Properties

Label 768.3.h.d
Level $768$
Weight $3$
Character orbit 768.h
Analytic conductor $20.926$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,3,Mod(641,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.641"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 768.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,24,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.9264843029\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + ( - 2 \beta_{2} - \beta_1) q^{5} + 6 q^{7} + ( - \beta_{3} + 7) q^{9} + ( - 2 \beta_{2} - \beta_1) q^{11} + 5 \beta_1 q^{13} + ( - \beta_{3} + 16) q^{15} + 4 \beta_{3} q^{17} + \beta_1 q^{19}+ \cdots + ( - 14 \beta_{2} + 9 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 24 q^{7} + 28 q^{9} + 64 q^{15} + 28 q^{25} - 88 q^{31} + 64 q^{33} - 40 q^{39} - 52 q^{49} + 128 q^{55} - 8 q^{57} + 168 q^{63} - 328 q^{73} + 40 q^{79} + 68 q^{81} - 192 q^{87} - 376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 2\zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -2\zeta_{8}^{3} - \zeta_{8}^{2} + 2\zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\zeta_{8}^{3} + 4\zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + 2\beta_{2} + \beta_1 ) / 8 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( \beta_{3} - 2\beta_{2} - \beta_1 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
641.1
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i
0 −2.82843 1.00000i 0 −5.65685 0 6.00000 0 7.00000 + 5.65685i 0
641.2 0 −2.82843 + 1.00000i 0 −5.65685 0 6.00000 0 7.00000 5.65685i 0
641.3 0 2.82843 1.00000i 0 5.65685 0 6.00000 0 7.00000 5.65685i 0
641.4 0 2.82843 + 1.00000i 0 5.65685 0 6.00000 0 7.00000 + 5.65685i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.b even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.3.h.d 4
3.b odd 2 1 inner 768.3.h.d 4
4.b odd 2 1 768.3.h.c 4
8.b even 2 1 inner 768.3.h.d 4
8.d odd 2 1 768.3.h.c 4
12.b even 2 1 768.3.h.c 4
16.e even 4 1 24.3.e.a 2
16.e even 4 1 192.3.e.c 2
16.f odd 4 1 48.3.e.b 2
16.f odd 4 1 192.3.e.d 2
24.f even 2 1 768.3.h.c 4
24.h odd 2 1 inner 768.3.h.d 4
48.i odd 4 1 24.3.e.a 2
48.i odd 4 1 192.3.e.c 2
48.k even 4 1 48.3.e.b 2
48.k even 4 1 192.3.e.d 2
80.i odd 4 1 600.3.c.a 4
80.j even 4 1 1200.3.c.i 4
80.k odd 4 1 1200.3.l.n 2
80.q even 4 1 600.3.l.b 2
80.s even 4 1 1200.3.c.i 4
80.t odd 4 1 600.3.c.a 4
112.l odd 4 1 1176.3.d.a 2
144.u even 12 2 1296.3.q.e 4
144.v odd 12 2 1296.3.q.e 4
144.w odd 12 2 648.3.m.d 4
144.x even 12 2 648.3.m.d 4
240.t even 4 1 1200.3.l.n 2
240.z odd 4 1 1200.3.c.i 4
240.bb even 4 1 600.3.c.a 4
240.bd odd 4 1 1200.3.c.i 4
240.bf even 4 1 600.3.c.a 4
240.bm odd 4 1 600.3.l.b 2
336.y even 4 1 1176.3.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.3.e.a 2 16.e even 4 1
24.3.e.a 2 48.i odd 4 1
48.3.e.b 2 16.f odd 4 1
48.3.e.b 2 48.k even 4 1
192.3.e.c 2 16.e even 4 1
192.3.e.c 2 48.i odd 4 1
192.3.e.d 2 16.f odd 4 1
192.3.e.d 2 48.k even 4 1
600.3.c.a 4 80.i odd 4 1
600.3.c.a 4 80.t odd 4 1
600.3.c.a 4 240.bb even 4 1
600.3.c.a 4 240.bf even 4 1
600.3.l.b 2 80.q even 4 1
600.3.l.b 2 240.bm odd 4 1
648.3.m.d 4 144.w odd 12 2
648.3.m.d 4 144.x even 12 2
768.3.h.c 4 4.b odd 2 1
768.3.h.c 4 8.d odd 2 1
768.3.h.c 4 12.b even 2 1
768.3.h.c 4 24.f even 2 1
768.3.h.d 4 1.a even 1 1 trivial
768.3.h.d 4 3.b odd 2 1 inner
768.3.h.d 4 8.b even 2 1 inner
768.3.h.d 4 24.h odd 2 1 inner
1176.3.d.a 2 112.l odd 4 1
1176.3.d.a 2 336.y even 4 1
1200.3.c.i 4 80.j even 4 1
1200.3.c.i 4 80.s even 4 1
1200.3.c.i 4 240.z odd 4 1
1200.3.c.i 4 240.bd odd 4 1
1200.3.l.n 2 80.k odd 4 1
1200.3.l.n 2 240.t even 4 1
1296.3.q.e 4 144.u even 12 2
1296.3.q.e 4 144.v odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(768, [\chi])\):

\( T_{5}^{2} - 32 \) Copy content Toggle raw display
\( T_{7} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 14T^{2} + 81 \) Copy content Toggle raw display
$5$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$7$ \( (T - 6)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 512)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 128)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 288)^{2} \) Copy content Toggle raw display
$31$ \( (T + 22)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 1152)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 6724)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 4608)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 3872)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 5408)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 7396)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 15488)^{2} \) Copy content Toggle raw display
$73$ \( (T + 82)^{4} \) Copy content Toggle raw display
$79$ \( (T - 10)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 5408)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 1152)^{2} \) Copy content Toggle raw display
$97$ \( (T + 94)^{4} \) Copy content Toggle raw display
show more
show less