) 0 0
\(981\) 523.832 350.000i 0.533978 0.356779i
\(982\) 0 0
\(983\) 1544.32i 1.57103i 0.618843 + 0.785514i \(0.287602\pi\)
−0.618843 + 0.785514i \(0.712398\pi\)
\(984\) 0 0
\(985\) 1400.00 1.42132
\(986\) 0 0
\(987\) 158.392 + 84.6640i 0.160478 + 0.0857792i
\(988\) 0 0
\(989\) 987.798 0.998784
\(990\) 0 0
\(991\) −608.523 −0.614049 −0.307025 0.951702i \(-0.599333\pi\)
−0.307025 + 0.951702i \(0.599333\pi\)
\(992\) 0 0
\(993\) 350.000 + 187.083i 0.352467 + 0.188402i
\(994\) 0 0
\(995\) 2573.87 2.58680
\(996\) 0 0
\(997\) 810.000i 0.812437i 0.913776 + 0.406219i \(0.133153\pi\)
−0.913776 + 0.406219i \(0.866847\pi\)
\(998\) 0 0
\(999\) 26.4575 + 268.701i 0.0264840 + 0.268970i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.3.h.e.641.3 8
3.2 odd 2 inner 768.3.h.e.641.8 8
4.3 odd 2 inner 768.3.h.e.641.5 8
8.3 odd 2 inner 768.3.h.e.641.4 8
8.5 even 2 inner 768.3.h.e.641.6 8
12.11 even 2 inner 768.3.h.e.641.2 8
16.3 odd 4 96.3.e.b.65.4 yes 4
16.5 even 4 192.3.e.f.65.4 4
16.11 odd 4 192.3.e.f.65.1 4
16.13 even 4 96.3.e.b.65.1 4
24.5 odd 2 inner 768.3.h.e.641.1 8
24.11 even 2 inner 768.3.h.e.641.7 8
48.5 odd 4 192.3.e.f.65.3 4
48.11 even 4 192.3.e.f.65.2 4
48.29 odd 4 96.3.e.b.65.2 yes 4
48.35 even 4 96.3.e.b.65.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.3.e.b.65.1 4 16.13 even 4
96.3.e.b.65.2 yes 4 48.29 odd 4
96.3.e.b.65.3 yes 4 48.35 even 4
96.3.e.b.65.4 yes 4 16.3 odd 4
192.3.e.f.65.1 4 16.11 odd 4
192.3.e.f.65.2 4 48.11 even 4
192.3.e.f.65.3 4 48.5 odd 4
192.3.e.f.65.4 4 16.5 even 4
768.3.h.e.641.1 8 24.5 odd 2 inner
768.3.h.e.641.2 8 12.11 even 2 inner
768.3.h.e.641.3 8 1.1 even 1 trivial
768.3.h.e.641.4 8 8.3 odd 2 inner
768.3.h.e.641.5 8 4.3 odd 2 inner
768.3.h.e.641.6 8 8.5 even 2 inner
768.3.h.e.641.7 8 24.11 even 2 inner
768.3.h.e.641.8 8 3.2 odd 2 inner