Properties

Label 768.2.s.a.47.23
Level $768$
Weight $2$
Character 768.47
Analytic conductor $6.133$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,2,Mod(47,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.s (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 47.23
Character \(\chi\) \(=\) 768.47
Dual form 768.2.s.a.719.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16480 - 1.28189i) q^{3} +(3.57797 + 2.39072i) q^{5} +(0.994439 + 2.40079i) q^{7} +(-0.286494 - 2.98629i) q^{9} +(-0.714367 - 3.59136i) q^{11} +(-1.38986 - 2.08008i) q^{13} +(7.23226 - 1.80186i) q^{15} +(0.951204 - 0.951204i) q^{17} +(0.214739 + 0.321380i) q^{19} +(4.23587 + 1.52167i) q^{21} +(-1.14288 + 2.75916i) q^{23} +(5.17290 + 12.4885i) q^{25} +(-4.16181 - 3.11117i) q^{27} +(2.53398 + 0.504039i) q^{29} -2.03735 q^{31} +(-5.43583 - 3.26747i) q^{33} +(-2.18155 + 10.9674i) q^{35} +(4.28668 + 2.86427i) q^{37} +(-4.28535 - 0.641215i) q^{39} +(-4.29457 - 1.77887i) q^{41} +(1.88124 + 9.45763i) q^{43} +(6.11432 - 11.3698i) q^{45} +(-5.57116 - 5.57116i) q^{47} +(0.174869 - 0.174869i) q^{49} +(-0.111381 - 2.32730i) q^{51} +(-1.47041 + 0.292483i) q^{53} +(6.02998 - 14.5576i) q^{55} +(0.662102 + 0.0990701i) q^{57} +(3.66506 - 5.48515i) q^{59} +(-4.09381 - 0.814309i) q^{61} +(6.88455 - 3.65750i) q^{63} -10.7652i q^{65} +(-1.50936 + 7.58806i) q^{67} +(2.20572 + 4.67890i) q^{69} +(6.27514 - 2.59925i) q^{71} +(-15.4732 - 6.40920i) q^{73} +(22.0342 + 7.91545i) q^{75} +(7.91171 - 5.28644i) q^{77} +(-2.31400 - 2.31400i) q^{79} +(-8.83584 + 1.71111i) q^{81} +(-1.62719 + 1.08726i) q^{83} +(5.67744 - 1.12931i) q^{85} +(3.59769 - 2.66118i) q^{87} +(-4.04231 + 1.67438i) q^{89} +(3.61170 - 5.40528i) q^{91} +(-2.37310 + 2.61166i) q^{93} +1.66327i q^{95} -1.86899i q^{97} +(-10.5202 + 3.16221i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 8 q^{3} + 16 q^{7} - 8 q^{9} - 16 q^{13} + 8 q^{15} + 16 q^{19} - 8 q^{21} - 16 q^{25} + 8 q^{27} + 32 q^{31} - 16 q^{37} + 8 q^{39} + 16 q^{43} - 8 q^{45} - 16 q^{49} + 8 q^{51} + 80 q^{55} - 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.16480 1.28189i 0.672496 0.740101i
\(4\) 0 0
\(5\) 3.57797 + 2.39072i 1.60012 + 1.06916i 0.951321 + 0.308201i \(0.0997270\pi\)
0.648796 + 0.760963i \(0.275273\pi\)
\(6\) 0 0
\(7\) 0.994439 + 2.40079i 0.375863 + 0.907413i 0.992732 + 0.120347i \(0.0384008\pi\)
−0.616869 + 0.787066i \(0.711599\pi\)
\(8\) 0 0
\(9\) −0.286494 2.98629i −0.0954981 0.995430i
\(10\) 0 0
\(11\) −0.714367 3.59136i −0.215390 1.08284i −0.925500 0.378747i \(-0.876355\pi\)
0.710111 0.704090i \(-0.248645\pi\)
\(12\) 0 0
\(13\) −1.38986 2.08008i −0.385479 0.576910i 0.587091 0.809521i \(-0.300273\pi\)
−0.972570 + 0.232611i \(0.925273\pi\)
\(14\) 0 0
\(15\) 7.23226 1.80186i 1.86736 0.465239i
\(16\) 0 0
\(17\) 0.951204 0.951204i 0.230701 0.230701i −0.582284 0.812985i \(-0.697841\pi\)
0.812985 + 0.582284i \(0.197841\pi\)
\(18\) 0 0
\(19\) 0.214739 + 0.321380i 0.0492646 + 0.0737297i 0.855284 0.518159i \(-0.173382\pi\)
−0.806020 + 0.591889i \(0.798382\pi\)
\(20\) 0 0
\(21\) 4.23587 + 1.52167i 0.924343 + 0.332055i
\(22\) 0 0
\(23\) −1.14288 + 2.75916i −0.238307 + 0.575324i −0.997108 0.0759988i \(-0.975785\pi\)
0.758801 + 0.651322i \(0.225785\pi\)
\(24\) 0 0
\(25\) 5.17290 + 12.4885i 1.03458 + 2.49769i
\(26\) 0 0
\(27\) −4.16181 3.11117i −0.800940 0.598744i
\(28\) 0 0
\(29\) 2.53398 + 0.504039i 0.470548 + 0.0935978i 0.424668 0.905349i \(-0.360391\pi\)
0.0458799 + 0.998947i \(0.485391\pi\)
\(30\) 0 0
\(31\) −2.03735 −0.365919 −0.182959 0.983120i \(-0.558568\pi\)
−0.182959 + 0.983120i \(0.558568\pi\)
\(32\) 0 0
\(33\) −5.43583 3.26747i −0.946257 0.568794i
\(34\) 0 0
\(35\) −2.18155 + 10.9674i −0.368749 + 1.85383i
\(36\) 0 0
\(37\) 4.28668 + 2.86427i 0.704726 + 0.470883i 0.855578 0.517674i \(-0.173202\pi\)
−0.150852 + 0.988556i \(0.548202\pi\)
\(38\) 0 0
\(39\) −4.28535 0.641215i −0.686205 0.102676i
\(40\) 0 0
\(41\) −4.29457 1.77887i −0.670699 0.277813i 0.0212338 0.999775i \(-0.493241\pi\)
−0.691933 + 0.721962i \(0.743241\pi\)
\(42\) 0 0
\(43\) 1.88124 + 9.45763i 0.286886 + 1.44228i 0.808199 + 0.588910i \(0.200443\pi\)
−0.521312 + 0.853366i \(0.674557\pi\)
\(44\) 0 0
\(45\) 6.11432 11.3698i 0.911469 1.69491i
\(46\) 0 0
\(47\) −5.57116 5.57116i −0.812637 0.812637i 0.172392 0.985028i \(-0.444850\pi\)
−0.985028 + 0.172392i \(0.944850\pi\)
\(48\) 0 0
\(49\) 0.174869 0.174869i 0.0249813 0.0249813i
\(50\) 0 0
\(51\) −0.111381 2.32730i −0.0155965 0.325887i
\(52\) 0 0
\(53\) −1.47041 + 0.292483i −0.201977 + 0.0401757i −0.295042 0.955484i \(-0.595334\pi\)
0.0930650 + 0.995660i \(0.470334\pi\)
\(54\) 0 0
\(55\) 6.02998 14.5576i 0.813082 1.96295i
\(56\) 0 0
\(57\) 0.662102 + 0.0990701i 0.0876976 + 0.0131222i
\(58\) 0 0
\(59\) 3.66506 5.48515i 0.477150 0.714105i −0.512328 0.858790i \(-0.671217\pi\)
0.989478 + 0.144685i \(0.0462167\pi\)
\(60\) 0 0
\(61\) −4.09381 0.814309i −0.524158 0.104262i −0.0740827 0.997252i \(-0.523603\pi\)
−0.450075 + 0.892991i \(0.648603\pi\)
\(62\) 0 0
\(63\) 6.88455 3.65750i 0.867372 0.460801i
\(64\) 0 0
\(65\) 10.7652i 1.33526i
\(66\) 0 0
\(67\) −1.50936 + 7.58806i −0.184398 + 0.927029i 0.772147 + 0.635444i \(0.219183\pi\)
−0.956545 + 0.291585i \(0.905817\pi\)
\(68\) 0 0
\(69\) 2.20572 + 4.67890i 0.265537 + 0.563274i
\(70\) 0 0
\(71\) 6.27514 2.59925i 0.744722 0.308474i 0.0221361 0.999755i \(-0.492953\pi\)
0.722586 + 0.691281i \(0.242953\pi\)
\(72\) 0 0
\(73\) −15.4732 6.40920i −1.81100 0.750140i −0.981454 0.191697i \(-0.938601\pi\)
−0.829543 0.558443i \(-0.811399\pi\)
\(74\) 0 0
\(75\) 22.0342 + 7.91545i 2.54430 + 0.913997i
\(76\) 0 0
\(77\) 7.91171 5.28644i 0.901623 0.602446i
\(78\) 0 0
\(79\) −2.31400 2.31400i −0.260345 0.260345i 0.564849 0.825194i \(-0.308934\pi\)
−0.825194 + 0.564849i \(0.808934\pi\)
\(80\) 0 0
\(81\) −8.83584 + 1.71111i −0.981760 + 0.190123i
\(82\) 0 0
\(83\) −1.62719 + 1.08726i −0.178608 + 0.119342i −0.641660 0.766989i \(-0.721754\pi\)
0.463053 + 0.886331i \(0.346754\pi\)
\(84\) 0 0
\(85\) 5.67744 1.12931i 0.615805 0.122491i
\(86\) 0 0
\(87\) 3.59769 2.66118i 0.385713 0.285309i
\(88\) 0 0
\(89\) −4.04231 + 1.67438i −0.428484 + 0.177484i −0.586494 0.809954i \(-0.699492\pi\)
0.158010 + 0.987438i \(0.449492\pi\)
\(90\) 0 0
\(91\) 3.61170 5.40528i 0.378609 0.566628i
\(92\) 0 0
\(93\) −2.37310 + 2.61166i −0.246079 + 0.270817i
\(94\) 0 0
\(95\) 1.66327i 0.170648i
\(96\) 0 0
\(97\) 1.86899i 0.189767i −0.995488 0.0948834i \(-0.969752\pi\)
0.995488 0.0948834i \(-0.0302478\pi\)
\(98\) 0 0
\(99\) −10.5202 + 3.16221i −1.05732 + 0.317814i
\(100\) 0 0
\(101\) 7.63182 11.4218i 0.759395 1.13651i −0.227283 0.973829i \(-0.572984\pi\)
0.986678 0.162686i \(-0.0520157\pi\)
\(102\) 0 0
\(103\) −13.4251 + 5.56087i −1.32282 + 0.547929i −0.928598 0.371087i \(-0.878985\pi\)
−0.394220 + 0.919016i \(0.628985\pi\)
\(104\) 0 0
\(105\) 11.5179 + 15.5713i 1.12404 + 1.51960i
\(106\) 0 0
\(107\) 2.15026 0.427713i 0.207874 0.0413486i −0.0900550 0.995937i \(-0.528704\pi\)
0.297929 + 0.954588i \(0.403704\pi\)
\(108\) 0 0
\(109\) −14.2766 + 9.53929i −1.36745 + 0.913698i −0.999867 0.0162943i \(-0.994813\pi\)
−0.367579 + 0.929992i \(0.619813\pi\)
\(110\) 0 0
\(111\) 8.66479 2.15877i 0.822426 0.204901i
\(112\) 0 0
\(113\) −8.95069 8.95069i −0.842010 0.842010i 0.147110 0.989120i \(-0.453003\pi\)
−0.989120 + 0.147110i \(0.953003\pi\)
\(114\) 0 0
\(115\) −10.6856 + 7.13987i −0.996434 + 0.665796i
\(116\) 0 0
\(117\) −5.81353 + 4.74647i −0.537461 + 0.438811i
\(118\) 0 0
\(119\) 3.22955 + 1.33773i 0.296053 + 0.122629i
\(120\) 0 0
\(121\) −2.22490 + 0.921585i −0.202264 + 0.0837805i
\(122\) 0 0
\(123\) −7.28262 + 3.43315i −0.656652 + 0.309557i
\(124\) 0 0
\(125\) −7.15047 + 35.9478i −0.639557 + 3.21527i
\(126\) 0 0
\(127\) 17.0863i 1.51617i 0.652158 + 0.758083i \(0.273864\pi\)
−0.652158 + 0.758083i \(0.726136\pi\)
\(128\) 0 0
\(129\) 14.3149 + 8.60468i 1.26036 + 0.757600i
\(130\) 0 0
\(131\) −1.56358 0.311016i −0.136611 0.0271736i 0.126311 0.991991i \(-0.459686\pi\)
−0.262922 + 0.964817i \(0.584686\pi\)
\(132\) 0 0
\(133\) −0.558021 + 0.835137i −0.0483865 + 0.0724155i
\(134\) 0 0
\(135\) −7.45289 21.0814i −0.641442 1.81440i
\(136\) 0 0
\(137\) 5.56434 13.4335i 0.475393 1.14770i −0.486354 0.873762i \(-0.661673\pi\)
0.961747 0.273939i \(-0.0883267\pi\)
\(138\) 0 0
\(139\) 4.94256 0.983137i 0.419223 0.0833886i 0.0190285 0.999819i \(-0.493943\pi\)
0.400194 + 0.916430i \(0.368943\pi\)
\(140\) 0 0
\(141\) −13.6309 + 0.652353i −1.14793 + 0.0549380i
\(142\) 0 0
\(143\) −6.47745 + 6.47745i −0.541672 + 0.541672i
\(144\) 0 0
\(145\) 7.86148 + 7.86148i 0.652860 + 0.652860i
\(146\) 0 0
\(147\) −0.0204763 0.427850i −0.00168885 0.0352885i
\(148\) 0 0
\(149\) 0.473681 + 2.38135i 0.0388054 + 0.195088i 0.995325 0.0965790i \(-0.0307900\pi\)
−0.956520 + 0.291667i \(0.905790\pi\)
\(150\) 0 0
\(151\) 1.17767 + 0.487807i 0.0958374 + 0.0396972i 0.430087 0.902787i \(-0.358483\pi\)
−0.334250 + 0.942485i \(0.608483\pi\)
\(152\) 0 0
\(153\) −3.11308 2.56806i −0.251678 0.207615i
\(154\) 0 0
\(155\) −7.28958 4.87074i −0.585513 0.391227i
\(156\) 0 0
\(157\) 2.08481 10.4811i 0.166386 0.836479i −0.803946 0.594703i \(-0.797270\pi\)
0.970332 0.241777i \(-0.0777302\pi\)
\(158\) 0 0
\(159\) −1.33780 + 2.22559i −0.106094 + 0.176501i
\(160\) 0 0
\(161\) −7.76067 −0.611627
\(162\) 0 0
\(163\) 7.80064 + 1.55164i 0.610993 + 0.121534i 0.490882 0.871226i \(-0.336675\pi\)
0.120112 + 0.992760i \(0.461675\pi\)
\(164\) 0 0
\(165\) −11.6376 24.6865i −0.905989 1.92184i
\(166\) 0 0
\(167\) −6.86336 16.5696i −0.531103 1.28220i −0.930793 0.365545i \(-0.880882\pi\)
0.399691 0.916650i \(-0.369118\pi\)
\(168\) 0 0
\(169\) 2.57988 6.22838i 0.198452 0.479106i
\(170\) 0 0
\(171\) 0.898212 0.733347i 0.0686880 0.0560805i
\(172\) 0 0
\(173\) 7.24199 + 10.8384i 0.550598 + 0.824029i 0.997508 0.0705503i \(-0.0224755\pi\)
−0.446910 + 0.894579i \(0.647476\pi\)
\(174\) 0 0
\(175\) −24.8381 + 24.8381i −1.87758 + 1.87758i
\(176\) 0 0
\(177\) −2.76232 11.0873i −0.207628 0.833372i
\(178\) 0 0
\(179\) 3.45085 + 5.16456i 0.257929 + 0.386018i 0.937722 0.347386i \(-0.112931\pi\)
−0.679794 + 0.733404i \(0.737931\pi\)
\(180\) 0 0
\(181\) 2.65101 + 13.3275i 0.197048 + 0.990627i 0.945049 + 0.326929i \(0.106014\pi\)
−0.748001 + 0.663698i \(0.768986\pi\)
\(182\) 0 0
\(183\) −5.81231 + 4.29931i −0.429658 + 0.317814i
\(184\) 0 0
\(185\) 8.48994 + 20.4965i 0.624193 + 1.50693i
\(186\) 0 0
\(187\) −4.09563 2.73661i −0.299502 0.200121i
\(188\) 0 0
\(189\) 3.33059 13.0855i 0.242265 0.951829i
\(190\) 0 0
\(191\) 13.5497 0.980420 0.490210 0.871604i \(-0.336920\pi\)
0.490210 + 0.871604i \(0.336920\pi\)
\(192\) 0 0
\(193\) −20.6394 −1.48566 −0.742830 0.669480i \(-0.766517\pi\)
−0.742830 + 0.669480i \(0.766517\pi\)
\(194\) 0 0
\(195\) −13.7999 12.5393i −0.988230 0.897960i
\(196\) 0 0
\(197\) −2.97611 1.98857i −0.212039 0.141680i 0.445016 0.895523i \(-0.353198\pi\)
−0.657055 + 0.753843i \(0.728198\pi\)
\(198\) 0 0
\(199\) −5.60732 13.5373i −0.397492 0.959631i −0.988259 0.152788i \(-0.951175\pi\)
0.590767 0.806842i \(-0.298825\pi\)
\(200\) 0 0
\(201\) 7.96898 + 10.7734i 0.562088 + 0.759896i
\(202\) 0 0
\(203\) 1.30979 + 6.58478i 0.0919295 + 0.462161i
\(204\) 0 0
\(205\) −11.1131 16.6319i −0.776169 1.16162i
\(206\) 0 0
\(207\) 8.56706 + 2.62249i 0.595452 + 0.182275i
\(208\) 0 0
\(209\) 1.00079 1.00079i 0.0692261 0.0692261i
\(210\) 0 0
\(211\) −10.2740 15.3761i −0.707289 1.05853i −0.994908 0.100788i \(-0.967864\pi\)
0.287619 0.957745i \(-0.407136\pi\)
\(212\) 0 0
\(213\) 3.97731 11.0717i 0.272521 0.758617i
\(214\) 0 0
\(215\) −15.8796 + 38.3367i −1.08298 + 2.61454i
\(216\) 0 0
\(217\) −2.02602 4.89125i −0.137535 0.332040i
\(218\) 0 0
\(219\) −26.2390 + 12.3695i −1.77307 + 0.835854i
\(220\) 0 0
\(221\) −3.30062 0.656535i −0.222024 0.0441633i
\(222\) 0 0
\(223\) 19.2274 1.28756 0.643782 0.765209i \(-0.277364\pi\)
0.643782 + 0.765209i \(0.277364\pi\)
\(224\) 0 0
\(225\) 35.8122 19.0256i 2.38748 1.26838i
\(226\) 0 0
\(227\) 1.97234 9.91561i 0.130909 0.658122i −0.858482 0.512844i \(-0.828592\pi\)
0.989391 0.145279i \(-0.0464079\pi\)
\(228\) 0 0
\(229\) 14.4937 + 9.68436i 0.957768 + 0.639960i 0.933055 0.359734i \(-0.117133\pi\)
0.0247136 + 0.999695i \(0.492133\pi\)
\(230\) 0 0
\(231\) 2.43890 16.2996i 0.160468 1.07243i
\(232\) 0 0
\(233\) −7.39105 3.06147i −0.484203 0.200564i 0.127209 0.991876i \(-0.459398\pi\)
−0.611412 + 0.791312i \(0.709398\pi\)
\(234\) 0 0
\(235\) −6.61434 33.2525i −0.431472 2.16916i
\(236\) 0 0
\(237\) −5.66163 + 0.270957i −0.367763 + 0.0176005i
\(238\) 0 0
\(239\) 8.30613 + 8.30613i 0.537279 + 0.537279i 0.922729 0.385450i \(-0.125954\pi\)
−0.385450 + 0.922729i \(0.625954\pi\)
\(240\) 0 0
\(241\) 3.01268 3.01268i 0.194063 0.194063i −0.603386 0.797449i \(-0.706182\pi\)
0.797449 + 0.603386i \(0.206182\pi\)
\(242\) 0 0
\(243\) −8.09851 + 13.3197i −0.519519 + 0.854459i
\(244\) 0 0
\(245\) 1.04374 0.207613i 0.0666821 0.0132639i
\(246\) 0 0
\(247\) 0.370038 0.893350i 0.0235449 0.0568425i
\(248\) 0 0
\(249\) −0.501606 + 3.35232i −0.0317880 + 0.212445i
\(250\) 0 0
\(251\) 7.23109 10.8221i 0.456422 0.683085i −0.529872 0.848077i \(-0.677760\pi\)
0.986295 + 0.164993i \(0.0527601\pi\)
\(252\) 0 0
\(253\) 10.7256 + 2.13345i 0.674311 + 0.134129i
\(254\) 0 0
\(255\) 5.16541 8.59329i 0.323471 0.538133i
\(256\) 0 0
\(257\) 27.8550i 1.73755i 0.495210 + 0.868773i \(0.335091\pi\)
−0.495210 + 0.868773i \(0.664909\pi\)
\(258\) 0 0
\(259\) −2.61366 + 13.1398i −0.162405 + 0.816464i
\(260\) 0 0
\(261\) 0.779237 7.71159i 0.0482336 0.477336i
\(262\) 0 0
\(263\) −10.8728 + 4.50368i −0.670448 + 0.277709i −0.691828 0.722063i \(-0.743194\pi\)
0.0213794 + 0.999771i \(0.493194\pi\)
\(264\) 0 0
\(265\) −5.96034 2.46885i −0.366141 0.151660i
\(266\) 0 0
\(267\) −2.56210 + 7.13211i −0.156798 + 0.436478i
\(268\) 0 0
\(269\) −3.40585 + 2.27572i −0.207658 + 0.138753i −0.655051 0.755585i \(-0.727353\pi\)
0.447392 + 0.894338i \(0.352353\pi\)
\(270\) 0 0
\(271\) 1.68641 + 1.68641i 0.102442 + 0.102442i 0.756470 0.654028i \(-0.226922\pi\)
−0.654028 + 0.756470i \(0.726922\pi\)
\(272\) 0 0
\(273\) −2.72210 10.9259i −0.164749 0.661263i
\(274\) 0 0
\(275\) 41.1553 27.4991i 2.48176 1.65826i
\(276\) 0 0
\(277\) 3.18127 0.632795i 0.191144 0.0380210i −0.0985898 0.995128i \(-0.531433\pi\)
0.289734 + 0.957107i \(0.406433\pi\)
\(278\) 0 0
\(279\) 0.583689 + 6.08412i 0.0349446 + 0.364246i
\(280\) 0 0
\(281\) −22.6232 + 9.37084i −1.34959 + 0.559018i −0.936178 0.351527i \(-0.885662\pi\)
−0.413410 + 0.910545i \(0.635662\pi\)
\(282\) 0 0
\(283\) −1.43456 + 2.14698i −0.0852760 + 0.127625i −0.871655 0.490119i \(-0.836953\pi\)
0.786379 + 0.617744i \(0.211953\pi\)
\(284\) 0 0
\(285\) 2.13213 + 1.93737i 0.126297 + 0.114760i
\(286\) 0 0
\(287\) 12.0793i 0.713020i
\(288\) 0 0
\(289\) 15.1904i 0.893554i
\(290\) 0 0
\(291\) −2.39584 2.17699i −0.140447 0.127617i
\(292\) 0 0
\(293\) −9.50218 + 14.2210i −0.555123 + 0.830800i −0.997828 0.0658668i \(-0.979019\pi\)
0.442705 + 0.896667i \(0.354019\pi\)
\(294\) 0 0
\(295\) 26.2269 10.8636i 1.52699 0.632500i
\(296\) 0 0
\(297\) −8.20028 + 17.1691i −0.475828 + 0.996251i
\(298\) 0 0
\(299\) 7.32771 1.45757i 0.423772 0.0842936i
\(300\) 0 0
\(301\) −20.8350 + 13.9215i −1.20091 + 0.802422i
\(302\) 0 0
\(303\) −5.75203 23.0873i −0.330445 1.32633i
\(304\) 0 0
\(305\) −12.7007 12.7007i −0.727242 0.727242i
\(306\) 0 0
\(307\) 6.85681 4.58157i 0.391339 0.261484i −0.344298 0.938860i \(-0.611883\pi\)
0.735637 + 0.677376i \(0.236883\pi\)
\(308\) 0 0
\(309\) −8.50912 + 23.6869i −0.484067 + 1.34750i
\(310\) 0 0
\(311\) −30.1840 12.5026i −1.71157 0.708958i −0.999980 0.00636791i \(-0.997973\pi\)
−0.711595 0.702590i \(-0.752027\pi\)
\(312\) 0 0
\(313\) −6.61643 + 2.74061i −0.373982 + 0.154909i −0.561754 0.827304i \(-0.689873\pi\)
0.187772 + 0.982213i \(0.439873\pi\)
\(314\) 0 0
\(315\) 33.3768 + 3.37264i 1.88057 + 0.190027i
\(316\) 0 0
\(317\) 3.68607 18.5311i 0.207031 1.04081i −0.727819 0.685769i \(-0.759466\pi\)
0.934850 0.355044i \(-0.115534\pi\)
\(318\) 0 0
\(319\) 9.46050i 0.529687i
\(320\) 0 0
\(321\) 1.95634 3.25460i 0.109192 0.181654i
\(322\) 0 0
\(323\) 0.509959 + 0.101437i 0.0283749 + 0.00564411i
\(324\) 0 0
\(325\) 18.7874 28.1173i 1.04214 1.55967i
\(326\) 0 0
\(327\) −4.40095 + 29.4123i −0.243373 + 1.62651i
\(328\) 0 0
\(329\) 7.83499 18.9153i 0.431957 1.04284i
\(330\) 0 0
\(331\) −19.6169 + 3.90204i −1.07824 + 0.214476i −0.702094 0.712084i \(-0.747751\pi\)
−0.376147 + 0.926560i \(0.622751\pi\)
\(332\) 0 0
\(333\) 7.32542 13.6219i 0.401431 0.746473i
\(334\) 0 0
\(335\) −23.5414 + 23.5414i −1.28620 + 1.28620i
\(336\) 0 0
\(337\) 3.84192 + 3.84192i 0.209283 + 0.209283i 0.803963 0.594680i \(-0.202721\pi\)
−0.594680 + 0.803963i \(0.702721\pi\)
\(338\) 0 0
\(339\) −21.8996 + 1.04808i −1.18942 + 0.0569238i
\(340\) 0 0
\(341\) 1.45542 + 7.31687i 0.0788152 + 0.396231i
\(342\) 0 0
\(343\) 17.3992 + 7.20700i 0.939471 + 0.389142i
\(344\) 0 0
\(345\) −3.29398 + 22.0142i −0.177342 + 1.18521i
\(346\) 0 0
\(347\) 14.6437 + 9.78460i 0.786114 + 0.525265i 0.882631 0.470067i \(-0.155770\pi\)
−0.0965168 + 0.995331i \(0.530770\pi\)
\(348\) 0 0
\(349\) −0.173660 + 0.873047i −0.00929580 + 0.0467332i −0.985155 0.171668i \(-0.945084\pi\)
0.975859 + 0.218402i \(0.0700842\pi\)
\(350\) 0 0
\(351\) −0.687124 + 12.9810i −0.0366760 + 0.692874i
\(352\) 0 0
\(353\) 33.0774 1.76053 0.880266 0.474481i \(-0.157364\pi\)
0.880266 + 0.474481i \(0.157364\pi\)
\(354\) 0 0
\(355\) 28.6663 + 5.70209i 1.52145 + 0.302636i
\(356\) 0 0
\(357\) 5.47660 2.58176i 0.289852 0.136641i
\(358\) 0 0
\(359\) 4.91221 + 11.8591i 0.259257 + 0.625901i 0.998890 0.0471093i \(-0.0150009\pi\)
−0.739633 + 0.673010i \(0.765001\pi\)
\(360\) 0 0
\(361\) 7.21381 17.4157i 0.379674 0.916615i
\(362\) 0 0
\(363\) −1.41019 + 3.92555i −0.0740157 + 0.206038i
\(364\) 0 0
\(365\) −40.0399 59.9240i −2.09579 3.13656i
\(366\) 0 0
\(367\) −0.647822 + 0.647822i −0.0338161 + 0.0338161i −0.723813 0.689997i \(-0.757612\pi\)
0.689997 + 0.723813i \(0.257612\pi\)
\(368\) 0 0
\(369\) −4.08185 + 13.3345i −0.212492 + 0.694164i
\(370\) 0 0
\(371\) −2.16443 3.23929i −0.112371 0.168176i
\(372\) 0 0
\(373\) 3.01645 + 15.1647i 0.156186 + 0.785200i 0.976873 + 0.213821i \(0.0685911\pi\)
−0.820687 + 0.571378i \(0.806409\pi\)
\(374\) 0 0
\(375\) 37.7524 + 51.0381i 1.94952 + 2.63559i
\(376\) 0 0
\(377\) −2.47344 5.97142i −0.127389 0.307544i
\(378\) 0 0
\(379\) 2.79369 + 1.86669i 0.143502 + 0.0958852i 0.625249 0.780425i \(-0.284997\pi\)
−0.481747 + 0.876311i \(0.659997\pi\)
\(380\) 0 0
\(381\) 21.9028 + 19.9021i 1.12212 + 1.01962i
\(382\) 0 0
\(383\) 23.3643 1.19386 0.596931 0.802293i \(-0.296387\pi\)
0.596931 + 0.802293i \(0.296387\pi\)
\(384\) 0 0
\(385\) 40.9463 2.08682
\(386\) 0 0
\(387\) 27.7043 8.32749i 1.40829 0.423310i
\(388\) 0 0
\(389\) 10.1512 + 6.78284i 0.514688 + 0.343904i 0.785635 0.618691i \(-0.212337\pi\)
−0.270946 + 0.962594i \(0.587337\pi\)
\(390\) 0 0
\(391\) 1.53741 + 3.71163i 0.0777501 + 0.187705i
\(392\) 0 0
\(393\) −2.21995 + 1.64207i −0.111981 + 0.0828316i
\(394\) 0 0
\(395\) −2.74729 13.8115i −0.138231 0.694934i
\(396\) 0 0
\(397\) 15.0250 + 22.4865i 0.754083 + 1.12856i 0.987719 + 0.156241i \(0.0499376\pi\)
−0.233636 + 0.972324i \(0.575062\pi\)
\(398\) 0 0
\(399\) 0.420574 + 1.68809i 0.0210551 + 0.0845101i
\(400\) 0 0
\(401\) 1.77953 1.77953i 0.0888656 0.0888656i −0.661277 0.750142i \(-0.729985\pi\)
0.750142 + 0.661277i \(0.229985\pi\)
\(402\) 0 0
\(403\) 2.83164 + 4.23785i 0.141054 + 0.211102i
\(404\) 0 0
\(405\) −35.7052 15.0018i −1.77420 0.745443i
\(406\) 0 0
\(407\) 7.22437 17.4412i 0.358099 0.864526i
\(408\) 0 0
\(409\) −7.30266 17.6302i −0.361093 0.871756i −0.995141 0.0984620i \(-0.968608\pi\)
0.634048 0.773294i \(-0.281392\pi\)
\(410\) 0 0
\(411\) −10.7390 22.7802i −0.529714 1.12366i
\(412\) 0 0
\(413\) 16.8134 + 3.34439i 0.827331 + 0.164566i
\(414\) 0 0
\(415\) −8.42137 −0.413389
\(416\) 0 0
\(417\) 4.49681 7.48099i 0.220210 0.366345i
\(418\) 0 0
\(419\) −2.89265 + 14.5424i −0.141315 + 0.710440i 0.843541 + 0.537066i \(0.180467\pi\)
−0.984856 + 0.173375i \(0.944533\pi\)
\(420\) 0 0
\(421\) −9.40305 6.28291i −0.458276 0.306211i 0.304919 0.952378i \(-0.401371\pi\)
−0.763195 + 0.646168i \(0.776371\pi\)
\(422\) 0 0
\(423\) −15.0410 + 18.2332i −0.731317 + 0.886528i
\(424\) 0 0
\(425\) 16.7996 + 6.95861i 0.814898 + 0.337542i
\(426\) 0 0
\(427\) −2.11606 10.6381i −0.102403 0.514816i
\(428\) 0 0
\(429\) 0.758475 + 15.8483i 0.0366195 + 0.765164i
\(430\) 0 0
\(431\) −0.840930 0.840930i −0.0405062 0.0405062i 0.686564 0.727070i \(-0.259118\pi\)
−0.727070 + 0.686564i \(0.759118\pi\)
\(432\) 0 0
\(433\) 0.498959 0.498959i 0.0239785 0.0239785i −0.695016 0.718994i \(-0.744603\pi\)
0.718994 + 0.695016i \(0.244603\pi\)
\(434\) 0 0
\(435\) 19.2346 0.920537i 0.922228 0.0441364i
\(436\) 0 0
\(437\) −1.13216 + 0.225200i −0.0541585 + 0.0107728i
\(438\) 0 0
\(439\) 5.55530 13.4117i 0.265140 0.640105i −0.734102 0.679040i \(-0.762396\pi\)
0.999242 + 0.0389347i \(0.0123964\pi\)
\(440\) 0 0
\(441\) −0.572309 0.472111i −0.0272528 0.0224815i
\(442\) 0 0
\(443\) 1.97447 2.95500i 0.0938100 0.140397i −0.781596 0.623785i \(-0.785594\pi\)
0.875406 + 0.483388i \(0.160594\pi\)
\(444\) 0 0
\(445\) −18.4662 3.67316i −0.875383 0.174125i
\(446\) 0 0
\(447\) 3.60438 + 2.16659i 0.170481 + 0.102476i
\(448\) 0 0
\(449\) 5.09669i 0.240527i −0.992742 0.120264i \(-0.961626\pi\)
0.992742 0.120264i \(-0.0383740\pi\)
\(450\) 0 0
\(451\) −3.32067 + 16.6941i −0.156364 + 0.786096i
\(452\) 0 0
\(453\) 1.99706 0.941450i 0.0938302 0.0442332i
\(454\) 0 0
\(455\) 25.8451 10.7054i 1.21164 0.501876i
\(456\) 0 0
\(457\) 32.8641 + 13.6128i 1.53732 + 0.636779i 0.980968 0.194169i \(-0.0622009\pi\)
0.556351 + 0.830947i \(0.312201\pi\)
\(458\) 0 0
\(459\) −6.91808 + 0.999374i −0.322908 + 0.0466468i
\(460\) 0 0
\(461\) 8.02408 5.36152i 0.373719 0.249711i −0.354500 0.935056i \(-0.615349\pi\)
0.728218 + 0.685345i \(0.240349\pi\)
\(462\) 0 0
\(463\) 13.9676 + 13.9676i 0.649129 + 0.649129i 0.952782 0.303654i \(-0.0982066\pi\)
−0.303654 + 0.952782i \(0.598207\pi\)
\(464\) 0 0
\(465\) −14.7346 + 3.67103i −0.683303 + 0.170240i
\(466\) 0 0
\(467\) 26.7190 17.8531i 1.23641 0.826141i 0.246678 0.969097i \(-0.420661\pi\)
0.989729 + 0.142957i \(0.0456610\pi\)
\(468\) 0 0
\(469\) −19.7183 + 3.92221i −0.910506 + 0.181111i
\(470\) 0 0
\(471\) −11.0072 14.8808i −0.507185 0.685672i
\(472\) 0 0
\(473\) 32.6219 13.5124i 1.49996 0.621303i
\(474\) 0 0
\(475\) −2.90272 + 4.34423i −0.133186 + 0.199327i
\(476\) 0 0
\(477\) 1.29470 + 4.30728i 0.0592804 + 0.197217i
\(478\) 0 0
\(479\) 6.21762i 0.284090i −0.989860 0.142045i \(-0.954632\pi\)
0.989860 0.142045i \(-0.0453678\pi\)
\(480\) 0 0
\(481\) 12.8976i 0.588079i
\(482\) 0 0
\(483\) −9.03961 + 9.94835i −0.411317 + 0.452665i
\(484\) 0 0
\(485\) 4.46823 6.68717i 0.202892 0.303649i
\(486\) 0 0
\(487\) −1.30351 + 0.539930i −0.0590676 + 0.0244666i −0.412022 0.911174i \(-0.635177\pi\)
0.352954 + 0.935641i \(0.385177\pi\)
\(488\) 0 0
\(489\) 11.0752 8.19223i 0.500838 0.370465i
\(490\) 0 0
\(491\) −10.3424 + 2.05722i −0.466744 + 0.0928411i −0.422859 0.906195i \(-0.638973\pi\)
−0.0438848 + 0.999037i \(0.513973\pi\)
\(492\) 0 0
\(493\) 2.88977 1.93088i 0.130149 0.0869627i
\(494\) 0 0
\(495\) −45.2009 13.8366i −2.03163 0.621907i
\(496\) 0 0
\(497\) 12.4805 + 12.4805i 0.559827 + 0.559827i
\(498\) 0 0
\(499\) 10.5229 7.03120i 0.471071 0.314760i −0.297277 0.954791i \(-0.596079\pi\)
0.768349 + 0.640031i \(0.221079\pi\)
\(500\) 0 0
\(501\) −29.2349 10.5022i −1.30612 0.469202i
\(502\) 0 0
\(503\) −6.66908 2.76242i −0.297360 0.123170i 0.229016 0.973423i \(-0.426449\pi\)
−0.526375 + 0.850252i \(0.676449\pi\)
\(504\) 0 0
\(505\) 54.6129 22.6214i 2.43024 1.00664i
\(506\) 0 0
\(507\) −4.97907 10.5619i −0.221128 0.469071i
\(508\) 0 0
\(509\) −1.85153 + 9.30829i −0.0820678 + 0.412583i 0.917811 + 0.397018i \(0.129955\pi\)
−0.999879 + 0.0155653i \(0.995045\pi\)
\(510\) 0 0
\(511\) 43.5214i 1.92527i
\(512\) 0 0
\(513\) 0.106163 2.00561i 0.00468722 0.0885499i
\(514\) 0 0
\(515\) −61.3293 12.1991i −2.70249 0.537559i
\(516\) 0 0
\(517\) −16.0282 + 23.9879i −0.704920 + 1.05499i
\(518\) 0 0
\(519\) 22.3291 + 3.34110i 0.980140 + 0.146658i
\(520\) 0 0
\(521\) 6.13573 14.8130i 0.268811 0.648968i −0.730617 0.682788i \(-0.760767\pi\)
0.999428 + 0.0338199i \(0.0107673\pi\)
\(522\) 0 0
\(523\) 31.6109 6.28780i 1.38225 0.274946i 0.552699 0.833381i \(-0.313598\pi\)
0.829548 + 0.558435i \(0.188598\pi\)
\(524\) 0 0
\(525\) 2.90841 + 60.7710i 0.126933 + 2.65226i
\(526\) 0 0
\(527\) −1.93794 + 1.93794i −0.0844178 + 0.0844178i
\(528\) 0 0
\(529\) 9.95669 + 9.95669i 0.432900 + 0.432900i
\(530\) 0 0
\(531\) −17.4303 9.37346i −0.756409 0.406773i
\(532\) 0 0
\(533\) 2.26868 + 11.4054i 0.0982675 + 0.494024i
\(534\) 0 0
\(535\) 8.71611 + 3.61033i 0.376830 + 0.156088i
\(536\) 0 0
\(537\) 10.6400 + 1.59205i 0.459148 + 0.0687021i
\(538\) 0 0
\(539\) −0.752940 0.503098i −0.0324314 0.0216700i
\(540\) 0 0
\(541\) 5.30294 26.6597i 0.227991 1.14619i −0.681933 0.731414i \(-0.738861\pi\)
0.909924 0.414774i \(-0.136139\pi\)
\(542\) 0 0
\(543\) 20.1723 + 12.1256i 0.865678 + 0.520357i
\(544\) 0 0
\(545\) −73.8869 −3.16497
\(546\) 0 0
\(547\) −2.89843 0.576533i −0.123928 0.0246508i 0.132737 0.991151i \(-0.457624\pi\)
−0.256664 + 0.966501i \(0.582624\pi\)
\(548\) 0 0
\(549\) −1.25891 + 12.4586i −0.0537289 + 0.531719i
\(550\) 0 0
\(551\) 0.382156 + 0.922607i 0.0162804 + 0.0393044i
\(552\) 0 0
\(553\) 3.25429 7.85655i 0.138386 0.334095i
\(554\) 0 0
\(555\) 36.1634 + 12.9911i 1.53505 + 0.551442i
\(556\) 0 0
\(557\) 9.09602 + 13.6132i 0.385411 + 0.576808i 0.972555 0.232675i \(-0.0747477\pi\)
−0.587144 + 0.809483i \(0.699748\pi\)
\(558\) 0 0
\(559\) 17.0580 17.0580i 0.721475 0.721475i
\(560\) 0 0
\(561\) −8.27862 + 2.06256i −0.349524 + 0.0870812i
\(562\) 0 0
\(563\) −19.5452 29.2515i −0.823732 1.23280i −0.969891 0.243541i \(-0.921691\pi\)
0.146159 0.989261i \(-0.453309\pi\)
\(564\) 0 0
\(565\) −10.6267 53.4239i −0.447068 2.24756i
\(566\) 0 0
\(567\) −12.8947 19.5114i −0.541527 0.819402i
\(568\) 0 0
\(569\) 7.42318 + 17.9211i 0.311196 + 0.751293i 0.999661 + 0.0260241i \(0.00828468\pi\)
−0.688465 + 0.725269i \(0.741715\pi\)
\(570\) 0 0
\(571\) −25.4369 16.9964i −1.06450 0.711277i −0.105426 0.994427i \(-0.533621\pi\)
−0.959076 + 0.283150i \(0.908621\pi\)
\(572\) 0 0
\(573\) 15.7826 17.3692i 0.659329 0.725610i
\(574\) 0 0
\(575\) −40.3696 −1.68353
\(576\) 0 0
\(577\) −13.6429 −0.567963 −0.283982 0.958830i \(-0.591655\pi\)
−0.283982 + 0.958830i \(0.591655\pi\)
\(578\) 0 0
\(579\) −24.0408 + 26.4575i −0.999100 + 1.09954i
\(580\) 0 0
\(581\) −4.22842 2.82534i −0.175424 0.117215i
\(582\) 0 0
\(583\) 2.10083 + 5.07185i 0.0870074 + 0.210054i
\(584\) 0 0
\(585\) −32.1481 + 3.08418i −1.32916 + 0.127515i
\(586\) 0 0
\(587\) 4.83875 + 24.3260i 0.199717 + 1.00404i 0.942422 + 0.334425i \(0.108542\pi\)
−0.742706 + 0.669618i \(0.766458\pi\)
\(588\) 0 0
\(589\) −0.437499 0.654764i −0.0180268 0.0269791i
\(590\) 0 0
\(591\) −6.01569 + 1.49877i −0.247453 + 0.0616510i
\(592\) 0 0
\(593\) 9.31734 9.31734i 0.382617 0.382617i −0.489427 0.872044i \(-0.662794\pi\)
0.872044 + 0.489427i \(0.162794\pi\)
\(594\) 0 0
\(595\) 8.35712 + 12.5073i 0.342608 + 0.512750i
\(596\) 0 0
\(597\) −23.8847 8.58019i −0.977535 0.351164i
\(598\) 0 0
\(599\) −0.450558 + 1.08774i −0.0184093 + 0.0444440i −0.932817 0.360351i \(-0.882657\pi\)
0.914408 + 0.404795i \(0.132657\pi\)
\(600\) 0 0
\(601\) −9.25984 22.3552i −0.377717 0.911889i −0.992393 0.123110i \(-0.960713\pi\)
0.614676 0.788780i \(-0.289287\pi\)
\(602\) 0 0
\(603\) 23.0926 + 2.33345i 0.940402 + 0.0950252i
\(604\) 0 0
\(605\) −10.1639 2.02172i −0.413221 0.0821948i
\(606\) 0 0
\(607\) −47.3452 −1.92168 −0.960840 0.277103i \(-0.910626\pi\)
−0.960840 + 0.277103i \(0.910626\pi\)
\(608\) 0 0
\(609\) 9.96662 + 5.99092i 0.403868 + 0.242764i
\(610\) 0 0
\(611\) −3.84529 + 19.3316i −0.155564 + 0.782073i
\(612\) 0 0
\(613\) 0.532520 + 0.355818i 0.0215083 + 0.0143714i 0.566278 0.824214i \(-0.308383\pi\)
−0.544770 + 0.838586i \(0.683383\pi\)
\(614\) 0 0
\(615\) −34.2647 5.12701i −1.38169 0.206741i
\(616\) 0 0
\(617\) −15.4604 6.40389i −0.622411 0.257811i 0.0491140 0.998793i \(-0.484360\pi\)
−0.671525 + 0.740982i \(0.734360\pi\)
\(618\) 0 0
\(619\) 8.36961 + 42.0769i 0.336403 + 1.69121i 0.665081 + 0.746771i \(0.268397\pi\)
−0.328678 + 0.944442i \(0.606603\pi\)
\(620\) 0 0
\(621\) 13.3406 7.92739i 0.535341 0.318115i
\(622\) 0 0
\(623\) −8.03966 8.03966i −0.322102 0.322102i
\(624\) 0 0
\(625\) −63.7341 + 63.7341i −2.54937 + 2.54937i
\(626\) 0 0
\(627\) −0.117187 2.44862i −0.00468001 0.0977886i
\(628\) 0 0
\(629\) 6.80201 1.35300i 0.271214 0.0539478i
\(630\) 0 0
\(631\) −8.07387 + 19.4920i −0.321416 + 0.775966i 0.677757 + 0.735286i \(0.262952\pi\)
−0.999172 + 0.0406796i \(0.987048\pi\)
\(632\) 0 0
\(633\) −31.6775 4.73990i −1.25907 0.188394i
\(634\) 0 0
\(635\) −40.8487 + 61.1344i −1.62103 + 2.42604i
\(636\) 0 0
\(637\) −0.606786 0.120697i −0.0240417 0.00478220i
\(638\) 0 0
\(639\) −9.55990 17.9947i −0.378184 0.711860i
\(640\) 0 0
\(641\) 37.3054i 1.47347i 0.676180 + 0.736736i \(0.263634\pi\)
−0.676180 + 0.736736i \(0.736366\pi\)
\(642\) 0 0
\(643\) 0.437593 2.19993i 0.0172570 0.0867567i −0.971197 0.238278i \(-0.923417\pi\)
0.988454 + 0.151521i \(0.0484171\pi\)
\(644\) 0 0
\(645\) 30.6470 + 65.0103i 1.20672 + 2.55978i
\(646\) 0 0
\(647\) 13.8914 5.75400i 0.546126 0.226213i −0.0925234 0.995711i \(-0.529493\pi\)
0.638650 + 0.769498i \(0.279493\pi\)
\(648\) 0 0
\(649\) −22.3174 9.24415i −0.876033 0.362865i
\(650\) 0 0
\(651\) −8.62995 3.10017i −0.338235 0.121505i
\(652\) 0 0
\(653\) 20.8375 13.9232i 0.815433 0.544855i −0.0764751 0.997071i \(-0.524367\pi\)
0.891908 + 0.452216i \(0.149367\pi\)
\(654\) 0 0
\(655\) −4.85090 4.85090i −0.189540 0.189540i
\(656\) 0 0
\(657\) −14.7067 + 48.0435i −0.573764 + 1.87436i
\(658\) 0 0
\(659\) −24.4240 + 16.3196i −0.951426 + 0.635722i −0.931369 0.364076i \(-0.881385\pi\)
−0.0200567 + 0.999799i \(0.506385\pi\)
\(660\) 0 0
\(661\) 37.5355 7.46628i 1.45996 0.290405i 0.599687 0.800235i \(-0.295292\pi\)
0.860275 + 0.509830i \(0.170292\pi\)
\(662\) 0 0
\(663\) −4.68617 + 3.46631i −0.181996 + 0.134620i
\(664\) 0 0
\(665\) −3.99316 + 1.65402i −0.154848 + 0.0641402i
\(666\) 0 0
\(667\) −4.28675 + 6.41558i −0.165984 + 0.248412i
\(668\) 0 0
\(669\) 22.3961 24.6475i 0.865881 0.952927i
\(670\) 0 0
\(671\) 15.2841i 0.590035i
\(672\) 0 0
\(673\) 17.2901i 0.666486i −0.942841 0.333243i \(-0.891857\pi\)
0.942841 0.333243i \(-0.108143\pi\)
\(674\) 0 0
\(675\) 17.3251 68.0684i 0.666844 2.61995i
\(676\) 0 0
\(677\) −0.0350577 + 0.0524676i −0.00134738 + 0.00201649i −0.832143 0.554562i \(-0.812886\pi\)
0.830795 + 0.556578i \(0.187886\pi\)
\(678\) 0 0
\(679\) 4.48704 1.85859i 0.172197 0.0713263i
\(680\) 0 0
\(681\) −10.4134 14.0780i −0.399041 0.539470i
\(682\) 0 0
\(683\) 25.4364 5.05961i 0.973297 0.193601i 0.317267 0.948336i \(-0.397235\pi\)
0.656029 + 0.754735i \(0.272235\pi\)
\(684\) 0 0
\(685\) 52.0248 34.7619i 1.98777 1.32818i
\(686\) 0 0
\(687\) 29.2965 7.29900i 1.11773 0.278474i
\(688\) 0 0
\(689\) 2.65206 + 2.65206i 0.101036 + 0.101036i
\(690\) 0 0
\(691\) 31.0818 20.7682i 1.18241 0.790059i 0.200550 0.979683i \(-0.435727\pi\)
0.981857 + 0.189624i \(0.0607270\pi\)
\(692\) 0 0
\(693\) −18.0535 22.1121i −0.685795 0.839970i
\(694\) 0 0
\(695\) 20.0347 + 8.29866i 0.759961 + 0.314786i
\(696\) 0 0
\(697\) −5.77708 + 2.39294i −0.218822 + 0.0906392i
\(698\) 0 0
\(699\) −12.5335 + 5.90853i −0.474062 + 0.223481i
\(700\) 0 0
\(701\) −6.43348 + 32.3433i −0.242989 + 1.22159i 0.645884 + 0.763436i \(0.276489\pi\)
−0.888873 + 0.458154i \(0.848511\pi\)
\(702\) 0 0
\(703\) 1.99272i 0.0751570i
\(704\) 0 0
\(705\) −50.3305 30.2536i −1.89556 1.13942i
\(706\) 0 0
\(707\) 35.0108 + 6.96408i 1.31672 + 0.261911i
\(708\) 0 0
\(709\) 13.2204 19.7857i 0.496502 0.743067i −0.495593 0.868555i \(-0.665049\pi\)
0.992095 + 0.125487i \(0.0400494\pi\)
\(710\) 0 0
\(711\) −6.24732 + 7.57321i −0.234293 + 0.284018i
\(712\) 0 0
\(713\) 2.32845 5.62136i 0.0872010 0.210522i
\(714\) 0 0
\(715\) −38.6619 + 7.69033i −1.44587 + 0.287602i
\(716\) 0 0
\(717\) 20.3225 0.972604i 0.758958 0.0363226i
\(718\) 0 0
\(719\) 17.8047 17.8047i 0.664002 0.664002i −0.292319 0.956321i \(-0.594427\pi\)
0.956321 + 0.292319i \(0.0944270\pi\)
\(720\) 0 0
\(721\) −26.7010 26.7010i −0.994396 0.994396i
\(722\) 0 0
\(723\) −0.352768 7.37108i −0.0131196 0.274133i
\(724\) 0 0
\(725\) 6.81332 + 34.2529i 0.253040 + 1.27212i
\(726\) 0 0
\(727\) −22.6315 9.37426i −0.839355 0.347672i −0.0787556 0.996894i \(-0.525095\pi\)
−0.760599 + 0.649222i \(0.775095\pi\)
\(728\) 0 0
\(729\) 7.64129 + 25.8962i 0.283011 + 0.959117i
\(730\) 0 0
\(731\) 10.7856 + 7.20670i 0.398919 + 0.266549i
\(732\) 0 0
\(733\) −9.77199 + 49.1271i −0.360937 + 1.81455i 0.192078 + 0.981380i \(0.438477\pi\)
−0.553015 + 0.833171i \(0.686523\pi\)
\(734\) 0 0
\(735\) 0.949609 1.57979i 0.0350268 0.0582714i
\(736\) 0 0
\(737\) 28.3297 1.04354
\(738\) 0 0
\(739\) −28.8194 5.73254i −1.06014 0.210875i −0.365926 0.930644i \(-0.619248\pi\)
−0.694214 + 0.719769i \(0.744248\pi\)
\(740\) 0 0
\(741\) −0.714159 1.51492i −0.0262353 0.0556520i
\(742\) 0 0
\(743\) 15.3189 + 36.9832i 0.561997 + 1.35678i 0.908166 + 0.418609i \(0.137482\pi\)
−0.346169 + 0.938172i \(0.612518\pi\)
\(744\) 0 0
\(745\) −3.99834 + 9.65285i −0.146488 + 0.353653i
\(746\) 0 0
\(747\) 3.71304 + 4.54778i 0.135853 + 0.166394i
\(748\) 0 0
\(749\) 3.16515 + 4.73699i 0.115652 + 0.173086i
\(750\) 0 0
\(751\) 0.644925 0.644925i 0.0235337 0.0235337i −0.695242 0.718776i \(-0.744703\pi\)
0.718776 + 0.695242i \(0.244703\pi\)
\(752\) 0 0
\(753\) −5.45000 21.8750i −0.198609 0.797170i
\(754\) 0 0
\(755\) 3.04746 + 4.56084i 0.110908 + 0.165986i
\(756\) 0 0
\(757\) 2.74459 + 13.7980i 0.0997538 + 0.501496i 0.998067 + 0.0621412i \(0.0197929\pi\)
−0.898314 + 0.439355i \(0.855207\pi\)
\(758\) 0 0
\(759\) 15.2280 11.2640i 0.552740 0.408857i
\(760\) 0 0
\(761\) 0.456572 + 1.10226i 0.0165507 + 0.0399570i 0.931939 0.362615i \(-0.118116\pi\)
−0.915388 + 0.402572i \(0.868116\pi\)
\(762\) 0 0
\(763\) −37.0990 24.7888i −1.34307 0.897413i
\(764\) 0 0
\(765\) −4.99901 16.6309i −0.180740 0.601293i
\(766\) 0 0
\(767\) −16.5035 −0.595906
\(768\) 0 0
\(769\) 17.8345 0.643128 0.321564 0.946888i \(-0.395792\pi\)
0.321564 + 0.946888i \(0.395792\pi\)
\(770\) 0 0
\(771\) 35.7071 + 32.4454i 1.28596 + 1.16849i
\(772\) 0 0
\(773\) −30.0410 20.0728i −1.08050 0.721968i −0.117937 0.993021i \(-0.537628\pi\)
−0.962564 + 0.271053i \(0.912628\pi\)
\(774\) 0 0
\(775\) −10.5390 25.4434i −0.378572 0.913954i
\(776\) 0 0
\(777\) 13.7994 + 18.6556i 0.495049 + 0.669265i
\(778\) 0 0
\(779\) −0.350520 1.76218i −0.0125587 0.0631367i
\(780\) 0 0
\(781\) −13.8176 20.6795i −0.494433 0.739971i
\(782\) 0 0
\(783\) −8.97778 9.98134i −0.320840 0.356704i
\(784\) 0 0
\(785\) 32.5167 32.5167i 1.16057 1.16057i
\(786\) 0 0
\(787\) 28.9404 + 43.3124i 1.03161 + 1.54392i 0.824708 + 0.565558i \(0.191339\pi\)
0.206906 + 0.978361i \(0.433661\pi\)
\(788\) 0 0
\(789\) −6.89143 + 19.1837i −0.245341 + 0.682957i
\(790\) 0 0
\(791\) 12.5878 30.3896i 0.447571 1.08053i
\(792\) 0 0
\(793\) 3.99601 + 9.64722i 0.141902 + 0.342583i
\(794\) 0 0
\(795\) −10.1074 + 4.76480i −0.358472 + 0.168990i
\(796\) 0 0
\(797\) 16.5418 + 3.29037i 0.585942 + 0.116551i 0.479154 0.877731i \(-0.340944\pi\)
0.106788 + 0.994282i \(0.465944\pi\)
\(798\) 0 0
\(799\) −10.5986 −0.374952
\(800\) 0 0
\(801\) 6.15828 + 11.5918i 0.217592 + 0.409576i
\(802\) 0 0
\(803\) −11.9642 + 60.1483i −0.422209 + 2.12259i
\(804\) 0 0
\(805\) −27.7675 18.5536i −0.978674 0.653929i
\(806\) 0 0
\(807\) −1.04990 + 7.01668i −0.0369583 + 0.246999i
\(808\) 0 0
\(809\) −39.8340 16.4998i −1.40049 0.580102i −0.450611 0.892721i \(-0.648794\pi\)
−0.949879 + 0.312619i \(0.898794\pi\)
\(810\) 0 0
\(811\) −9.67058 48.6173i −0.339580 1.70718i −0.652823 0.757510i \(-0.726416\pi\)
0.313243 0.949673i \(-0.398584\pi\)
\(812\) 0 0
\(813\) 4.12613 0.197470i 0.144710 0.00692558i
\(814\) 0 0
\(815\) 24.2009 + 24.2009i 0.847721 + 0.847721i
\(816\) 0 0
\(817\) −2.63552 + 2.63552i −0.0922051 + 0.0922051i
\(818\) 0 0
\(819\) −17.1765 9.23698i −0.600194 0.322766i
\(820\) 0 0
\(821\) 17.9426 3.56901i 0.626203 0.124559i 0.128219 0.991746i \(-0.459074\pi\)
0.497984 + 0.867186i \(0.334074\pi\)
\(822\) 0 0
\(823\) −5.19727 + 12.5473i −0.181165 + 0.437372i −0.988207 0.153122i \(-0.951067\pi\)
0.807042 + 0.590494i \(0.201067\pi\)
\(824\) 0 0
\(825\) 12.6867 84.7876i 0.441695 2.95192i
\(826\) 0 0
\(827\) 16.4642 24.6404i 0.572516 0.856831i −0.426344 0.904561i \(-0.640199\pi\)
0.998860 + 0.0477298i \(0.0151986\pi\)
\(828\) 0 0
\(829\) −16.2671 3.23572i −0.564979 0.112381i −0.0956663 0.995413i \(-0.530498\pi\)
−0.469312 + 0.883032i \(0.655498\pi\)
\(830\) 0 0
\(831\) 2.89436 4.81513i 0.100404 0.167035i
\(832\) 0 0
\(833\) 0.332672i 0.0115264i
\(834\) 0 0
\(835\) 15.0565 75.6940i 0.521051 2.61950i
\(836\) 0 0
\(837\) 8.47906 + 6.33853i 0.293079 + 0.219092i
\(838\) 0 0
\(839\) 45.1745 18.7119i 1.55960 0.646006i 0.574578 0.818450i \(-0.305166\pi\)
0.985019 + 0.172444i \(0.0551662\pi\)
\(840\) 0 0
\(841\) −20.6255 8.54337i −0.711225 0.294599i
\(842\) 0 0
\(843\) −14.3391 + 39.9157i −0.493863 + 1.37477i
\(844\) 0 0
\(845\) 24.1211 16.1172i 0.829789 0.554448i
\(846\) 0 0
\(847\) −4.42506 4.42506i −0.152047 0.152047i
\(848\) 0 0
\(849\) 1.08122 + 4.33975i 0.0371073 + 0.148940i
\(850\) 0 0
\(851\) −12.8021 + 8.55410i −0.438851 + 0.293231i
\(852\) 0 0
\(853\) 25.6899 5.11004i 0.879606 0.174965i 0.265427 0.964131i \(-0.414487\pi\)
0.614179 + 0.789166i \(0.289487\pi\)
\(854\) 0 0
\(855\) 4.96701 0.476518i 0.169868 0.0162966i
\(856\) 0 0
\(857\) −30.8971 + 12.7980i −1.05543 + 0.437172i −0.841826 0.539749i \(-0.818519\pi\)
−0.213600 + 0.976921i \(0.568519\pi\)
\(858\) 0 0
\(859\) −16.0686 + 24.0483i −0.548252 + 0.820517i −0.997334 0.0729736i \(-0.976751\pi\)
0.449082 + 0.893491i \(0.351751\pi\)
\(860\) 0 0
\(861\) −15.4844 14.0700i −0.527707 0.479503i
\(862\) 0 0
\(863\) 44.8567i 1.52694i −0.645843 0.763470i \(-0.723494\pi\)
0.645843 0.763470i \(-0.276506\pi\)
\(864\) 0 0
\(865\) 56.0931i 1.90722i
\(866\) 0 0
\(867\) 19.4725 + 17.6938i 0.661320 + 0.600912i
\(868\) 0 0
\(869\) −6.65737 + 9.96345i −0.225836 + 0.337987i
\(870\) 0 0
\(871\) 17.8816 7.40679i 0.605894 0.250969i
\(872\) 0 0
\(873\) −5.58133 + 0.535454i −0.188899 + 0.0181224i
\(874\) 0 0
\(875\) −93.4139 + 18.5812i −3.15796 + 0.628158i
\(876\) 0 0
\(877\) −16.5425 + 11.0534i −0.558602 + 0.373246i −0.802589 0.596533i \(-0.796545\pi\)
0.243987 + 0.969779i \(0.421545\pi\)
\(878\) 0 0
\(879\) 7.16169 + 28.7454i 0.241558 + 0.969557i
\(880\) 0 0
\(881\) 29.6126 + 29.6126i 0.997673 + 0.997673i 0.999997 0.00232406i \(-0.000739773\pi\)
−0.00232406 + 0.999997i \(0.500740\pi\)
\(882\) 0 0
\(883\) 34.3003 22.9187i 1.15430 0.771277i 0.177222 0.984171i \(-0.443289\pi\)
0.977075 + 0.212894i \(0.0682889\pi\)
\(884\) 0 0
\(885\) 16.6232 46.2739i 0.558782 1.55548i
\(886\) 0 0
\(887\) −17.2802 7.15771i −0.580214 0.240332i 0.0732204 0.997316i \(-0.476672\pi\)
−0.653434 + 0.756983i \(0.726672\pi\)
\(888\) 0 0
\(889\) −41.0207 + 16.9913i −1.37579 + 0.569871i
\(890\) 0 0
\(891\) 12.4573 + 30.5104i 0.417334 + 1.02214i
\(892\) 0 0
\(893\) 0.594112 2.98680i 0.0198812 0.0999496i
\(894\) 0 0
\(895\) 26.7287i 0.893441i
\(896\) 0 0
\(897\) 6.66685 11.0911i 0.222600 0.370321i
\(898\) 0 0
\(899\) −5.16260 1.02690i −0.172182 0.0342492i
\(900\) 0 0
\(901\) −1.12045 + 1.67687i −0.0373276 + 0.0558648i
\(902\) 0 0
\(903\) −6.42269 + 42.9240i −0.213734 + 1.42842i
\(904\) 0 0
\(905\) −22.3772 + 54.0233i −0.743843 + 1.79580i
\(906\) 0 0
\(907\) 6.74321 1.34131i 0.223905 0.0445374i −0.0818628 0.996644i \(-0.526087\pi\)
0.305768 + 0.952106i \(0.401087\pi\)
\(908\) 0 0
\(909\) −36.2954 19.5185i −1.20384 0.647389i
\(910\) 0 0
\(911\) 7.04481 7.04481i 0.233405 0.233405i −0.580707 0.814112i \(-0.697224\pi\)
0.814112 + 0.580707i \(0.197224\pi\)
\(912\) 0 0
\(913\) 5.06714 + 5.06714i 0.167698 + 0.167698i
\(914\) 0 0
\(915\) −31.0747 + 1.48719i −1.02730 + 0.0491649i
\(916\) 0 0
\(917\) −0.808204 4.06312i −0.0266893 0.134176i
\(918\) 0 0
\(919\) 47.5960 + 19.7149i 1.57005 + 0.650335i 0.986798 0.161959i \(-0.0517811\pi\)
0.583249 + 0.812293i \(0.301781\pi\)
\(920\) 0 0
\(921\) 2.11371 14.1263i 0.0696491 0.465477i
\(922\) 0 0
\(923\) −14.1282 9.44019i −0.465037 0.310728i
\(924\) 0 0
\(925\) −13.5958 + 68.3506i −0.447027 + 2.24735i
\(926\) 0 0
\(927\) 20.4526 + 38.4982i 0.671752 + 1.26445i
\(928\) 0 0
\(929\) 2.02612 0.0664748 0.0332374 0.999447i \(-0.489418\pi\)
0.0332374 + 0.999447i \(0.489418\pi\)
\(930\) 0 0
\(931\) 0.0937507 + 0.0186482i 0.00307256 + 0.000611169i
\(932\) 0 0
\(933\) −51.1852 + 24.1296i −1.67573 + 0.789967i
\(934\) 0 0
\(935\) −8.11156 19.5830i −0.265276 0.640433i
\(936\) 0 0
\(937\) −0.987795 + 2.38475i −0.0322699 + 0.0779063i −0.939193 0.343390i \(-0.888425\pi\)
0.906923 + 0.421296i \(0.138425\pi\)
\(938\) 0 0
\(939\) −4.19362 + 11.6738i −0.136854 + 0.380960i
\(940\) 0 0
\(941\) 2.09080 + 3.12910i 0.0681580 + 0.102006i 0.863983 0.503521i \(-0.167962\pi\)
−0.795825 + 0.605527i \(0.792962\pi\)
\(942\) 0 0
\(943\) 9.81635 9.81635i 0.319664 0.319664i
\(944\) 0 0
\(945\) 43.2005 38.8570i 1.40531 1.26402i
\(946\) 0 0
\(947\) 16.2924 + 24.3833i 0.529432 + 0.792352i 0.995734 0.0922743i \(-0.0294137\pi\)
−0.466301 + 0.884626i \(0.654414\pi\)
\(948\) 0 0
\(949\) 8.17397 + 41.0933i 0.265338 + 1.33395i
\(950\) 0 0
\(951\) −19.4614 26.3102i −0.631079 0.853166i
\(952\) 0 0
\(953\) −12.0888 29.1848i −0.391593 0.945389i −0.989593 0.143893i \(-0.954038\pi\)
0.598000 0.801496i \(-0.295962\pi\)
\(954\) 0 0
\(955\) 48.4803 + 32.3935i 1.56879 + 1.04823i
\(956\) 0 0
\(957\) −12.1273 11.0196i −0.392021 0.356212i
\(958\) 0 0
\(959\) 37.7844 1.22012
\(960\) 0 0
\(961\) −26.8492 −0.866103
\(962\) 0 0
\(963\) −1.89331 6.29876i −0.0610112 0.202975i
\(964\) 0 0
\(965\) −73.8473 49.3432i −2.37723 1.58841i
\(966\) 0 0
\(967\) 16.2050 + 39.1222i 0.521116 + 1.25809i 0.937210 + 0.348764i \(0.113399\pi\)
−0.416094 + 0.909321i \(0.636601\pi\)
\(968\) 0 0
\(969\) 0.724030 0.535559i 0.0232592 0.0172046i
\(970\) 0 0
\(971\) −8.80545 44.2680i −0.282580 1.42063i −0.817600 0.575787i \(-0.804696\pi\)
0.535019 0.844840i \(-0.320304\pi\)
\(972\) 0 0
\(973\) 7.27538 + 10.8884i 0.233238 + 0.349065i
\(974\) 0 0
\(975\) −14.1599 56.8344i −0.453479 1.82016i
\(976\) 0 0
\(977\) −8.81730 + 8.81730i −0.282090 + 0.282090i −0.833942 0.551852i \(-0.813921\pi\)
0.551852 + 0.833942i \(0.313921\pi\)
\(978\) 0 0
\(979\) 8.90099 + 13.3213i 0.284477 + 0.425750i
\(980\) 0 0
\(981\) 32.5772 + 39.9010i 1.04011 + 1.27394i
\(982\) 0 0
\(983\) −16.0320 + 38.7047i −0.511341 + 1.23449i 0.431762 + 0.901988i \(0.357892\pi\)
−0.943103 + 0.332500i \(0.892108\pi\)
\(984\) 0 0
\(985\) −5.89430 14.2301i −0.187808 0.453408i
\(986\) 0 0
\(987\) −15.1213 32.0762i −0.481315 1.02100i
\(988\) 0 0
\(989\) −28.2451 5.61830i −0.898142 0.178652i
\(990\) 0 0
\(991\) −30.3970 −0.965592 −0.482796 0.875733i \(-0.660379\pi\)
−0.482796 + 0.875733i \(0.660379\pi\)
\(992\) 0 0
\(993\) −17.8477 + 29.6918i −0.566380 + 0.942241i
\(994\) 0 0
\(995\) 12.3010 61.8414i 0.389969 1.96051i
\(996\) 0 0
\(997\) −2.67064 1.78447i −0.0845801 0.0565146i 0.512561 0.858651i \(-0.328697\pi\)
−0.597141 + 0.802136i \(0.703697\pi\)
\(998\) 0 0
\(999\) −8.92912 25.2571i −0.282505 0.799099i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.2.s.a.47.23 240
3.2 odd 2 inner 768.2.s.a.47.12 240
4.3 odd 2 192.2.s.a.35.20 yes 240
12.11 even 2 192.2.s.a.35.11 yes 240
64.11 odd 16 inner 768.2.s.a.719.12 240
64.53 even 16 192.2.s.a.11.11 240
192.11 even 16 inner 768.2.s.a.719.23 240
192.53 odd 16 192.2.s.a.11.20 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.2.s.a.11.11 240 64.53 even 16
192.2.s.a.11.20 yes 240 192.53 odd 16
192.2.s.a.35.11 yes 240 12.11 even 2
192.2.s.a.35.20 yes 240 4.3 odd 2
768.2.s.a.47.12 240 3.2 odd 2 inner
768.2.s.a.47.23 240 1.1 even 1 trivial
768.2.s.a.719.12 240 64.11 odd 16 inner
768.2.s.a.719.23 240 192.11 even 16 inner