Properties

Label 768.2.s.a.719.12
Level $768$
Weight $2$
Character 768.719
Analytic conductor $6.133$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,2,Mod(47,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.s (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 719.12
Character \(\chi\) \(=\) 768.719
Dual form 768.2.s.a.47.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.585574 + 1.63006i) q^{3} +(-3.57797 + 2.39072i) q^{5} +(0.994439 - 2.40079i) q^{7} +(-2.31421 - 1.90904i) q^{9} +(0.714367 - 3.59136i) q^{11} +(-1.38986 + 2.08008i) q^{13} +(-1.80186 - 7.23226i) q^{15} +(-0.951204 - 0.951204i) q^{17} +(0.214739 - 0.321380i) q^{19} +(3.33112 + 3.02684i) q^{21} +(1.14288 + 2.75916i) q^{23} +(5.17290 - 12.4885i) q^{25} +(4.46700 - 2.65442i) q^{27} +(-2.53398 + 0.504039i) q^{29} -2.03735 q^{31} +(5.43583 + 3.26747i) q^{33} +(2.18155 + 10.9674i) q^{35} +(4.28668 - 2.86427i) q^{37} +(-2.57679 - 3.48361i) q^{39} +(4.29457 - 1.77887i) q^{41} +(1.88124 - 9.45763i) q^{43} +(12.8442 + 1.29787i) q^{45} +(5.57116 - 5.57116i) q^{47} +(0.174869 + 0.174869i) q^{49} +(2.10752 - 0.993522i) q^{51} +(1.47041 + 0.292483i) q^{53} +(6.02998 + 14.5576i) q^{55} +(0.398124 + 0.538230i) q^{57} +(-3.66506 - 5.48515i) q^{59} +(-4.09381 + 0.814309i) q^{61} +(-6.88455 + 3.65750i) q^{63} -10.7652i q^{65} +(-1.50936 - 7.58806i) q^{67} +(-5.16684 + 0.247277i) q^{69} +(-6.27514 - 2.59925i) q^{71} +(-15.4732 + 6.40920i) q^{73} +(17.3279 + 15.7451i) q^{75} +(-7.91171 - 5.28644i) q^{77} +(-2.31400 + 2.31400i) q^{79} +(1.71111 + 8.83584i) q^{81} +(1.62719 + 1.08726i) q^{83} +(5.67744 + 1.12931i) q^{85} +(0.662214 - 4.42569i) q^{87} +(4.04231 + 1.67438i) q^{89} +(3.61170 + 5.40528i) q^{91} +(1.19302 - 3.32101i) q^{93} +1.66327i q^{95} +1.86899i q^{97} +(-8.50926 + 6.94740i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 8 q^{3} + 16 q^{7} - 8 q^{9} - 16 q^{13} + 8 q^{15} + 16 q^{19} - 8 q^{21} - 16 q^{25} + 8 q^{27} + 32 q^{31} - 16 q^{37} + 8 q^{39} + 16 q^{43} - 8 q^{45} - 16 q^{49} + 8 q^{51} + 80 q^{55} - 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.585574 + 1.63006i −0.338081 + 0.941117i
\(4\) 0 0
\(5\) −3.57797 + 2.39072i −1.60012 + 1.06916i −0.648796 + 0.760963i \(0.724727\pi\)
−0.951321 + 0.308201i \(0.900273\pi\)
\(6\) 0 0
\(7\) 0.994439 2.40079i 0.375863 0.907413i −0.616869 0.787066i \(-0.711599\pi\)
0.992732 0.120347i \(-0.0384008\pi\)
\(8\) 0 0
\(9\) −2.31421 1.90904i −0.771402 0.636348i
\(10\) 0 0
\(11\) 0.714367 3.59136i 0.215390 1.08284i −0.710111 0.704090i \(-0.751355\pi\)
0.925500 0.378747i \(-0.123645\pi\)
\(12\) 0 0
\(13\) −1.38986 + 2.08008i −0.385479 + 0.576910i −0.972570 0.232611i \(-0.925273\pi\)
0.587091 + 0.809521i \(0.300273\pi\)
\(14\) 0 0
\(15\) −1.80186 7.23226i −0.465239 1.86736i
\(16\) 0 0
\(17\) −0.951204 0.951204i −0.230701 0.230701i 0.582284 0.812985i \(-0.302159\pi\)
−0.812985 + 0.582284i \(0.802159\pi\)
\(18\) 0 0
\(19\) 0.214739 0.321380i 0.0492646 0.0737297i −0.806020 0.591889i \(-0.798382\pi\)
0.855284 + 0.518159i \(0.173382\pi\)
\(20\) 0 0
\(21\) 3.33112 + 3.02684i 0.726910 + 0.660510i
\(22\) 0 0
\(23\) 1.14288 + 2.75916i 0.238307 + 0.575324i 0.997108 0.0759988i \(-0.0242145\pi\)
−0.758801 + 0.651322i \(0.774215\pi\)
\(24\) 0 0
\(25\) 5.17290 12.4885i 1.03458 2.49769i
\(26\) 0 0
\(27\) 4.46700 2.65442i 0.859674 0.510843i
\(28\) 0 0
\(29\) −2.53398 + 0.504039i −0.470548 + 0.0935978i −0.424668 0.905349i \(-0.639609\pi\)
−0.0458799 + 0.998947i \(0.514609\pi\)
\(30\) 0 0
\(31\) −2.03735 −0.365919 −0.182959 0.983120i \(-0.558568\pi\)
−0.182959 + 0.983120i \(0.558568\pi\)
\(32\) 0 0
\(33\) 5.43583 + 3.26747i 0.946257 + 0.568794i
\(34\) 0 0
\(35\) 2.18155 + 10.9674i 0.368749 + 1.85383i
\(36\) 0 0
\(37\) 4.28668 2.86427i 0.704726 0.470883i −0.150852 0.988556i \(-0.548202\pi\)
0.855578 + 0.517674i \(0.173202\pi\)
\(38\) 0 0
\(39\) −2.57679 3.48361i −0.412617 0.557823i
\(40\) 0 0
\(41\) 4.29457 1.77887i 0.670699 0.277813i −0.0212338 0.999775i \(-0.506759\pi\)
0.691933 + 0.721962i \(0.256759\pi\)
\(42\) 0 0
\(43\) 1.88124 9.45763i 0.286886 1.44228i −0.521312 0.853366i \(-0.674557\pi\)
0.808199 0.588910i \(-0.200443\pi\)
\(44\) 0 0
\(45\) 12.8442 + 1.29787i 1.91469 + 0.193475i
\(46\) 0 0
\(47\) 5.57116 5.57116i 0.812637 0.812637i −0.172392 0.985028i \(-0.555150\pi\)
0.985028 + 0.172392i \(0.0551495\pi\)
\(48\) 0 0
\(49\) 0.174869 + 0.174869i 0.0249813 + 0.0249813i
\(50\) 0 0
\(51\) 2.10752 0.993522i 0.295112 0.139121i
\(52\) 0 0
\(53\) 1.47041 + 0.292483i 0.201977 + 0.0401757i 0.295042 0.955484i \(-0.404666\pi\)
−0.0930650 + 0.995660i \(0.529666\pi\)
\(54\) 0 0
\(55\) 6.02998 + 14.5576i 0.813082 + 1.96295i
\(56\) 0 0
\(57\) 0.398124 + 0.538230i 0.0527328 + 0.0712903i
\(58\) 0 0
\(59\) −3.66506 5.48515i −0.477150 0.714105i 0.512328 0.858790i \(-0.328783\pi\)
−0.989478 + 0.144685i \(0.953783\pi\)
\(60\) 0 0
\(61\) −4.09381 + 0.814309i −0.524158 + 0.104262i −0.450075 0.892991i \(-0.648603\pi\)
−0.0740827 + 0.997252i \(0.523603\pi\)
\(62\) 0 0
\(63\) −6.88455 + 3.65750i −0.867372 + 0.460801i
\(64\) 0 0
\(65\) 10.7652i 1.33526i
\(66\) 0 0
\(67\) −1.50936 7.58806i −0.184398 0.927029i −0.956545 0.291585i \(-0.905817\pi\)
0.772147 0.635444i \(-0.219183\pi\)
\(68\) 0 0
\(69\) −5.16684 + 0.247277i −0.622014 + 0.0297686i
\(70\) 0 0
\(71\) −6.27514 2.59925i −0.744722 0.308474i −0.0221361 0.999755i \(-0.507047\pi\)
−0.722586 + 0.691281i \(0.757047\pi\)
\(72\) 0 0
\(73\) −15.4732 + 6.40920i −1.81100 + 0.750140i −0.829543 + 0.558443i \(0.811399\pi\)
−0.981454 + 0.191697i \(0.938601\pi\)
\(74\) 0 0
\(75\) 17.3279 + 15.7451i 2.00085 + 1.81808i
\(76\) 0 0
\(77\) −7.91171 5.28644i −0.901623 0.602446i
\(78\) 0 0
\(79\) −2.31400 + 2.31400i −0.260345 + 0.260345i −0.825194 0.564849i \(-0.808934\pi\)
0.564849 + 0.825194i \(0.308934\pi\)
\(80\) 0 0
\(81\) 1.71111 + 8.83584i 0.190123 + 0.981760i
\(82\) 0 0
\(83\) 1.62719 + 1.08726i 0.178608 + 0.119342i 0.641660 0.766989i \(-0.278246\pi\)
−0.463053 + 0.886331i \(0.653246\pi\)
\(84\) 0 0
\(85\) 5.67744 + 1.12931i 0.615805 + 0.122491i
\(86\) 0 0
\(87\) 0.662214 4.42569i 0.0709968 0.474484i
\(88\) 0 0
\(89\) 4.04231 + 1.67438i 0.428484 + 0.177484i 0.586494 0.809954i \(-0.300508\pi\)
−0.158010 + 0.987438i \(0.550508\pi\)
\(90\) 0 0
\(91\) 3.61170 + 5.40528i 0.378609 + 0.566628i
\(92\) 0 0
\(93\) 1.19302 3.32101i 0.123710 0.344372i
\(94\) 0 0
\(95\) 1.66327i 0.170648i
\(96\) 0 0
\(97\) 1.86899i 0.189767i 0.995488 + 0.0948834i \(0.0302478\pi\)
−0.995488 + 0.0948834i \(0.969752\pi\)
\(98\) 0 0
\(99\) −8.50926 + 6.94740i −0.855213 + 0.698240i
\(100\) 0 0
\(101\) −7.63182 11.4218i −0.759395 1.13651i −0.986678 0.162686i \(-0.947984\pi\)
0.227283 0.973829i \(-0.427016\pi\)
\(102\) 0 0
\(103\) −13.4251 5.56087i −1.32282 0.547929i −0.394220 0.919016i \(-0.628985\pi\)
−0.928598 + 0.371087i \(0.878985\pi\)
\(104\) 0 0
\(105\) −19.1550 2.86615i −1.86933 0.279708i
\(106\) 0 0
\(107\) −2.15026 0.427713i −0.207874 0.0413486i 0.0900550 0.995937i \(-0.471296\pi\)
−0.297929 + 0.954588i \(0.596296\pi\)
\(108\) 0 0
\(109\) −14.2766 9.53929i −1.36745 0.913698i −0.367579 0.929992i \(-0.619813\pi\)
−0.999867 + 0.0162943i \(0.994813\pi\)
\(110\) 0 0
\(111\) 2.15877 + 8.66479i 0.204901 + 0.822426i
\(112\) 0 0
\(113\) 8.95069 8.95069i 0.842010 0.842010i −0.147110 0.989120i \(-0.546997\pi\)
0.989120 + 0.147110i \(0.0469971\pi\)
\(114\) 0 0
\(115\) −10.6856 7.13987i −0.996434 0.665796i
\(116\) 0 0
\(117\) 7.18740 2.16042i 0.664475 0.199731i
\(118\) 0 0
\(119\) −3.22955 + 1.33773i −0.296053 + 0.122629i
\(120\) 0 0
\(121\) −2.22490 0.921585i −0.202264 0.0837805i
\(122\) 0 0
\(123\) 0.384881 + 8.04207i 0.0347036 + 0.725129i
\(124\) 0 0
\(125\) 7.15047 + 35.9478i 0.639557 + 3.21527i
\(126\) 0 0
\(127\) 17.0863i 1.51617i −0.652158 0.758083i \(-0.726136\pi\)
0.652158 0.758083i \(-0.273864\pi\)
\(128\) 0 0
\(129\) 14.3149 + 8.60468i 1.26036 + 0.757600i
\(130\) 0 0
\(131\) 1.56358 0.311016i 0.136611 0.0271736i −0.126311 0.991991i \(-0.540314\pi\)
0.262922 + 0.964817i \(0.415314\pi\)
\(132\) 0 0
\(133\) −0.558021 0.835137i −0.0483865 0.0724155i
\(134\) 0 0
\(135\) −9.63681 + 20.1768i −0.829404 + 1.73654i
\(136\) 0 0
\(137\) −5.56434 13.4335i −0.475393 1.14770i −0.961747 0.273939i \(-0.911673\pi\)
0.486354 0.873762i \(-0.338327\pi\)
\(138\) 0 0
\(139\) 4.94256 + 0.983137i 0.419223 + 0.0833886i 0.400194 0.916430i \(-0.368943\pi\)
0.0190285 + 0.999819i \(0.493943\pi\)
\(140\) 0 0
\(141\) 5.81901 + 12.3437i 0.490049 + 1.03952i
\(142\) 0 0
\(143\) 6.47745 + 6.47745i 0.541672 + 0.541672i
\(144\) 0 0
\(145\) 7.86148 7.86148i 0.652860 0.652860i
\(146\) 0 0
\(147\) −0.387446 + 0.182649i −0.0319560 + 0.0150646i
\(148\) 0 0
\(149\) −0.473681 + 2.38135i −0.0388054 + 0.195088i −0.995325 0.0965790i \(-0.969210\pi\)
0.956520 + 0.291667i \(0.0942100\pi\)
\(150\) 0 0
\(151\) 1.17767 0.487807i 0.0958374 0.0396972i −0.334250 0.942485i \(-0.608483\pi\)
0.430087 + 0.902787i \(0.358483\pi\)
\(152\) 0 0
\(153\) 0.385394 + 4.01717i 0.0311572 + 0.324769i
\(154\) 0 0
\(155\) 7.28958 4.87074i 0.585513 0.391227i
\(156\) 0 0
\(157\) 2.08481 + 10.4811i 0.166386 + 0.836479i 0.970332 + 0.241777i \(0.0777302\pi\)
−0.803946 + 0.594703i \(0.797270\pi\)
\(158\) 0 0
\(159\) −1.33780 + 2.22559i −0.106094 + 0.176501i
\(160\) 0 0
\(161\) 7.76067 0.611627
\(162\) 0 0
\(163\) 7.80064 1.55164i 0.610993 0.121534i 0.120112 0.992760i \(-0.461675\pi\)
0.490882 + 0.871226i \(0.336675\pi\)
\(164\) 0 0
\(165\) −27.2609 + 1.30466i −2.12226 + 0.101568i
\(166\) 0 0
\(167\) 6.86336 16.5696i 0.531103 1.28220i −0.399691 0.916650i \(-0.630882\pi\)
0.930793 0.365545i \(-0.119118\pi\)
\(168\) 0 0
\(169\) 2.57988 + 6.22838i 0.198452 + 0.479106i
\(170\) 0 0
\(171\) −1.11048 + 0.333794i −0.0849205 + 0.0255258i
\(172\) 0 0
\(173\) −7.24199 + 10.8384i −0.550598 + 0.824029i −0.997508 0.0705503i \(-0.977524\pi\)
0.446910 + 0.894579i \(0.352524\pi\)
\(174\) 0 0
\(175\) −24.8381 24.8381i −1.87758 1.87758i
\(176\) 0 0
\(177\) 11.0873 2.76232i 0.833372 0.207628i
\(178\) 0 0
\(179\) −3.45085 + 5.16456i −0.257929 + 0.386018i −0.937722 0.347386i \(-0.887069\pi\)
0.679794 + 0.733404i \(0.262069\pi\)
\(180\) 0 0
\(181\) 2.65101 13.3275i 0.197048 0.990627i −0.748001 0.663698i \(-0.768986\pi\)
0.945049 0.326929i \(-0.106014\pi\)
\(182\) 0 0
\(183\) 1.06985 7.15000i 0.0790856 0.528543i
\(184\) 0 0
\(185\) −8.48994 + 20.4965i −0.624193 + 1.50693i
\(186\) 0 0
\(187\) −4.09563 + 2.73661i −0.299502 + 0.200121i
\(188\) 0 0
\(189\) −1.93054 13.3640i −0.140426 0.972086i
\(190\) 0 0
\(191\) −13.5497 −0.980420 −0.490210 0.871604i \(-0.663080\pi\)
−0.490210 + 0.871604i \(0.663080\pi\)
\(192\) 0 0
\(193\) −20.6394 −1.48566 −0.742830 0.669480i \(-0.766517\pi\)
−0.742830 + 0.669480i \(0.766517\pi\)
\(194\) 0 0
\(195\) 17.5480 + 6.30384i 1.25664 + 0.451427i
\(196\) 0 0
\(197\) 2.97611 1.98857i 0.212039 0.141680i −0.445016 0.895523i \(-0.646802\pi\)
0.657055 + 0.753843i \(0.271802\pi\)
\(198\) 0 0
\(199\) −5.60732 + 13.5373i −0.397492 + 0.959631i 0.590767 + 0.806842i \(0.298825\pi\)
−0.988259 + 0.152788i \(0.951175\pi\)
\(200\) 0 0
\(201\) 13.2529 + 1.98302i 0.934784 + 0.139871i
\(202\) 0 0
\(203\) −1.30979 + 6.58478i −0.0919295 + 0.462161i
\(204\) 0 0
\(205\) −11.1131 + 16.6319i −0.776169 + 1.16162i
\(206\) 0 0
\(207\) 2.62249 8.56706i 0.182275 0.595452i
\(208\) 0 0
\(209\) −1.00079 1.00079i −0.0692261 0.0692261i
\(210\) 0 0
\(211\) −10.2740 + 15.3761i −0.707289 + 1.05853i 0.287619 + 0.957745i \(0.407136\pi\)
−0.994908 + 0.100788i \(0.967864\pi\)
\(212\) 0 0
\(213\) 7.91149 8.70682i 0.542087 0.596581i
\(214\) 0 0
\(215\) 15.8796 + 38.3367i 1.08298 + 2.61454i
\(216\) 0 0
\(217\) −2.02602 + 4.89125i −0.137535 + 0.332040i
\(218\) 0 0
\(219\) −1.38671 28.9753i −0.0937053 1.95797i
\(220\) 0 0
\(221\) 3.30062 0.656535i 0.222024 0.0441633i
\(222\) 0 0
\(223\) 19.2274 1.28756 0.643782 0.765209i \(-0.277364\pi\)
0.643782 + 0.765209i \(0.277364\pi\)
\(224\) 0 0
\(225\) −35.8122 + 19.0256i −2.38748 + 1.26838i
\(226\) 0 0
\(227\) −1.97234 9.91561i −0.130909 0.658122i −0.989391 0.145279i \(-0.953592\pi\)
0.858482 0.512844i \(-0.171408\pi\)
\(228\) 0 0
\(229\) 14.4937 9.68436i 0.957768 0.639960i 0.0247136 0.999695i \(-0.492133\pi\)
0.933055 + 0.359734i \(0.117133\pi\)
\(230\) 0 0
\(231\) 13.2501 9.80099i 0.871794 0.644858i
\(232\) 0 0
\(233\) 7.39105 3.06147i 0.484203 0.200564i −0.127209 0.991876i \(-0.540602\pi\)
0.611412 + 0.791312i \(0.290602\pi\)
\(234\) 0 0
\(235\) −6.61434 + 33.2525i −0.431472 + 2.16916i
\(236\) 0 0
\(237\) −2.41694 5.12698i −0.156997 0.333033i
\(238\) 0 0
\(239\) −8.30613 + 8.30613i −0.537279 + 0.537279i −0.922729 0.385450i \(-0.874046\pi\)
0.385450 + 0.922729i \(0.374046\pi\)
\(240\) 0 0
\(241\) 3.01268 + 3.01268i 0.194063 + 0.194063i 0.797449 0.603386i \(-0.206182\pi\)
−0.603386 + 0.797449i \(0.706182\pi\)
\(242\) 0 0
\(243\) −15.4050 2.38482i −0.988228 0.152986i
\(244\) 0 0
\(245\) −1.04374 0.207613i −0.0666821 0.0132639i
\(246\) 0 0
\(247\) 0.370038 + 0.893350i 0.0235449 + 0.0568425i
\(248\) 0 0
\(249\) −2.72514 + 2.01576i −0.172698 + 0.127743i
\(250\) 0 0
\(251\) −7.23109 10.8221i −0.456422 0.683085i 0.529872 0.848077i \(-0.322240\pi\)
−0.986295 + 0.164993i \(0.947240\pi\)
\(252\) 0 0
\(253\) 10.7256 2.13345i 0.674311 0.134129i
\(254\) 0 0
\(255\) −5.16541 + 8.59329i −0.323471 + 0.538133i
\(256\) 0 0
\(257\) 27.8550i 1.73755i 0.495210 + 0.868773i \(0.335091\pi\)
−0.495210 + 0.868773i \(0.664909\pi\)
\(258\) 0 0
\(259\) −2.61366 13.1398i −0.162405 0.816464i
\(260\) 0 0
\(261\) 6.82638 + 3.67102i 0.422542 + 0.227230i
\(262\) 0 0
\(263\) 10.8728 + 4.50368i 0.670448 + 0.277709i 0.691828 0.722063i \(-0.256806\pi\)
−0.0213794 + 0.999771i \(0.506806\pi\)
\(264\) 0 0
\(265\) −5.96034 + 2.46885i −0.366141 + 0.151660i
\(266\) 0 0
\(267\) −5.09641 + 5.60874i −0.311895 + 0.343249i
\(268\) 0 0
\(269\) 3.40585 + 2.27572i 0.207658 + 0.138753i 0.655051 0.755585i \(-0.272647\pi\)
−0.447392 + 0.894338i \(0.647647\pi\)
\(270\) 0 0
\(271\) 1.68641 1.68641i 0.102442 0.102442i −0.654028 0.756470i \(-0.726922\pi\)
0.756470 + 0.654028i \(0.226922\pi\)
\(272\) 0 0
\(273\) −10.9259 + 2.72210i −0.661263 + 0.164749i
\(274\) 0 0
\(275\) −41.1553 27.4991i −2.48176 1.65826i
\(276\) 0 0
\(277\) 3.18127 + 0.632795i 0.191144 + 0.0380210i 0.289734 0.957107i \(-0.406433\pi\)
−0.0985898 + 0.995128i \(0.531433\pi\)
\(278\) 0 0
\(279\) 4.71485 + 3.88939i 0.282271 + 0.232852i
\(280\) 0 0
\(281\) 22.6232 + 9.37084i 1.34959 + 0.559018i 0.936178 0.351527i \(-0.114338\pi\)
0.413410 + 0.910545i \(0.364338\pi\)
\(282\) 0 0
\(283\) −1.43456 2.14698i −0.0852760 0.127625i 0.786379 0.617744i \(-0.211953\pi\)
−0.871655 + 0.490119i \(0.836953\pi\)
\(284\) 0 0
\(285\) −2.71123 0.973967i −0.160600 0.0576928i
\(286\) 0 0
\(287\) 12.0793i 0.713020i
\(288\) 0 0
\(289\) 15.1904i 0.893554i
\(290\) 0 0
\(291\) −3.04656 1.09443i −0.178593 0.0641565i
\(292\) 0 0
\(293\) 9.50218 + 14.2210i 0.555123 + 0.830800i 0.997828 0.0658668i \(-0.0209812\pi\)
−0.442705 + 0.896667i \(0.645981\pi\)
\(294\) 0 0
\(295\) 26.2269 + 10.8636i 1.52699 + 0.632500i
\(296\) 0 0
\(297\) −6.34190 17.9388i −0.367995 1.04092i
\(298\) 0 0
\(299\) −7.32771 1.45757i −0.423772 0.0842936i
\(300\) 0 0
\(301\) −20.8350 13.9215i −1.20091 0.802422i
\(302\) 0 0
\(303\) 23.0873 5.75203i 1.32633 0.330445i
\(304\) 0 0
\(305\) 12.7007 12.7007i 0.727242 0.727242i
\(306\) 0 0
\(307\) 6.85681 + 4.58157i 0.391339 + 0.261484i 0.735637 0.677376i \(-0.236883\pi\)
−0.344298 + 0.938860i \(0.611883\pi\)
\(308\) 0 0
\(309\) 16.9260 18.6275i 0.962885 1.05968i
\(310\) 0 0
\(311\) 30.1840 12.5026i 1.71157 0.708958i 0.711595 0.702590i \(-0.247973\pi\)
0.999980 0.00636791i \(-0.00202698\pi\)
\(312\) 0 0
\(313\) −6.61643 2.74061i −0.373982 0.154909i 0.187772 0.982213i \(-0.439873\pi\)
−0.561754 + 0.827304i \(0.689873\pi\)
\(314\) 0 0
\(315\) 15.8886 29.5455i 0.895224 1.66470i
\(316\) 0 0
\(317\) −3.68607 18.5311i −0.207031 1.04081i −0.934850 0.355044i \(-0.884466\pi\)
0.727819 0.685769i \(-0.240534\pi\)
\(318\) 0 0
\(319\) 9.46050i 0.529687i
\(320\) 0 0
\(321\) 1.95634 3.25460i 0.109192 0.181654i
\(322\) 0 0
\(323\) −0.509959 + 0.101437i −0.0283749 + 0.00564411i
\(324\) 0 0
\(325\) 18.7874 + 28.1173i 1.04214 + 1.55967i
\(326\) 0 0
\(327\) 23.9096 17.6857i 1.32220 0.978023i
\(328\) 0 0
\(329\) −7.83499 18.9153i −0.431957 1.04284i
\(330\) 0 0
\(331\) −19.6169 3.90204i −1.07824 0.214476i −0.376147 0.926560i \(-0.622751\pi\)
−0.702094 + 0.712084i \(0.747751\pi\)
\(332\) 0 0
\(333\) −15.3883 1.55495i −0.843272 0.0852105i
\(334\) 0 0
\(335\) 23.5414 + 23.5414i 1.28620 + 1.28620i
\(336\) 0 0
\(337\) 3.84192 3.84192i 0.209283 0.209283i −0.594680 0.803963i \(-0.702721\pi\)
0.803963 + 0.594680i \(0.202721\pi\)
\(338\) 0 0
\(339\) 9.34890 + 19.8315i 0.507762 + 1.07710i
\(340\) 0 0
\(341\) −1.45542 + 7.31687i −0.0788152 + 0.396231i
\(342\) 0 0
\(343\) 17.3992 7.20700i 0.939471 0.389142i
\(344\) 0 0
\(345\) 17.8956 13.2372i 0.963467 0.712668i
\(346\) 0 0
\(347\) −14.6437 + 9.78460i −0.786114 + 0.525265i −0.882631 0.470067i \(-0.844230\pi\)
0.0965168 + 0.995331i \(0.469230\pi\)
\(348\) 0 0
\(349\) −0.173660 0.873047i −0.00929580 0.0467332i 0.975859 0.218402i \(-0.0700842\pi\)
−0.985155 + 0.171668i \(0.945084\pi\)
\(350\) 0 0
\(351\) −0.687124 + 12.9810i −0.0366760 + 0.692874i
\(352\) 0 0
\(353\) −33.0774 −1.76053 −0.880266 0.474481i \(-0.842636\pi\)
−0.880266 + 0.474481i \(0.842636\pi\)
\(354\) 0 0
\(355\) 28.6663 5.70209i 1.52145 0.302636i
\(356\) 0 0
\(357\) −0.289434 6.04771i −0.0153185 0.320079i
\(358\) 0 0
\(359\) −4.91221 + 11.8591i −0.259257 + 0.625901i −0.998890 0.0471093i \(-0.984999\pi\)
0.739633 + 0.673010i \(0.234999\pi\)
\(360\) 0 0
\(361\) 7.21381 + 17.4157i 0.379674 + 0.916615i
\(362\) 0 0
\(363\) 2.80509 3.08708i 0.147229 0.162030i
\(364\) 0 0
\(365\) 40.0399 59.9240i 2.09579 3.13656i
\(366\) 0 0
\(367\) −0.647822 0.647822i −0.0338161 0.0338161i 0.689997 0.723813i \(-0.257612\pi\)
−0.723813 + 0.689997i \(0.757612\pi\)
\(368\) 0 0
\(369\) −13.3345 4.08185i −0.694164 0.212492i
\(370\) 0 0
\(371\) 2.16443 3.23929i 0.112371 0.168176i
\(372\) 0 0
\(373\) 3.01645 15.1647i 0.156186 0.785200i −0.820687 0.571378i \(-0.806409\pi\)
0.976873 0.213821i \(-0.0685911\pi\)
\(374\) 0 0
\(375\) −62.7843 9.39439i −3.24217 0.485124i
\(376\) 0 0
\(377\) 2.47344 5.97142i 0.127389 0.307544i
\(378\) 0 0
\(379\) 2.79369 1.86669i 0.143502 0.0958852i −0.481747 0.876311i \(-0.659997\pi\)
0.625249 + 0.780425i \(0.284997\pi\)
\(380\) 0 0
\(381\) 27.8518 + 10.0053i 1.42689 + 0.512587i
\(382\) 0 0
\(383\) −23.3643 −1.19386 −0.596931 0.802293i \(-0.703613\pi\)
−0.596931 + 0.802293i \(0.703613\pi\)
\(384\) 0 0
\(385\) 40.9463 2.08682
\(386\) 0 0
\(387\) −22.4086 + 18.2956i −1.13909 + 0.930015i
\(388\) 0 0
\(389\) −10.1512 + 6.78284i −0.514688 + 0.343904i −0.785635 0.618691i \(-0.787663\pi\)
0.270946 + 0.962594i \(0.412663\pi\)
\(390\) 0 0
\(391\) 1.53741 3.71163i 0.0777501 0.187705i
\(392\) 0 0
\(393\) −0.408617 + 2.73086i −0.0206120 + 0.137754i
\(394\) 0 0
\(395\) 2.74729 13.8115i 0.138231 0.694934i
\(396\) 0 0
\(397\) 15.0250 22.4865i 0.754083 1.12856i −0.233636 0.972324i \(-0.575062\pi\)
0.987719 0.156241i \(-0.0499376\pi\)
\(398\) 0 0
\(399\) 1.68809 0.420574i 0.0845101 0.0210551i
\(400\) 0 0
\(401\) −1.77953 1.77953i −0.0888656 0.0888656i 0.661277 0.750142i \(-0.270015\pi\)
−0.750142 + 0.661277i \(0.770015\pi\)
\(402\) 0 0
\(403\) 2.83164 4.23785i 0.141054 0.211102i
\(404\) 0 0
\(405\) −27.2464 27.5236i −1.35388 1.36766i
\(406\) 0 0
\(407\) −7.22437 17.4412i −0.358099 0.864526i
\(408\) 0 0
\(409\) −7.30266 + 17.6302i −0.361093 + 0.871756i 0.634048 + 0.773294i \(0.281392\pi\)
−0.995141 + 0.0984620i \(0.968608\pi\)
\(410\) 0 0
\(411\) 25.1558 1.20392i 1.24084 0.0593848i
\(412\) 0 0
\(413\) −16.8134 + 3.34439i −0.827331 + 0.164566i
\(414\) 0 0
\(415\) −8.42137 −0.413389
\(416\) 0 0
\(417\) −4.49681 + 7.48099i −0.220210 + 0.366345i
\(418\) 0 0
\(419\) 2.89265 + 14.5424i 0.141315 + 0.710440i 0.984856 + 0.173375i \(0.0554672\pi\)
−0.843541 + 0.537066i \(0.819533\pi\)
\(420\) 0 0
\(421\) −9.40305 + 6.28291i −0.458276 + 0.306211i −0.763195 0.646168i \(-0.776371\pi\)
0.304919 + 0.952378i \(0.401371\pi\)
\(422\) 0 0
\(423\) −23.5284 + 2.25723i −1.14399 + 0.109750i
\(424\) 0 0
\(425\) −16.7996 + 6.95861i −0.814898 + 0.337542i
\(426\) 0 0
\(427\) −2.11606 + 10.6381i −0.102403 + 0.514816i
\(428\) 0 0
\(429\) −14.3517 + 6.76562i −0.692905 + 0.326647i
\(430\) 0 0
\(431\) 0.840930 0.840930i 0.0405062 0.0405062i −0.686564 0.727070i \(-0.740882\pi\)
0.727070 + 0.686564i \(0.240882\pi\)
\(432\) 0 0
\(433\) 0.498959 + 0.498959i 0.0239785 + 0.0239785i 0.718994 0.695016i \(-0.244603\pi\)
−0.695016 + 0.718994i \(0.744603\pi\)
\(434\) 0 0
\(435\) 8.21122 + 17.4182i 0.393698 + 0.835137i
\(436\) 0 0
\(437\) 1.13216 + 0.225200i 0.0541585 + 0.0107728i
\(438\) 0 0
\(439\) 5.55530 + 13.4117i 0.265140 + 0.640105i 0.999242 0.0389347i \(-0.0123964\pi\)
−0.734102 + 0.679040i \(0.762396\pi\)
\(440\) 0 0
\(441\) −0.0708507 0.738516i −0.00337384 0.0351674i
\(442\) 0 0
\(443\) −1.97447 2.95500i −0.0938100 0.140397i 0.781596 0.623785i \(-0.214406\pi\)
−0.875406 + 0.483388i \(0.839406\pi\)
\(444\) 0 0
\(445\) −18.4662 + 3.67316i −0.875383 + 0.174125i
\(446\) 0 0
\(447\) −3.60438 2.16659i −0.170481 0.102476i
\(448\) 0 0
\(449\) 5.09669i 0.240527i −0.992742 0.120264i \(-0.961626\pi\)
0.992742 0.120264i \(-0.0383740\pi\)
\(450\) 0 0
\(451\) −3.32067 16.6941i −0.156364 0.786096i
\(452\) 0 0
\(453\) 0.105543 + 2.20532i 0.00495885 + 0.103615i
\(454\) 0 0
\(455\) −25.8451 10.7054i −1.21164 0.501876i
\(456\) 0 0
\(457\) 32.8641 13.6128i 1.53732 0.636779i 0.556351 0.830947i \(-0.312201\pi\)
0.980968 + 0.194169i \(0.0622009\pi\)
\(458\) 0 0
\(459\) −6.77392 1.72413i −0.316179 0.0804757i
\(460\) 0 0
\(461\) −8.02408 5.36152i −0.373719 0.249711i 0.354500 0.935056i \(-0.384651\pi\)
−0.728218 + 0.685345i \(0.759651\pi\)
\(462\) 0 0
\(463\) 13.9676 13.9676i 0.649129 0.649129i −0.303654 0.952782i \(-0.598207\pi\)
0.952782 + 0.303654i \(0.0982066\pi\)
\(464\) 0 0
\(465\) 3.67103 + 14.7346i 0.170240 + 0.683303i
\(466\) 0 0
\(467\) −26.7190 17.8531i −1.23641 0.826141i −0.246678 0.969097i \(-0.579339\pi\)
−0.989729 + 0.142957i \(0.954339\pi\)
\(468\) 0 0
\(469\) −19.7183 3.92221i −0.910506 0.181111i
\(470\) 0 0
\(471\) −18.3056 2.73906i −0.843477 0.126209i
\(472\) 0 0
\(473\) −32.6219 13.5124i −1.49996 0.621303i
\(474\) 0 0
\(475\) −2.90272 4.34423i −0.133186 0.199327i
\(476\) 0 0
\(477\) −2.84448 3.48395i −0.130240 0.159519i
\(478\) 0 0
\(479\) 6.21762i 0.284090i −0.989860 0.142045i \(-0.954632\pi\)
0.989860 0.142045i \(-0.0453678\pi\)
\(480\) 0 0
\(481\) 12.8976i 0.588079i
\(482\) 0 0
\(483\) −4.54445 + 12.6504i −0.206779 + 0.575612i
\(484\) 0 0
\(485\) −4.46823 6.68717i −0.202892 0.303649i
\(486\) 0 0
\(487\) −1.30351 0.539930i −0.0590676 0.0244666i 0.352954 0.935641i \(-0.385177\pi\)
−0.412022 + 0.911174i \(0.635177\pi\)
\(488\) 0 0
\(489\) −2.03857 + 13.6241i −0.0921874 + 0.616105i
\(490\) 0 0
\(491\) 10.3424 + 2.05722i 0.466744 + 0.0928411i 0.422859 0.906195i \(-0.361027\pi\)
0.0438848 + 0.999037i \(0.486027\pi\)
\(492\) 0 0
\(493\) 2.88977 + 1.93088i 0.130149 + 0.0869627i
\(494\) 0 0
\(495\) 13.8366 45.2009i 0.621907 2.03163i
\(496\) 0 0
\(497\) −12.4805 + 12.4805i −0.559827 + 0.559827i
\(498\) 0 0
\(499\) 10.5229 + 7.03120i 0.471071 + 0.314760i 0.768349 0.640031i \(-0.221079\pi\)
−0.297277 + 0.954791i \(0.596079\pi\)
\(500\) 0 0
\(501\) 22.9905 + 20.8904i 1.02714 + 0.933316i
\(502\) 0 0
\(503\) 6.66908 2.76242i 0.297360 0.123170i −0.229016 0.973423i \(-0.573551\pi\)
0.526375 + 0.850252i \(0.323551\pi\)
\(504\) 0 0
\(505\) 54.6129 + 22.6214i 2.43024 + 1.00664i
\(506\) 0 0
\(507\) −11.6634 + 0.558190i −0.517988 + 0.0247901i
\(508\) 0 0
\(509\) 1.85153 + 9.30829i 0.0820678 + 0.412583i 0.999879 + 0.0155653i \(0.00495480\pi\)
−0.917811 + 0.397018i \(0.870045\pi\)
\(510\) 0 0
\(511\) 43.5214i 1.92527i
\(512\) 0 0
\(513\) 0.106163 2.00561i 0.00468722 0.0885499i
\(514\) 0 0
\(515\) 61.3293 12.1991i 2.70249 0.537559i
\(516\) 0 0
\(517\) −16.0282 23.9879i −0.704920 1.05499i
\(518\) 0 0
\(519\) −13.4266 18.1516i −0.589361 0.796766i
\(520\) 0 0
\(521\) −6.13573 14.8130i −0.268811 0.648968i 0.730617 0.682788i \(-0.239233\pi\)
−0.999428 + 0.0338199i \(0.989233\pi\)
\(522\) 0 0
\(523\) 31.6109 + 6.28780i 1.38225 + 0.274946i 0.829548 0.558435i \(-0.188598\pi\)
0.552699 + 0.833381i \(0.313598\pi\)
\(524\) 0 0
\(525\) 55.0321 25.9431i 2.40180 1.13225i
\(526\) 0 0
\(527\) 1.93794 + 1.93794i 0.0844178 + 0.0844178i
\(528\) 0 0
\(529\) 9.95669 9.95669i 0.432900 0.432900i
\(530\) 0 0
\(531\) −1.98968 + 19.6905i −0.0863447 + 0.854496i
\(532\) 0 0
\(533\) −2.26868 + 11.4054i −0.0982675 + 0.494024i
\(534\) 0 0
\(535\) 8.71611 3.61033i 0.376830 0.156088i
\(536\) 0 0
\(537\) −6.39783 8.64933i −0.276087 0.373246i
\(538\) 0 0
\(539\) 0.752940 0.503098i 0.0324314 0.0216700i
\(540\) 0 0
\(541\) 5.30294 + 26.6597i 0.227991 + 1.14619i 0.909924 + 0.414774i \(0.136139\pi\)
−0.681933 + 0.731414i \(0.738861\pi\)
\(542\) 0 0
\(543\) 20.1723 + 12.1256i 0.865678 + 0.520357i
\(544\) 0 0
\(545\) 73.8869 3.16497
\(546\) 0 0
\(547\) −2.89843 + 0.576533i −0.123928 + 0.0246508i −0.256664 0.966501i \(-0.582624\pi\)
0.132737 + 0.991151i \(0.457624\pi\)
\(548\) 0 0
\(549\) 11.0285 + 5.93077i 0.470683 + 0.253119i
\(550\) 0 0
\(551\) −0.382156 + 0.922607i −0.0162804 + 0.0393044i
\(552\) 0 0
\(553\) 3.25429 + 7.85655i 0.138386 + 0.334095i
\(554\) 0 0
\(555\) −28.4391 25.8414i −1.20717 1.09690i
\(556\) 0 0
\(557\) −9.09602 + 13.6132i −0.385411 + 0.576808i −0.972555 0.232675i \(-0.925252\pi\)
0.587144 + 0.809483i \(0.300252\pi\)
\(558\) 0 0
\(559\) 17.0580 + 17.0580i 0.721475 + 0.721475i
\(560\) 0 0
\(561\) −2.06256 8.27862i −0.0870812 0.349524i
\(562\) 0 0
\(563\) 19.5452 29.2515i 0.823732 1.23280i −0.146159 0.989261i \(-0.546691\pi\)
0.969891 0.243541i \(-0.0783089\pi\)
\(564\) 0 0
\(565\) −10.6267 + 53.4239i −0.447068 + 2.24756i
\(566\) 0 0
\(567\) 22.9146 + 4.67870i 0.962322 + 0.196487i
\(568\) 0 0
\(569\) −7.42318 + 17.9211i −0.311196 + 0.751293i 0.688465 + 0.725269i \(0.258285\pi\)
−0.999661 + 0.0260241i \(0.991715\pi\)
\(570\) 0 0
\(571\) −25.4369 + 16.9964i −1.06450 + 0.711277i −0.959076 0.283150i \(-0.908621\pi\)
−0.105426 + 0.994427i \(0.533621\pi\)
\(572\) 0 0
\(573\) 7.93433 22.0868i 0.331462 0.922690i
\(574\) 0 0
\(575\) 40.3696 1.68353
\(576\) 0 0
\(577\) −13.6429 −0.567963 −0.283982 0.958830i \(-0.591655\pi\)
−0.283982 + 0.958830i \(0.591655\pi\)
\(578\) 0 0
\(579\) 12.0859 33.6436i 0.502273 1.39818i
\(580\) 0 0
\(581\) 4.22842 2.82534i 0.175424 0.117215i
\(582\) 0 0
\(583\) 2.10083 5.07185i 0.0870074 0.210054i
\(584\) 0 0
\(585\) −20.5513 + 24.9130i −0.849692 + 1.03003i
\(586\) 0 0
\(587\) −4.83875 + 24.3260i −0.199717 + 1.00404i 0.742706 + 0.669618i \(0.233542\pi\)
−0.942422 + 0.334425i \(0.891458\pi\)
\(588\) 0 0
\(589\) −0.437499 + 0.654764i −0.0180268 + 0.0269791i
\(590\) 0 0
\(591\) 1.49877 + 6.01569i 0.0616510 + 0.247453i
\(592\) 0 0
\(593\) −9.31734 9.31734i −0.382617 0.382617i 0.489427 0.872044i \(-0.337206\pi\)
−0.872044 + 0.489427i \(0.837206\pi\)
\(594\) 0 0
\(595\) 8.35712 12.5073i 0.342608 0.512750i
\(596\) 0 0
\(597\) −18.7831 17.0673i −0.768740 0.698520i
\(598\) 0 0
\(599\) 0.450558 + 1.08774i 0.0184093 + 0.0444440i 0.932817 0.360351i \(-0.117343\pi\)
−0.914408 + 0.404795i \(0.867343\pi\)
\(600\) 0 0
\(601\) −9.25984 + 22.3552i −0.377717 + 0.911889i 0.614676 + 0.788780i \(0.289287\pi\)
−0.992393 + 0.123110i \(0.960713\pi\)
\(602\) 0 0
\(603\) −10.9930 + 20.4418i −0.447668 + 0.832453i
\(604\) 0 0
\(605\) 10.1639 2.02172i 0.413221 0.0821948i
\(606\) 0 0
\(607\) −47.3452 −1.92168 −0.960840 0.277103i \(-0.910626\pi\)
−0.960840 + 0.277103i \(0.910626\pi\)
\(608\) 0 0
\(609\) −9.96662 5.99092i −0.403868 0.242764i
\(610\) 0 0
\(611\) 3.84529 + 19.3316i 0.155564 + 0.782073i
\(612\) 0 0
\(613\) 0.532520 0.355818i 0.0215083 0.0143714i −0.544770 0.838586i \(-0.683383\pi\)
0.566278 + 0.824214i \(0.308383\pi\)
\(614\) 0 0
\(615\) −20.6035 27.8542i −0.830812 1.12319i
\(616\) 0 0
\(617\) 15.4604 6.40389i 0.622411 0.257811i −0.0491140 0.998793i \(-0.515640\pi\)
0.671525 + 0.740982i \(0.265640\pi\)
\(618\) 0 0
\(619\) 8.36961 42.0769i 0.336403 1.69121i −0.328678 0.944442i \(-0.606603\pi\)
0.665081 0.746771i \(-0.268397\pi\)
\(620\) 0 0
\(621\) 12.4292 + 9.29146i 0.498766 + 0.372854i
\(622\) 0 0
\(623\) 8.03966 8.03966i 0.322102 0.322102i
\(624\) 0 0
\(625\) −63.7341 63.7341i −2.54937 2.54937i
\(626\) 0 0
\(627\) 2.21739 1.04531i 0.0885539 0.0417458i
\(628\) 0 0
\(629\) −6.80201 1.35300i −0.271214 0.0539478i
\(630\) 0 0
\(631\) −8.07387 19.4920i −0.321416 0.775966i −0.999172 0.0406796i \(-0.987048\pi\)
0.677757 0.735286i \(-0.262952\pi\)
\(632\) 0 0
\(633\) −19.0478 25.7510i −0.757082 1.02351i
\(634\) 0 0
\(635\) 40.8487 + 61.1344i 1.62103 + 2.42604i
\(636\) 0 0
\(637\) −0.606786 + 0.120697i −0.0240417 + 0.00478220i
\(638\) 0 0
\(639\) 9.55990 + 17.9947i 0.378184 + 0.711860i
\(640\) 0 0
\(641\) 37.3054i 1.47347i 0.676180 + 0.736736i \(0.263634\pi\)
−0.676180 + 0.736736i \(0.736366\pi\)
\(642\) 0 0
\(643\) 0.437593 + 2.19993i 0.0172570 + 0.0867567i 0.988454 0.151521i \(-0.0484171\pi\)
−0.971197 + 0.238278i \(0.923417\pi\)
\(644\) 0 0
\(645\) −71.7898 + 3.43575i −2.82672 + 0.135282i
\(646\) 0 0
\(647\) −13.8914 5.75400i −0.546126 0.226213i 0.0925234 0.995711i \(-0.470507\pi\)
−0.638650 + 0.769498i \(0.720507\pi\)
\(648\) 0 0
\(649\) −22.3174 + 9.24415i −0.876033 + 0.362865i
\(650\) 0 0
\(651\) −6.78665 6.16673i −0.265990 0.241693i
\(652\) 0 0
\(653\) −20.8375 13.9232i −0.815433 0.544855i 0.0764751 0.997071i \(-0.475633\pi\)
−0.891908 + 0.452216i \(0.850633\pi\)
\(654\) 0 0
\(655\) −4.85090 + 4.85090i −0.189540 + 0.189540i
\(656\) 0 0
\(657\) 48.0435 + 14.7067i 1.87436 + 0.573764i
\(658\) 0 0
\(659\) 24.4240 + 16.3196i 0.951426 + 0.635722i 0.931369 0.364076i \(-0.118615\pi\)
0.0200567 + 0.999799i \(0.493615\pi\)
\(660\) 0 0
\(661\) 37.5355 + 7.46628i 1.45996 + 0.290405i 0.860275 0.509830i \(-0.170292\pi\)
0.599687 + 0.800235i \(0.295292\pi\)
\(662\) 0 0
\(663\) −0.862565 + 5.76467i −0.0334993 + 0.223881i
\(664\) 0 0
\(665\) 3.99316 + 1.65402i 0.154848 + 0.0641402i
\(666\) 0 0
\(667\) −4.28675 6.41558i −0.165984 0.248412i
\(668\) 0 0
\(669\) −11.2591 + 31.3419i −0.435301 + 1.21175i
\(670\) 0 0
\(671\) 15.2841i 0.590035i
\(672\) 0 0
\(673\) 17.2901i 0.666486i 0.942841 + 0.333243i \(0.108143\pi\)
−0.942841 + 0.333243i \(0.891857\pi\)
\(674\) 0 0
\(675\) −10.0423 69.5170i −0.386529 2.67571i
\(676\) 0 0
\(677\) 0.0350577 + 0.0524676i 0.00134738 + 0.00201649i 0.832143 0.554562i \(-0.187114\pi\)
−0.830795 + 0.556578i \(0.812114\pi\)
\(678\) 0 0
\(679\) 4.48704 + 1.85859i 0.172197 + 0.0713263i
\(680\) 0 0
\(681\) 17.3180 + 2.59129i 0.663628 + 0.0992983i
\(682\) 0 0
\(683\) −25.4364 5.05961i −0.973297 0.193601i −0.317267 0.948336i \(-0.602765\pi\)
−0.656029 + 0.754735i \(0.727765\pi\)
\(684\) 0 0
\(685\) 52.0248 + 34.7619i 1.98777 + 1.32818i
\(686\) 0 0
\(687\) 7.29900 + 29.2965i 0.278474 + 1.11773i
\(688\) 0 0
\(689\) −2.65206 + 2.65206i −0.101036 + 0.101036i
\(690\) 0 0
\(691\) 31.0818 + 20.7682i 1.18241 + 0.790059i 0.981857 0.189624i \(-0.0607270\pi\)
0.200550 + 0.979683i \(0.435727\pi\)
\(692\) 0 0
\(693\) 8.21731 + 27.3377i 0.312150 + 1.03847i
\(694\) 0 0
\(695\) −20.0347 + 8.29866i −0.759961 + 0.314786i
\(696\) 0 0
\(697\) −5.77708 2.39294i −0.218822 0.0906392i
\(698\) 0 0
\(699\) 0.662388 + 13.8406i 0.0250538 + 0.523499i
\(700\) 0 0
\(701\) 6.43348 + 32.3433i 0.242989 + 1.22159i 0.888873 + 0.458154i \(0.151489\pi\)
−0.645884 + 0.763436i \(0.723511\pi\)
\(702\) 0 0
\(703\) 1.99272i 0.0751570i
\(704\) 0 0
\(705\) −50.3305 30.2536i −1.89556 1.13942i
\(706\) 0 0
\(707\) −35.0108 + 6.96408i −1.31672 + 0.261911i
\(708\) 0 0
\(709\) 13.2204 + 19.7857i 0.496502 + 0.743067i 0.992095 0.125487i \(-0.0400494\pi\)
−0.495593 + 0.868555i \(0.665049\pi\)
\(710\) 0 0
\(711\) 9.77259 0.937549i 0.366501 0.0351608i
\(712\) 0 0
\(713\) −2.32845 5.62136i −0.0872010 0.210522i
\(714\) 0 0
\(715\) −38.6619 7.69033i −1.44587 0.287602i
\(716\) 0 0
\(717\) −8.67566 18.4034i −0.323999 0.687286i
\(718\) 0 0
\(719\) −17.8047 17.8047i −0.664002 0.664002i 0.292319 0.956321i \(-0.405573\pi\)
−0.956321 + 0.292319i \(0.905573\pi\)
\(720\) 0 0
\(721\) −26.7010 + 26.7010i −0.994396 + 0.994396i
\(722\) 0 0
\(723\) −6.67499 + 3.14671i −0.248246 + 0.117027i
\(724\) 0 0
\(725\) −6.81332 + 34.2529i −0.253040 + 1.27212i
\(726\) 0 0
\(727\) −22.6315 + 9.37426i −0.839355 + 0.347672i −0.760599 0.649222i \(-0.775095\pi\)
−0.0787556 + 0.996894i \(0.525095\pi\)
\(728\) 0 0
\(729\) 12.9081 23.7146i 0.478079 0.878317i
\(730\) 0 0
\(731\) −10.7856 + 7.20670i −0.398919 + 0.266549i
\(732\) 0 0
\(733\) −9.77199 49.1271i −0.360937 1.81455i −0.553015 0.833171i \(-0.686523\pi\)
0.192078 0.981380i \(-0.438477\pi\)
\(734\) 0 0
\(735\) 0.949609 1.57979i 0.0350268 0.0582714i
\(736\) 0 0
\(737\) −28.3297 −1.04354
\(738\) 0 0
\(739\) −28.8194 + 5.73254i −1.06014 + 0.210875i −0.694214 0.719769i \(-0.744248\pi\)
−0.365926 + 0.930644i \(0.619248\pi\)
\(740\) 0 0
\(741\) −1.67290 + 0.0800624i −0.0614555 + 0.00294116i
\(742\) 0 0
\(743\) −15.3189 + 36.9832i −0.561997 + 1.35678i 0.346169 + 0.938172i \(0.387482\pi\)
−0.908166 + 0.418609i \(0.862518\pi\)
\(744\) 0 0
\(745\) −3.99834 9.65285i −0.146488 0.353653i
\(746\) 0 0
\(747\) −1.69004 5.62252i −0.0618355 0.205717i
\(748\) 0 0
\(749\) −3.16515 + 4.73699i −0.115652 + 0.173086i
\(750\) 0 0
\(751\) 0.644925 + 0.644925i 0.0235337 + 0.0235337i 0.718776 0.695242i \(-0.244703\pi\)
−0.695242 + 0.718776i \(0.744703\pi\)
\(752\) 0 0
\(753\) 21.8750 5.45000i 0.797170 0.198609i
\(754\) 0 0
\(755\) −3.04746 + 4.56084i −0.110908 + 0.165986i
\(756\) 0 0
\(757\) 2.74459 13.7980i 0.0997538 0.501496i −0.898314 0.439355i \(-0.855207\pi\)
0.998067 0.0621412i \(-0.0197929\pi\)
\(758\) 0 0
\(759\) −2.80296 + 18.7326i −0.101741 + 0.679952i
\(760\) 0 0
\(761\) −0.456572 + 1.10226i −0.0165507 + 0.0399570i −0.931939 0.362615i \(-0.881884\pi\)
0.915388 + 0.402572i \(0.131884\pi\)
\(762\) 0 0
\(763\) −37.0990 + 24.7888i −1.34307 + 0.897413i
\(764\) 0 0
\(765\) −10.9829 13.4520i −0.397087 0.486356i
\(766\) 0 0
\(767\) 16.5035 0.595906
\(768\) 0 0
\(769\) 17.8345 0.643128 0.321564 0.946888i \(-0.395792\pi\)
0.321564 + 0.946888i \(0.395792\pi\)
\(770\) 0 0
\(771\) −45.4054 16.3111i −1.63523 0.587431i
\(772\) 0 0
\(773\) 30.0410 20.0728i 1.08050 0.721968i 0.117937 0.993021i \(-0.462372\pi\)
0.962564 + 0.271053i \(0.0873720\pi\)
\(774\) 0 0
\(775\) −10.5390 + 25.4434i −0.378572 + 0.913954i
\(776\) 0 0
\(777\) 22.9491 + 3.43386i 0.823295 + 0.123189i
\(778\) 0 0
\(779\) 0.350520 1.76218i 0.0125587 0.0631367i
\(780\) 0 0
\(781\) −13.8176 + 20.6795i −0.494433 + 0.739971i
\(782\) 0 0
\(783\) −9.98134 + 8.97778i −0.356704 + 0.320840i
\(784\) 0 0
\(785\) −32.5167 32.5167i −1.16057 1.16057i
\(786\) 0 0
\(787\) 28.9404 43.3124i 1.03161 1.54392i 0.206906 0.978361i \(-0.433661\pi\)
0.824708 0.565558i \(-0.191339\pi\)
\(788\) 0 0
\(789\) −13.7081 + 15.0862i −0.488022 + 0.537082i
\(790\) 0 0
\(791\) −12.5878 30.3896i −0.447571 1.08053i
\(792\) 0 0
\(793\) 3.99601 9.64722i 0.141902 0.342583i
\(794\) 0 0
\(795\) −0.534168 11.1614i −0.0189450 0.395855i
\(796\) 0 0
\(797\) −16.5418 + 3.29037i −0.585942 + 0.116551i −0.479154 0.877731i \(-0.659056\pi\)
−0.106788 + 0.994282i \(0.534056\pi\)
\(798\) 0 0
\(799\) −10.5986 −0.374952
\(800\) 0 0
\(801\) −6.15828 11.5918i −0.217592 0.409576i
\(802\) 0 0
\(803\) 11.9642 + 60.1483i 0.422209 + 2.12259i
\(804\) 0 0
\(805\) −27.7675 + 18.5536i −0.978674 + 0.653929i
\(806\) 0 0
\(807\) −5.70394 + 4.21915i −0.200788 + 0.148521i
\(808\) 0 0
\(809\) 39.8340 16.4998i 1.40049 0.580102i 0.450611 0.892721i \(-0.351206\pi\)
0.949879 + 0.312619i \(0.101206\pi\)
\(810\) 0 0
\(811\) −9.67058 + 48.6173i −0.339580 + 1.70718i 0.313243 + 0.949673i \(0.398584\pi\)
−0.652823 + 0.757510i \(0.726416\pi\)
\(812\) 0 0
\(813\) 1.76144 + 3.73648i 0.0617765 + 0.131044i
\(814\) 0 0
\(815\) −24.2009 + 24.2009i −0.847721 + 0.847721i
\(816\) 0 0
\(817\) −2.63552 2.63552i −0.0922051 0.0922051i
\(818\) 0 0
\(819\) 1.96071 19.4038i 0.0685127 0.678025i
\(820\) 0 0
\(821\) −17.9426 3.56901i −0.626203 0.124559i −0.128219 0.991746i \(-0.540926\pi\)
−0.497984 + 0.867186i \(0.665926\pi\)
\(822\) 0 0
\(823\) −5.19727 12.5473i −0.181165 0.437372i 0.807042 0.590494i \(-0.201067\pi\)
−0.988207 + 0.153122i \(0.951067\pi\)
\(824\) 0 0
\(825\) 68.9247 50.9830i 2.39965 1.77500i
\(826\) 0 0
\(827\) −16.4642 24.6404i −0.572516 0.856831i 0.426344 0.904561i \(-0.359801\pi\)
−0.998860 + 0.0477298i \(0.984801\pi\)
\(828\) 0 0
\(829\) −16.2671 + 3.23572i −0.564979 + 0.112381i −0.469312 0.883032i \(-0.655498\pi\)
−0.0956663 + 0.995413i \(0.530498\pi\)
\(830\) 0 0
\(831\) −2.89436 + 4.81513i −0.100404 + 0.167035i
\(832\) 0 0
\(833\) 0.332672i 0.0115264i
\(834\) 0 0
\(835\) 15.0565 + 75.6940i 0.521051 + 2.61950i
\(836\) 0 0
\(837\) −9.10084 + 5.40798i −0.314571 + 0.186927i
\(838\) 0 0
\(839\) −45.1745 18.7119i −1.55960 0.646006i −0.574578 0.818450i \(-0.694834\pi\)
−0.985019 + 0.172444i \(0.944834\pi\)
\(840\) 0 0
\(841\) −20.6255 + 8.54337i −0.711225 + 0.294599i
\(842\) 0 0
\(843\) −28.5226 + 31.3899i −0.982371 + 1.08113i
\(844\) 0 0
\(845\) −24.1211 16.1172i −0.829789 0.554448i
\(846\) 0 0
\(847\) −4.42506 + 4.42506i −0.152047 + 0.152047i
\(848\) 0 0
\(849\) 4.33975 1.08122i 0.148940 0.0371073i
\(850\) 0 0
\(851\) 12.8021 + 8.55410i 0.438851 + 0.293231i
\(852\) 0 0
\(853\) 25.6899 + 5.11004i 0.879606 + 0.174965i 0.614179 0.789166i \(-0.289487\pi\)
0.265427 + 0.964131i \(0.414487\pi\)
\(854\) 0 0
\(855\) 3.17526 3.84915i 0.108591 0.131638i
\(856\) 0 0
\(857\) 30.8971 + 12.7980i 1.05543 + 0.437172i 0.841826 0.539749i \(-0.181481\pi\)
0.213600 + 0.976921i \(0.431481\pi\)
\(858\) 0 0
\(859\) −16.0686 24.0483i −0.548252 0.820517i 0.449082 0.893491i \(-0.351751\pi\)
−0.997334 + 0.0729736i \(0.976751\pi\)
\(860\) 0 0
\(861\) 19.6901 + 7.07334i 0.671036 + 0.241059i
\(862\) 0 0
\(863\) 44.8567i 1.52694i −0.645843 0.763470i \(-0.723494\pi\)
0.645843 0.763470i \(-0.276506\pi\)
\(864\) 0 0
\(865\) 56.0931i 1.90722i
\(866\) 0 0
\(867\) 24.7613 + 8.89511i 0.840939 + 0.302094i
\(868\) 0 0
\(869\) 6.65737 + 9.96345i 0.225836 + 0.337987i
\(870\) 0 0
\(871\) 17.8816 + 7.40679i 0.605894 + 0.250969i
\(872\) 0 0
\(873\) 3.56797 4.32522i 0.120758 0.146387i
\(874\) 0 0
\(875\) 93.4139 + 18.5812i 3.15796 + 0.628158i
\(876\) 0 0
\(877\) −16.5425 11.0534i −0.558602 0.373246i 0.243987 0.969779i \(-0.421545\pi\)
−0.802589 + 0.596533i \(0.796545\pi\)
\(878\) 0 0
\(879\) −28.7454 + 7.16169i −0.969557 + 0.241558i
\(880\) 0 0
\(881\) −29.6126 + 29.6126i −0.997673 + 0.997673i −0.999997 0.00232406i \(-0.999260\pi\)
0.00232406 + 0.999997i \(0.499260\pi\)
\(882\) 0 0
\(883\) 34.3003 + 22.9187i 1.15430 + 0.771277i 0.977075 0.212894i \(-0.0682889\pi\)
0.177222 + 0.984171i \(0.443289\pi\)
\(884\) 0 0
\(885\) −33.0661 + 36.3901i −1.11150 + 1.22324i
\(886\) 0 0
\(887\) 17.2802 7.15771i 0.580214 0.240332i −0.0732204 0.997316i \(-0.523328\pi\)
0.653434 + 0.756983i \(0.273328\pi\)
\(888\) 0 0
\(889\) −41.0207 16.9913i −1.37579 0.569871i
\(890\) 0 0
\(891\) 32.9551 + 0.166813i 1.10404 + 0.00558845i
\(892\) 0 0
\(893\) −0.594112 2.98680i −0.0198812 0.0999496i
\(894\) 0 0
\(895\) 26.7287i 0.893441i
\(896\) 0 0
\(897\) 6.66685 11.0911i 0.222600 0.370321i
\(898\) 0 0
\(899\) 5.16260 1.02690i 0.172182 0.0342492i
\(900\) 0 0
\(901\) −1.12045 1.67687i −0.0373276 0.0558648i
\(902\) 0 0
\(903\) 34.8934 25.8103i 1.16118 0.858913i
\(904\) 0 0
\(905\) 22.3772 + 54.0233i 0.743843 + 1.79580i
\(906\) 0 0
\(907\) 6.74321 + 1.34131i 0.223905 + 0.0445374i 0.305768 0.952106i \(-0.401087\pi\)
−0.0818628 + 0.996644i \(0.526087\pi\)
\(908\) 0 0
\(909\) −4.14315 + 41.0020i −0.137419 + 1.35995i
\(910\) 0 0
\(911\) −7.04481 7.04481i −0.233405 0.233405i 0.580707 0.814112i \(-0.302776\pi\)
−0.814112 + 0.580707i \(0.802776\pi\)
\(912\) 0 0
\(913\) 5.06714 5.06714i 0.167698 0.167698i
\(914\) 0 0
\(915\) 13.2658 + 28.1402i 0.438553 + 0.930286i
\(916\) 0 0
\(917\) 0.808204 4.06312i 0.0266893 0.134176i
\(918\) 0 0
\(919\) 47.5960 19.7149i 1.57005 0.650335i 0.583249 0.812293i \(-0.301781\pi\)
0.986798 + 0.161959i \(0.0517811\pi\)
\(920\) 0 0
\(921\) −11.4834 + 8.49418i −0.378392 + 0.279893i
\(922\) 0 0
\(923\) 14.1282 9.44019i 0.465037 0.310728i
\(924\) 0 0
\(925\) −13.5958 68.3506i −0.447027 2.24735i
\(926\) 0 0
\(927\) 20.4526 + 38.4982i 0.671752 + 1.26445i
\(928\) 0 0
\(929\) −2.02612 −0.0664748 −0.0332374 0.999447i \(-0.510582\pi\)
−0.0332374 + 0.999447i \(0.510582\pi\)
\(930\) 0 0
\(931\) 0.0937507 0.0186482i 0.00307256 0.000611169i
\(932\) 0 0
\(933\) 2.70510 + 56.5229i 0.0885609 + 1.85048i
\(934\) 0 0
\(935\) 8.11156 19.5830i 0.265276 0.640433i
\(936\) 0 0
\(937\) −0.987795 2.38475i −0.0322699 0.0779063i 0.906923 0.421296i \(-0.138425\pi\)
−0.939193 + 0.343390i \(0.888425\pi\)
\(938\) 0 0
\(939\) 8.34177 9.18036i 0.272224 0.299590i
\(940\) 0 0
\(941\) −2.09080 + 3.12910i −0.0681580 + 0.102006i −0.863983 0.503521i \(-0.832038\pi\)
0.795825 + 0.605527i \(0.207038\pi\)
\(942\) 0 0
\(943\) 9.81635 + 9.81635i 0.319664 + 0.319664i
\(944\) 0 0
\(945\) 38.8570 + 43.2005i 1.26402 + 1.40531i
\(946\) 0 0
\(947\) −16.2924 + 24.3833i −0.529432 + 0.792352i −0.995734 0.0922743i \(-0.970586\pi\)
0.466301 + 0.884626i \(0.345586\pi\)
\(948\) 0 0
\(949\) 8.17397 41.0933i 0.265338 1.33395i
\(950\) 0 0
\(951\) 32.3654 + 4.84282i 1.04952 + 0.157039i
\(952\) 0 0
\(953\) 12.0888 29.1848i 0.391593 0.945389i −0.598000 0.801496i \(-0.704038\pi\)
0.989593 0.143893i \(-0.0459622\pi\)
\(954\) 0 0
\(955\) 48.4803 32.3935i 1.56879 1.04823i
\(956\) 0 0
\(957\) −15.4212 5.53982i −0.498497 0.179077i
\(958\) 0 0
\(959\) −37.7844 −1.22012
\(960\) 0 0
\(961\) −26.8492 −0.866103
\(962\) 0 0
\(963\) 4.15963 + 5.09476i 0.134042 + 0.164176i
\(964\) 0 0
\(965\) 73.8473 49.3432i 2.37723 1.58841i
\(966\) 0 0
\(967\) 16.2050 39.1222i 0.521116 1.25809i −0.416094 0.909321i \(-0.636601\pi\)
0.937210 0.348764i \(-0.113399\pi\)
\(968\) 0 0
\(969\) 0.133270 0.890664i 0.00428124 0.0286122i
\(970\) 0 0
\(971\) 8.80545 44.2680i 0.282580 1.42063i −0.535019 0.844840i \(-0.679696\pi\)
0.817600 0.575787i \(-0.195304\pi\)
\(972\) 0 0
\(973\) 7.27538 10.8884i 0.233238 0.349065i
\(974\) 0 0
\(975\) −56.8344 + 14.1599i −1.82016 + 0.453479i
\(976\) 0 0
\(977\) 8.81730 + 8.81730i 0.282090 + 0.282090i 0.833942 0.551852i \(-0.186079\pi\)
−0.551852 + 0.833942i \(0.686079\pi\)
\(978\) 0 0
\(979\) 8.90099 13.3213i 0.284477 0.425750i
\(980\) 0 0
\(981\) 14.8280 + 49.3304i 0.473421 + 1.57500i
\(982\) 0 0
\(983\) 16.0320 + 38.7047i 0.511341 + 1.23449i 0.943103 + 0.332500i \(0.107892\pi\)
−0.431762 + 0.901988i \(0.642108\pi\)
\(984\) 0 0
\(985\) −5.89430 + 14.2301i −0.187808 + 0.453408i
\(986\) 0 0
\(987\) 35.4212 1.69520i 1.12747 0.0539588i
\(988\) 0 0
\(989\) 28.2451 5.61830i 0.898142 0.178652i
\(990\) 0 0
\(991\) −30.3970 −0.965592 −0.482796 0.875733i \(-0.660379\pi\)
−0.482796 + 0.875733i \(0.660379\pi\)
\(992\) 0 0
\(993\) 17.8477 29.6918i 0.566380 0.942241i
\(994\) 0 0
\(995\) −12.3010 61.8414i −0.389969 1.96051i
\(996\) 0 0
\(997\) −2.67064 + 1.78447i −0.0845801 + 0.0565146i −0.597141 0.802136i \(-0.703697\pi\)
0.512561 + 0.858651i \(0.328697\pi\)
\(998\) 0 0
\(999\) 11.5456 24.1733i 0.365287 0.764810i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.2.s.a.719.12 240
3.2 odd 2 inner 768.2.s.a.719.23 240
4.3 odd 2 192.2.s.a.11.11 240
12.11 even 2 192.2.s.a.11.20 yes 240
64.29 even 16 192.2.s.a.35.20 yes 240
64.35 odd 16 inner 768.2.s.a.47.23 240
192.29 odd 16 192.2.s.a.35.11 yes 240
192.35 even 16 inner 768.2.s.a.47.12 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.2.s.a.11.11 240 4.3 odd 2
192.2.s.a.11.20 yes 240 12.11 even 2
192.2.s.a.35.11 yes 240 192.29 odd 16
192.2.s.a.35.20 yes 240 64.29 even 16
768.2.s.a.47.12 240 192.35 even 16 inner
768.2.s.a.47.23 240 64.35 odd 16 inner
768.2.s.a.719.12 240 1.1 even 1 trivial
768.2.s.a.719.23 240 3.2 odd 2 inner