Properties

Label 768.2.s.a.431.23
Level $768$
Weight $2$
Character 768.431
Analytic conductor $6.133$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,2,Mod(47,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.s (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 431.23
Character \(\chi\) \(=\) 768.431
Dual form 768.2.s.a.335.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25794 - 1.19062i) q^{3} +(1.50066 - 2.24589i) q^{5} +(0.0860024 + 0.207628i) q^{7} +(0.164844 - 2.99547i) q^{9} +(-3.68379 + 0.732751i) q^{11} +(-1.53272 + 1.02413i) q^{13} +(-0.786264 - 4.61192i) q^{15} +(4.44652 - 4.44652i) q^{17} +(3.66999 - 2.45221i) q^{19} +(0.355392 + 0.158788i) q^{21} +(1.88615 - 4.55357i) q^{23} +(-0.878641 - 2.12123i) q^{25} +(-3.35910 - 3.96440i) q^{27} +(-1.40435 + 7.06016i) q^{29} -6.44241 q^{31} +(-3.76157 + 5.30775i) q^{33} +(0.595370 + 0.118426i) q^{35} +(-5.00124 + 7.48488i) q^{37} +(-0.708723 + 3.11318i) q^{39} +(4.55750 + 1.88778i) q^{41} +(1.54503 - 0.307325i) q^{43} +(-6.48012 - 4.86539i) q^{45} +(4.26705 + 4.26705i) q^{47} +(4.91403 - 4.91403i) q^{49} +(0.299352 - 10.8876i) q^{51} +(-1.02142 - 5.13504i) q^{53} +(-3.88242 + 9.37299i) q^{55} +(1.69699 - 7.45431i) q^{57} +(-7.47264 - 4.99306i) q^{59} +(0.815852 - 4.10157i) q^{61} +(0.636120 - 0.223391i) q^{63} +4.97918i q^{65} +(8.05661 + 1.60256i) q^{67} +(-3.04891 - 7.97383i) q^{69} +(-2.52914 + 1.04761i) q^{71} +(5.90887 + 2.44753i) q^{73} +(-3.63086 - 1.62225i) q^{75} +(-0.468954 - 0.701839i) q^{77} +(8.79908 + 8.79908i) q^{79} +(-8.94565 - 0.987568i) q^{81} +(4.93898 + 7.39171i) q^{83} +(-3.31370 - 16.6591i) q^{85} +(6.63938 + 10.5533i) q^{87} +(5.44855 - 2.25687i) q^{89} +(-0.344455 - 0.230158i) q^{91} +(-8.10419 + 7.67047i) q^{93} -11.9223i q^{95} +16.3503i q^{97} +(1.58768 + 11.1555i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 8 q^{3} + 16 q^{7} - 8 q^{9} - 16 q^{13} + 8 q^{15} + 16 q^{19} - 8 q^{21} - 16 q^{25} + 8 q^{27} + 32 q^{31} - 16 q^{37} + 8 q^{39} + 16 q^{43} - 8 q^{45} - 16 q^{49} + 8 q^{51} + 80 q^{55} - 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.25794 1.19062i 0.726274 0.687405i
\(4\) 0 0
\(5\) 1.50066 2.24589i 0.671114 1.00439i −0.327120 0.944983i \(-0.606078\pi\)
0.998234 0.0594102i \(-0.0189220\pi\)
\(6\) 0 0
\(7\) 0.0860024 + 0.207628i 0.0325058 + 0.0784760i 0.939299 0.343100i \(-0.111477\pi\)
−0.906793 + 0.421576i \(0.861477\pi\)
\(8\) 0 0
\(9\) 0.164844 2.99547i 0.0549479 0.998489i
\(10\) 0 0
\(11\) −3.68379 + 0.732751i −1.11070 + 0.220933i −0.716154 0.697942i \(-0.754099\pi\)
−0.394549 + 0.918875i \(0.629099\pi\)
\(12\) 0 0
\(13\) −1.53272 + 1.02413i −0.425099 + 0.284042i −0.749661 0.661822i \(-0.769783\pi\)
0.324561 + 0.945865i \(0.394783\pi\)
\(14\) 0 0
\(15\) −0.786264 4.61192i −0.203012 1.19079i
\(16\) 0 0
\(17\) 4.44652 4.44652i 1.07844 1.07844i 0.0817905 0.996650i \(-0.473936\pi\)
0.996650 0.0817905i \(-0.0260639\pi\)
\(18\) 0 0
\(19\) 3.66999 2.45221i 0.841953 0.562575i −0.0581221 0.998309i \(-0.518511\pi\)
0.900075 + 0.435734i \(0.143511\pi\)
\(20\) 0 0
\(21\) 0.355392 + 0.158788i 0.0775530 + 0.0346504i
\(22\) 0 0
\(23\) 1.88615 4.55357i 0.393290 0.949486i −0.595928 0.803038i \(-0.703216\pi\)
0.989218 0.146448i \(-0.0467842\pi\)
\(24\) 0 0
\(25\) −0.878641 2.12123i −0.175728 0.424245i
\(26\) 0 0
\(27\) −3.35910 3.96440i −0.646460 0.762948i
\(28\) 0 0
\(29\) −1.40435 + 7.06016i −0.260782 + 1.31104i 0.599153 + 0.800635i \(0.295504\pi\)
−0.859935 + 0.510404i \(0.829496\pi\)
\(30\) 0 0
\(31\) −6.44241 −1.15709 −0.578546 0.815650i \(-0.696380\pi\)
−0.578546 + 0.815650i \(0.696380\pi\)
\(32\) 0 0
\(33\) −3.76157 + 5.30775i −0.654805 + 0.923961i
\(34\) 0 0
\(35\) 0.595370 + 0.118426i 0.100636 + 0.0200177i
\(36\) 0 0
\(37\) −5.00124 + 7.48488i −0.822198 + 1.23051i 0.148191 + 0.988959i \(0.452655\pi\)
−0.970389 + 0.241548i \(0.922345\pi\)
\(38\) 0 0
\(39\) −0.708723 + 3.11318i −0.113486 + 0.498508i
\(40\) 0 0
\(41\) 4.55750 + 1.88778i 0.711762 + 0.294821i 0.709033 0.705175i \(-0.249132\pi\)
0.00272832 + 0.999996i \(0.499132\pi\)
\(42\) 0 0
\(43\) 1.54503 0.307325i 0.235615 0.0468667i −0.0758705 0.997118i \(-0.524174\pi\)
0.311485 + 0.950251i \(0.399174\pi\)
\(44\) 0 0
\(45\) −6.48012 4.86539i −0.965999 0.725289i
\(46\) 0 0
\(47\) 4.26705 + 4.26705i 0.622413 + 0.622413i 0.946148 0.323735i \(-0.104938\pi\)
−0.323735 + 0.946148i \(0.604938\pi\)
\(48\) 0 0
\(49\) 4.91403 4.91403i 0.702005 0.702005i
\(50\) 0 0
\(51\) 0.299352 10.8876i 0.0419176 1.52457i
\(52\) 0 0
\(53\) −1.02142 5.13504i −0.140303 0.705351i −0.985334 0.170635i \(-0.945418\pi\)
0.845031 0.534717i \(-0.179582\pi\)
\(54\) 0 0
\(55\) −3.88242 + 9.37299i −0.523506 + 1.26385i
\(56\) 0 0
\(57\) 1.69699 7.45431i 0.224772 0.987347i
\(58\) 0 0
\(59\) −7.47264 4.99306i −0.972854 0.650040i −0.0358495 0.999357i \(-0.511414\pi\)
−0.937005 + 0.349317i \(0.886414\pi\)
\(60\) 0 0
\(61\) 0.815852 4.10157i 0.104459 0.525152i −0.892754 0.450545i \(-0.851230\pi\)
0.997213 0.0746070i \(-0.0237702\pi\)
\(62\) 0 0
\(63\) 0.636120 0.223391i 0.0801436 0.0281446i
\(64\) 0 0
\(65\) 4.97918i 0.617592i
\(66\) 0 0
\(67\) 8.05661 + 1.60256i 0.984271 + 0.195784i 0.660888 0.750485i \(-0.270180\pi\)
0.323383 + 0.946268i \(0.395180\pi\)
\(68\) 0 0
\(69\) −3.04891 7.97383i −0.367045 0.959936i
\(70\) 0 0
\(71\) −2.52914 + 1.04761i −0.300154 + 0.124328i −0.527678 0.849445i \(-0.676937\pi\)
0.227524 + 0.973773i \(0.426937\pi\)
\(72\) 0 0
\(73\) 5.90887 + 2.44753i 0.691581 + 0.286462i 0.700659 0.713497i \(-0.252890\pi\)
−0.00907776 + 0.999959i \(0.502890\pi\)
\(74\) 0 0
\(75\) −3.63086 1.62225i −0.419255 0.187322i
\(76\) 0 0
\(77\) −0.468954 0.701839i −0.0534423 0.0799820i
\(78\) 0 0
\(79\) 8.79908 + 8.79908i 0.989974 + 0.989974i 0.999950 0.00997611i \(-0.00317555\pi\)
−0.00997611 + 0.999950i \(0.503176\pi\)
\(80\) 0 0
\(81\) −8.94565 0.987568i −0.993961 0.109730i
\(82\) 0 0
\(83\) 4.93898 + 7.39171i 0.542123 + 0.811345i 0.996852 0.0792850i \(-0.0252637\pi\)
−0.454729 + 0.890630i \(0.650264\pi\)
\(84\) 0 0
\(85\) −3.31370 16.6591i −0.359422 1.80693i
\(86\) 0 0
\(87\) 6.63938 + 10.5533i 0.711816 + 1.13144i
\(88\) 0 0
\(89\) 5.44855 2.25687i 0.577546 0.239227i −0.0747368 0.997203i \(-0.523812\pi\)
0.652282 + 0.757976i \(0.273812\pi\)
\(90\) 0 0
\(91\) −0.344455 0.230158i −0.0361087 0.0241271i
\(92\) 0 0
\(93\) −8.10419 + 7.67047i −0.840365 + 0.795391i
\(94\) 0 0
\(95\) 11.9223i 1.22320i
\(96\) 0 0
\(97\) 16.3503i 1.66012i 0.557671 + 0.830062i \(0.311695\pi\)
−0.557671 + 0.830062i \(0.688305\pi\)
\(98\) 0 0
\(99\) 1.58768 + 11.1555i 0.159568 + 1.12117i
\(100\) 0 0
\(101\) −6.96357 4.65291i −0.692901 0.462982i 0.158594 0.987344i \(-0.449304\pi\)
−0.851495 + 0.524362i \(0.824304\pi\)
\(102\) 0 0
\(103\) 3.52118 1.45852i 0.346952 0.143712i −0.202401 0.979303i \(-0.564874\pi\)
0.549353 + 0.835591i \(0.314874\pi\)
\(104\) 0 0
\(105\) 0.889943 0.559886i 0.0868495 0.0546393i
\(106\) 0 0
\(107\) −2.68194 13.4830i −0.259273 1.30345i −0.862570 0.505937i \(-0.831147\pi\)
0.603297 0.797516i \(-0.293853\pi\)
\(108\) 0 0
\(109\) 8.00490 + 11.9802i 0.766730 + 1.14749i 0.985160 + 0.171640i \(0.0549066\pi\)
−0.218429 + 0.975853i \(0.570093\pi\)
\(110\) 0 0
\(111\) 2.62038 + 15.3701i 0.248715 + 1.45887i
\(112\) 0 0
\(113\) −6.18271 6.18271i −0.581620 0.581620i 0.353728 0.935348i \(-0.384914\pi\)
−0.935348 + 0.353728i \(0.884914\pi\)
\(114\) 0 0
\(115\) −7.39637 11.0694i −0.689715 1.03223i
\(116\) 0 0
\(117\) 2.81509 + 4.76003i 0.260255 + 0.440065i
\(118\) 0 0
\(119\) 1.30563 + 0.540811i 0.119687 + 0.0495761i
\(120\) 0 0
\(121\) 2.87069 1.18908i 0.260972 0.108098i
\(122\) 0 0
\(123\) 7.98070 3.05154i 0.719596 0.275148i
\(124\) 0 0
\(125\) 7.16347 + 1.42490i 0.640720 + 0.127447i
\(126\) 0 0
\(127\) 5.87144i 0.521006i −0.965473 0.260503i \(-0.916112\pi\)
0.965473 0.260503i \(-0.0838884\pi\)
\(128\) 0 0
\(129\) 1.57765 2.22614i 0.138904 0.196001i
\(130\) 0 0
\(131\) −1.84224 + 9.26156i −0.160957 + 0.809187i 0.812966 + 0.582311i \(0.197851\pi\)
−0.973924 + 0.226876i \(0.927149\pi\)
\(132\) 0 0
\(133\) 0.824775 + 0.551097i 0.0715171 + 0.0477862i
\(134\) 0 0
\(135\) −13.9445 + 1.59498i −1.20015 + 0.137274i
\(136\) 0 0
\(137\) 2.68881 6.49136i 0.229721 0.554594i −0.766423 0.642337i \(-0.777965\pi\)
0.996143 + 0.0877421i \(0.0279651\pi\)
\(138\) 0 0
\(139\) 2.66596 + 13.4027i 0.226124 + 1.13680i 0.912349 + 0.409413i \(0.134266\pi\)
−0.686225 + 0.727389i \(0.740734\pi\)
\(140\) 0 0
\(141\) 10.4481 + 0.287269i 0.879893 + 0.0241924i
\(142\) 0 0
\(143\) 4.89577 4.89577i 0.409405 0.409405i
\(144\) 0 0
\(145\) 13.7489 + 13.7489i 1.14178 + 1.14178i
\(146\) 0 0
\(147\) 0.330826 12.0323i 0.0272860 0.992410i
\(148\) 0 0
\(149\) −12.8724 + 2.56049i −1.05455 + 0.209763i −0.691775 0.722113i \(-0.743171\pi\)
−0.362776 + 0.931876i \(0.618171\pi\)
\(150\) 0 0
\(151\) 12.1990 + 5.05300i 0.992742 + 0.411207i 0.819131 0.573607i \(-0.194456\pi\)
0.173612 + 0.984814i \(0.444456\pi\)
\(152\) 0 0
\(153\) −12.5864 14.0524i −1.01755 1.13607i
\(154\) 0 0
\(155\) −9.66785 + 14.4690i −0.776540 + 1.16217i
\(156\) 0 0
\(157\) 13.9852 + 2.78184i 1.11614 + 0.222015i 0.718501 0.695526i \(-0.244828\pi\)
0.397642 + 0.917541i \(0.369828\pi\)
\(158\) 0 0
\(159\) −7.39877 5.24346i −0.586761 0.415833i
\(160\) 0 0
\(161\) 1.10766 0.0872961
\(162\) 0 0
\(163\) 1.85551 9.32826i 0.145334 0.730646i −0.837541 0.546375i \(-0.816008\pi\)
0.982875 0.184271i \(-0.0589925\pi\)
\(164\) 0 0
\(165\) 6.27582 + 16.4132i 0.488572 + 1.27776i
\(166\) 0 0
\(167\) 6.77662 + 16.3602i 0.524391 + 1.26599i 0.935152 + 0.354248i \(0.115263\pi\)
−0.410761 + 0.911743i \(0.634737\pi\)
\(168\) 0 0
\(169\) −3.67450 + 8.87103i −0.282654 + 0.682387i
\(170\) 0 0
\(171\) −6.74054 11.3976i −0.515462 0.871594i
\(172\) 0 0
\(173\) −2.35470 + 1.57336i −0.179024 + 0.119620i −0.641854 0.766827i \(-0.721834\pi\)
0.462829 + 0.886447i \(0.346834\pi\)
\(174\) 0 0
\(175\) 0.364861 0.364861i 0.0275809 0.0275809i
\(176\) 0 0
\(177\) −15.3450 + 2.61609i −1.15340 + 0.196638i
\(178\) 0 0
\(179\) −14.8704 + 9.93607i −1.11146 + 0.742657i −0.968980 0.247140i \(-0.920509\pi\)
−0.142485 + 0.989797i \(0.545509\pi\)
\(180\) 0 0
\(181\) −3.21012 + 0.638533i −0.238606 + 0.0474618i −0.312945 0.949771i \(-0.601315\pi\)
0.0743385 + 0.997233i \(0.476315\pi\)
\(182\) 0 0
\(183\) −3.85712 6.13091i −0.285126 0.453210i
\(184\) 0 0
\(185\) 9.30509 + 22.4645i 0.684124 + 1.65162i
\(186\) 0 0
\(187\) −13.1218 + 19.6382i −0.959565 + 1.43609i
\(188\) 0 0
\(189\) 0.534229 1.03839i 0.0388594 0.0755319i
\(190\) 0 0
\(191\) 9.71747 0.703131 0.351566 0.936163i \(-0.385649\pi\)
0.351566 + 0.936163i \(0.385649\pi\)
\(192\) 0 0
\(193\) −13.1295 −0.945086 −0.472543 0.881308i \(-0.656664\pi\)
−0.472543 + 0.881308i \(0.656664\pi\)
\(194\) 0 0
\(195\) 5.92832 + 6.26353i 0.424536 + 0.448541i
\(196\) 0 0
\(197\) −4.09830 + 6.13354i −0.291992 + 0.436997i −0.948243 0.317546i \(-0.897141\pi\)
0.656251 + 0.754543i \(0.272141\pi\)
\(198\) 0 0
\(199\) −5.31197 12.8242i −0.376556 0.909086i −0.992606 0.121379i \(-0.961268\pi\)
0.616050 0.787707i \(-0.288732\pi\)
\(200\) 0 0
\(201\) 12.0428 7.57643i 0.849433 0.534400i
\(202\) 0 0
\(203\) −1.58667 + 0.315607i −0.111362 + 0.0221513i
\(204\) 0 0
\(205\) 11.0790 7.40274i 0.773790 0.517030i
\(206\) 0 0
\(207\) −13.3292 6.40054i −0.926441 0.444868i
\(208\) 0 0
\(209\) −11.7226 + 11.7226i −0.810869 + 0.810869i
\(210\) 0 0
\(211\) 3.26507 2.18165i 0.224777 0.150191i −0.438083 0.898934i \(-0.644343\pi\)
0.662860 + 0.748743i \(0.269343\pi\)
\(212\) 0 0
\(213\) −1.93422 + 4.32908i −0.132530 + 0.296624i
\(214\) 0 0
\(215\) 1.62834 3.93116i 0.111052 0.268103i
\(216\) 0 0
\(217\) −0.554063 1.33763i −0.0376122 0.0908039i
\(218\) 0 0
\(219\) 10.3471 3.95636i 0.699193 0.267346i
\(220\) 0 0
\(221\) −2.26145 + 11.3691i −0.152122 + 0.764767i
\(222\) 0 0
\(223\) 21.8404 1.46254 0.731272 0.682086i \(-0.238927\pi\)
0.731272 + 0.682086i \(0.238927\pi\)
\(224\) 0 0
\(225\) −6.49890 + 2.28227i −0.433260 + 0.152151i
\(226\) 0 0
\(227\) 15.0713 + 2.99786i 1.00031 + 0.198975i 0.667974 0.744184i \(-0.267162\pi\)
0.332341 + 0.943159i \(0.392162\pi\)
\(228\) 0 0
\(229\) −8.04172 + 12.0353i −0.531412 + 0.795314i −0.995919 0.0902557i \(-0.971232\pi\)
0.464507 + 0.885569i \(0.346232\pi\)
\(230\) 0 0
\(231\) −1.42554 0.324528i −0.0937938 0.0213524i
\(232\) 0 0
\(233\) 6.45313 + 2.67297i 0.422758 + 0.175112i 0.583912 0.811817i \(-0.301521\pi\)
−0.161153 + 0.986929i \(0.551521\pi\)
\(234\) 0 0
\(235\) 15.9867 3.17995i 1.04286 0.207437i
\(236\) 0 0
\(237\) 21.5451 + 0.592377i 1.39951 + 0.0384790i
\(238\) 0 0
\(239\) −14.9125 14.9125i −0.964607 0.964607i 0.0347874 0.999395i \(-0.488925\pi\)
−0.999395 + 0.0347874i \(0.988925\pi\)
\(240\) 0 0
\(241\) 21.5764 21.5764i 1.38986 1.38986i 0.564261 0.825597i \(-0.309161\pi\)
0.825597 0.564261i \(-0.190839\pi\)
\(242\) 0 0
\(243\) −12.4289 + 9.40858i −0.797317 + 0.603560i
\(244\) 0 0
\(245\) −3.66211 18.4107i −0.233964 1.17621i
\(246\) 0 0
\(247\) −3.11368 + 7.51709i −0.198119 + 0.478301i
\(248\) 0 0
\(249\) 15.0137 + 3.41790i 0.951453 + 0.216600i
\(250\) 0 0
\(251\) 14.4199 + 9.63510i 0.910179 + 0.608162i 0.920055 0.391789i \(-0.128144\pi\)
−0.00987642 + 0.999951i \(0.503144\pi\)
\(252\) 0 0
\(253\) −3.61155 + 18.1565i −0.227056 + 1.14149i
\(254\) 0 0
\(255\) −24.0031 17.0109i −1.50313 1.06526i
\(256\) 0 0
\(257\) 21.8375i 1.36219i 0.732196 + 0.681094i \(0.238496\pi\)
−0.732196 + 0.681094i \(0.761504\pi\)
\(258\) 0 0
\(259\) −1.98419 0.394680i −0.123292 0.0245242i
\(260\) 0 0
\(261\) 20.9170 + 5.37052i 1.29473 + 0.332427i
\(262\) 0 0
\(263\) −13.6376 + 5.64887i −0.840929 + 0.348324i −0.761220 0.648494i \(-0.775399\pi\)
−0.0797089 + 0.996818i \(0.525399\pi\)
\(264\) 0 0
\(265\) −13.0655 5.41192i −0.802610 0.332452i
\(266\) 0 0
\(267\) 4.16690 9.32617i 0.255010 0.570752i
\(268\) 0 0
\(269\) −12.5566 18.7923i −0.765591 1.14579i −0.985402 0.170246i \(-0.945544\pi\)
0.219810 0.975543i \(-0.429456\pi\)
\(270\) 0 0
\(271\) −0.680826 0.680826i −0.0413572 0.0413572i 0.686126 0.727483i \(-0.259310\pi\)
−0.727483 + 0.686126i \(0.759310\pi\)
\(272\) 0 0
\(273\) −0.707336 + 0.120590i −0.0428099 + 0.00729846i
\(274\) 0 0
\(275\) 4.79105 + 7.17032i 0.288911 + 0.432387i
\(276\) 0 0
\(277\) −3.03373 15.2516i −0.182279 0.916378i −0.958320 0.285696i \(-0.907775\pi\)
0.776041 0.630682i \(-0.217225\pi\)
\(278\) 0 0
\(279\) −1.06199 + 19.2980i −0.0635798 + 1.15534i
\(280\) 0 0
\(281\) 2.89583 1.19949i 0.172751 0.0715557i −0.294632 0.955611i \(-0.595197\pi\)
0.467383 + 0.884055i \(0.345197\pi\)
\(282\) 0 0
\(283\) −12.6363 8.44328i −0.751147 0.501901i 0.120090 0.992763i \(-0.461682\pi\)
−0.871237 + 0.490862i \(0.836682\pi\)
\(284\) 0 0
\(285\) −14.1950 14.9976i −0.840837 0.888381i
\(286\) 0 0
\(287\) 1.10862i 0.0654397i
\(288\) 0 0
\(289\) 22.5431i 1.32607i
\(290\) 0 0
\(291\) 19.4670 + 20.5678i 1.14118 + 1.20570i
\(292\) 0 0
\(293\) −0.788441 0.526819i −0.0460612 0.0307771i 0.532326 0.846539i \(-0.321318\pi\)
−0.578388 + 0.815762i \(0.696318\pi\)
\(294\) 0 0
\(295\) −22.4277 + 9.28987i −1.30579 + 0.540877i
\(296\) 0 0
\(297\) 15.2791 + 12.1426i 0.886585 + 0.704585i
\(298\) 0 0
\(299\) 1.77251 + 8.91101i 0.102507 + 0.515337i
\(300\) 0 0
\(301\) 0.196686 + 0.294361i 0.0113368 + 0.0169667i
\(302\) 0 0
\(303\) −14.2996 + 2.43788i −0.821492 + 0.140052i
\(304\) 0 0
\(305\) −7.98736 7.98736i −0.457355 0.457355i
\(306\) 0 0
\(307\) 4.10368 + 6.14160i 0.234210 + 0.350519i 0.929894 0.367828i \(-0.119899\pi\)
−0.695684 + 0.718348i \(0.744899\pi\)
\(308\) 0 0
\(309\) 2.69290 6.02713i 0.153194 0.342871i
\(310\) 0 0
\(311\) 4.51135 + 1.86866i 0.255815 + 0.105962i 0.506906 0.862002i \(-0.330789\pi\)
−0.251091 + 0.967964i \(0.580789\pi\)
\(312\) 0 0
\(313\) −29.8873 + 12.3797i −1.68933 + 0.699743i −0.999702 0.0244212i \(-0.992226\pi\)
−0.689627 + 0.724164i \(0.742226\pi\)
\(314\) 0 0
\(315\) 0.452886 1.76389i 0.0255172 0.0993839i
\(316\) 0 0
\(317\) −20.5647 4.09058i −1.15503 0.229750i −0.419831 0.907602i \(-0.637911\pi\)
−0.735198 + 0.677853i \(0.762911\pi\)
\(318\) 0 0
\(319\) 27.0372i 1.51379i
\(320\) 0 0
\(321\) −19.4269 13.7677i −1.08430 0.768439i
\(322\) 0 0
\(323\) 5.41489 27.2225i 0.301293 1.51470i
\(324\) 0 0
\(325\) 3.51912 + 2.35140i 0.195205 + 0.130432i
\(326\) 0 0
\(327\) 24.3336 + 5.53959i 1.34565 + 0.306340i
\(328\) 0 0
\(329\) −0.518983 + 1.25294i −0.0286125 + 0.0690766i
\(330\) 0 0
\(331\) 1.37125 + 6.89372i 0.0753705 + 0.378913i 0.999998 0.00195950i \(-0.000623727\pi\)
−0.924628 + 0.380872i \(0.875624\pi\)
\(332\) 0 0
\(333\) 21.5963 + 16.2149i 1.18347 + 0.888570i
\(334\) 0 0
\(335\) 15.6894 15.6894i 0.857202 0.857202i
\(336\) 0 0
\(337\) −12.1364 12.1364i −0.661114 0.661114i 0.294529 0.955643i \(-0.404837\pi\)
−0.955643 + 0.294529i \(0.904837\pi\)
\(338\) 0 0
\(339\) −15.1388 0.416236i −0.822224 0.0226068i
\(340\) 0 0
\(341\) 23.7325 4.72068i 1.28519 0.255639i
\(342\) 0 0
\(343\) 2.89631 + 1.19969i 0.156386 + 0.0647771i
\(344\) 0 0
\(345\) −22.4837 5.11847i −1.21048 0.275569i
\(346\) 0 0
\(347\) −4.55745 + 6.82071i −0.244657 + 0.366155i −0.933392 0.358858i \(-0.883166\pi\)
0.688735 + 0.725013i \(0.258166\pi\)
\(348\) 0 0
\(349\) −18.8023 3.74002i −1.00647 0.200198i −0.335780 0.941940i \(-0.609000\pi\)
−0.670685 + 0.741742i \(0.734000\pi\)
\(350\) 0 0
\(351\) 9.20861 + 2.63614i 0.491519 + 0.140707i
\(352\) 0 0
\(353\) 2.39915 0.127694 0.0638471 0.997960i \(-0.479663\pi\)
0.0638471 + 0.997960i \(0.479663\pi\)
\(354\) 0 0
\(355\) −1.44257 + 7.25228i −0.0765635 + 0.384911i
\(356\) 0 0
\(357\) 2.28632 0.874205i 0.121005 0.0462678i
\(358\) 0 0
\(359\) −7.68944 18.5640i −0.405833 0.979768i −0.986222 0.165428i \(-0.947099\pi\)
0.580389 0.814340i \(-0.302901\pi\)
\(360\) 0 0
\(361\) 0.184509 0.445444i 0.00971100 0.0234444i
\(362\) 0 0
\(363\) 2.19542 4.91370i 0.115230 0.257902i
\(364\) 0 0
\(365\) 14.3641 9.59777i 0.751850 0.502370i
\(366\) 0 0
\(367\) −13.4524 + 13.4524i −0.702207 + 0.702207i −0.964884 0.262677i \(-0.915395\pi\)
0.262677 + 0.964884i \(0.415395\pi\)
\(368\) 0 0
\(369\) 6.40605 13.3407i 0.333486 0.694487i
\(370\) 0 0
\(371\) 0.978333 0.653701i 0.0507925 0.0339385i
\(372\) 0 0
\(373\) 0.738592 0.146915i 0.0382428 0.00760697i −0.175932 0.984402i \(-0.556294\pi\)
0.214175 + 0.976795i \(0.431294\pi\)
\(374\) 0 0
\(375\) 10.7078 6.73653i 0.552946 0.347873i
\(376\) 0 0
\(377\) −5.07804 12.2595i −0.261532 0.631395i
\(378\) 0 0
\(379\) −20.6000 + 30.8301i −1.05815 + 1.58364i −0.275370 + 0.961338i \(0.588800\pi\)
−0.782781 + 0.622297i \(0.786200\pi\)
\(380\) 0 0
\(381\) −6.99066 7.38594i −0.358142 0.378393i
\(382\) 0 0
\(383\) 6.06226 0.309767 0.154883 0.987933i \(-0.450500\pi\)
0.154883 + 0.987933i \(0.450500\pi\)
\(384\) 0 0
\(385\) −2.27999 −0.116199
\(386\) 0 0
\(387\) −0.665895 4.67875i −0.0338493 0.237834i
\(388\) 0 0
\(389\) −2.01124 + 3.01003i −0.101974 + 0.152614i −0.878948 0.476918i \(-0.841754\pi\)
0.776974 + 0.629533i \(0.216754\pi\)
\(390\) 0 0
\(391\) −11.8608 28.6344i −0.599824 1.44810i
\(392\) 0 0
\(393\) 8.70958 + 13.8439i 0.439340 + 0.698334i
\(394\) 0 0
\(395\) 32.9662 6.55738i 1.65871 0.329938i
\(396\) 0 0
\(397\) 11.5530 7.71947i 0.579828 0.387429i −0.230790 0.973004i \(-0.574131\pi\)
0.810619 + 0.585575i \(0.199131\pi\)
\(398\) 0 0
\(399\) 1.69367 0.288745i 0.0847895 0.0144554i
\(400\) 0 0
\(401\) 19.3426 19.3426i 0.965925 0.965925i −0.0335131 0.999438i \(-0.510670\pi\)
0.999438 + 0.0335131i \(0.0106696\pi\)
\(402\) 0 0
\(403\) 9.87440 6.59786i 0.491879 0.328663i
\(404\) 0 0
\(405\) −15.6423 + 18.6090i −0.777273 + 0.924687i
\(406\) 0 0
\(407\) 12.9389 31.2374i 0.641359 1.54838i
\(408\) 0 0
\(409\) −6.29782 15.2043i −0.311407 0.751803i −0.999653 0.0263261i \(-0.991619\pi\)
0.688246 0.725477i \(-0.258381\pi\)
\(410\) 0 0
\(411\) −4.34638 11.3671i −0.214391 0.560699i
\(412\) 0 0
\(413\) 0.394034 1.98094i 0.0193892 0.0974759i
\(414\) 0 0
\(415\) 24.0127 1.17874
\(416\) 0 0
\(417\) 19.3112 + 13.6857i 0.945671 + 0.670191i
\(418\) 0 0
\(419\) −17.1733 3.41598i −0.838971 0.166882i −0.243139 0.969991i \(-0.578177\pi\)
−0.595831 + 0.803110i \(0.703177\pi\)
\(420\) 0 0
\(421\) 15.5605 23.2879i 0.758372 1.13498i −0.228510 0.973542i \(-0.573385\pi\)
0.986882 0.161442i \(-0.0516146\pi\)
\(422\) 0 0
\(423\) 13.4852 12.0784i 0.655673 0.587273i
\(424\) 0 0
\(425\) −13.3390 5.52518i −0.647035 0.268011i
\(426\) 0 0
\(427\) 0.921766 0.183351i 0.0446074 0.00887296i
\(428\) 0 0
\(429\) 0.329596 11.9876i 0.0159131 0.578768i
\(430\) 0 0
\(431\) 8.82179 + 8.82179i 0.424931 + 0.424931i 0.886897 0.461966i \(-0.152856\pi\)
−0.461966 + 0.886897i \(0.652856\pi\)
\(432\) 0 0
\(433\) −17.1259 + 17.1259i −0.823018 + 0.823018i −0.986540 0.163521i \(-0.947715\pi\)
0.163521 + 0.986540i \(0.447715\pi\)
\(434\) 0 0
\(435\) 33.6651 + 0.925612i 1.61412 + 0.0443797i
\(436\) 0 0
\(437\) −4.24415 21.3368i −0.203025 1.02068i
\(438\) 0 0
\(439\) 8.82799 21.3126i 0.421337 1.01720i −0.560617 0.828075i \(-0.689436\pi\)
0.981954 0.189122i \(-0.0605641\pi\)
\(440\) 0 0
\(441\) −13.9098 15.5299i −0.662371 0.739518i
\(442\) 0 0
\(443\) −0.625397 0.417877i −0.0297135 0.0198539i 0.540625 0.841264i \(-0.318188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(444\) 0 0
\(445\) 3.10774 15.6236i 0.147321 0.740632i
\(446\) 0 0
\(447\) −13.1442 + 18.5471i −0.621701 + 0.877249i
\(448\) 0 0
\(449\) 11.2059i 0.528838i 0.964408 + 0.264419i \(0.0851802\pi\)
−0.964408 + 0.264419i \(0.914820\pi\)
\(450\) 0 0
\(451\) −18.1721 3.61466i −0.855692 0.170208i
\(452\) 0 0
\(453\) 21.3619 8.16802i 1.00367 0.383767i
\(454\) 0 0
\(455\) −1.03382 + 0.428222i −0.0484661 + 0.0200753i
\(456\) 0 0
\(457\) 7.55593 + 3.12977i 0.353451 + 0.146404i 0.552343 0.833617i \(-0.313734\pi\)
−0.198891 + 0.980022i \(0.563734\pi\)
\(458\) 0 0
\(459\) −32.5641 2.69145i −1.51996 0.125626i
\(460\) 0 0
\(461\) −15.4154 23.0707i −0.717965 1.07451i −0.993568 0.113239i \(-0.963877\pi\)
0.275602 0.961272i \(-0.411123\pi\)
\(462\) 0 0
\(463\) −7.21675 7.21675i −0.335391 0.335391i 0.519239 0.854629i \(-0.326216\pi\)
−0.854629 + 0.519239i \(0.826216\pi\)
\(464\) 0 0
\(465\) 5.06544 + 29.7119i 0.234904 + 1.37786i
\(466\) 0 0
\(467\) −2.23916 3.35114i −0.103616 0.155072i 0.776039 0.630685i \(-0.217226\pi\)
−0.879654 + 0.475613i \(0.842226\pi\)
\(468\) 0 0
\(469\) 0.360151 + 1.81060i 0.0166302 + 0.0836058i
\(470\) 0 0
\(471\) 20.9048 13.1517i 0.963240 0.605999i
\(472\) 0 0
\(473\) −5.46637 + 2.26424i −0.251344 + 0.104110i
\(474\) 0 0
\(475\) −8.42629 5.63027i −0.386625 0.258334i
\(476\) 0 0
\(477\) −15.5502 + 2.21316i −0.711995 + 0.101334i
\(478\) 0 0
\(479\) 7.63624i 0.348909i 0.984665 + 0.174454i \(0.0558161\pi\)
−0.984665 + 0.174454i \(0.944184\pi\)
\(480\) 0 0
\(481\) 16.5941i 0.756627i
\(482\) 0 0
\(483\) 1.39338 1.31881i 0.0634009 0.0600078i
\(484\) 0 0
\(485\) 36.7211 + 24.5362i 1.66742 + 1.11413i
\(486\) 0 0
\(487\) −11.0892 + 4.59329i −0.502499 + 0.208142i −0.619510 0.784989i \(-0.712669\pi\)
0.117011 + 0.993131i \(0.462669\pi\)
\(488\) 0 0
\(489\) −8.77230 13.9436i −0.396697 0.630553i
\(490\) 0 0
\(491\) −3.44475 17.3179i −0.155460 0.781548i −0.977305 0.211837i \(-0.932055\pi\)
0.821845 0.569711i \(-0.192945\pi\)
\(492\) 0 0
\(493\) 25.1487 + 37.6377i 1.13264 + 1.69511i
\(494\) 0 0
\(495\) 27.4365 + 13.1747i 1.23318 + 0.592161i
\(496\) 0 0
\(497\) −0.435025 0.435025i −0.0195135 0.0195135i
\(498\) 0 0
\(499\) −15.1695 22.7027i −0.679080 1.01631i −0.997657 0.0684175i \(-0.978205\pi\)
0.318577 0.947897i \(-0.396795\pi\)
\(500\) 0 0
\(501\) 28.0034 + 12.5118i 1.25110 + 0.558988i
\(502\) 0 0
\(503\) −20.3314 8.42152i −0.906530 0.375497i −0.119803 0.992798i \(-0.538226\pi\)
−0.786727 + 0.617300i \(0.788226\pi\)
\(504\) 0 0
\(505\) −20.8999 + 8.65701i −0.930032 + 0.385232i
\(506\) 0 0
\(507\) 5.93972 + 15.5342i 0.263792 + 0.689898i
\(508\) 0 0
\(509\) 32.8678 + 6.53780i 1.45684 + 0.289783i 0.859058 0.511878i \(-0.171050\pi\)
0.597779 + 0.801661i \(0.296050\pi\)
\(510\) 0 0
\(511\) 1.43734i 0.0635842i
\(512\) 0 0
\(513\) −22.0494 6.31207i −0.973504 0.278685i
\(514\) 0 0
\(515\) 2.00840 10.0969i 0.0885008 0.444924i
\(516\) 0 0
\(517\) −18.8456 12.5922i −0.828828 0.553805i
\(518\) 0 0
\(519\) −1.08880 + 4.78275i −0.0477931 + 0.209939i
\(520\) 0 0
\(521\) 0.588808 1.42151i 0.0257962 0.0622774i −0.910457 0.413605i \(-0.864270\pi\)
0.936253 + 0.351327i \(0.114270\pi\)
\(522\) 0 0
\(523\) −2.29528 11.5391i −0.100365 0.504571i −0.997965 0.0637598i \(-0.979691\pi\)
0.897600 0.440811i \(-0.145309\pi\)
\(524\) 0 0
\(525\) 0.0245634 0.893385i 0.00107203 0.0389905i
\(526\) 0 0
\(527\) −28.6463 + 28.6463i −1.24785 + 1.24785i
\(528\) 0 0
\(529\) −0.914009 0.914009i −0.0397395 0.0397395i
\(530\) 0 0
\(531\) −16.1884 + 21.5610i −0.702515 + 0.935666i
\(532\) 0 0
\(533\) −8.91869 + 1.77404i −0.386311 + 0.0768421i
\(534\) 0 0
\(535\) −34.3061 14.2100i −1.48318 0.614354i
\(536\) 0 0
\(537\) −6.87601 + 30.2040i −0.296722 + 1.30340i
\(538\) 0 0
\(539\) −14.5015 + 21.7030i −0.624624 + 0.934815i
\(540\) 0 0
\(541\) −12.5139 2.48917i −0.538015 0.107018i −0.0813987 0.996682i \(-0.525939\pi\)
−0.456616 + 0.889664i \(0.650939\pi\)
\(542\) 0 0
\(543\) −3.27790 + 4.62527i −0.140668 + 0.198489i
\(544\) 0 0
\(545\) 38.9188 1.66710
\(546\) 0 0
\(547\) −1.34057 + 6.73951i −0.0573187 + 0.288161i −0.998804 0.0488934i \(-0.984431\pi\)
0.941485 + 0.337054i \(0.109431\pi\)
\(548\) 0 0
\(549\) −12.1516 3.11998i −0.518619 0.133157i
\(550\) 0 0
\(551\) 12.1590 + 29.3545i 0.517992 + 1.25054i
\(552\) 0 0
\(553\) −1.07019 + 2.58368i −0.0455093 + 0.109869i
\(554\) 0 0
\(555\) 38.4519 + 17.1802i 1.63219 + 0.729259i
\(556\) 0 0
\(557\) −21.4271 + 14.3171i −0.907894 + 0.606635i −0.919411 0.393298i \(-0.871334\pi\)
0.0115170 + 0.999934i \(0.496334\pi\)
\(558\) 0 0
\(559\) −2.05335 + 2.05335i −0.0868476 + 0.0868476i
\(560\) 0 0
\(561\) 6.87515 + 40.3269i 0.290269 + 1.70260i
\(562\) 0 0
\(563\) −17.0640 + 11.4018i −0.719162 + 0.480528i −0.860511 0.509431i \(-0.829856\pi\)
0.141350 + 0.989960i \(0.454856\pi\)
\(564\) 0 0
\(565\) −23.1638 + 4.60757i −0.974509 + 0.193842i
\(566\) 0 0
\(567\) −0.564300 1.94230i −0.0236984 0.0815690i
\(568\) 0 0
\(569\) −4.14149 9.99843i −0.173620 0.419156i 0.812985 0.582285i \(-0.197841\pi\)
−0.986605 + 0.163129i \(0.947841\pi\)
\(570\) 0 0
\(571\) 24.6168 36.8416i 1.03018 1.54177i 0.203518 0.979071i \(-0.434762\pi\)
0.826661 0.562701i \(-0.190238\pi\)
\(572\) 0 0
\(573\) 12.2240 11.5698i 0.510666 0.483336i
\(574\) 0 0
\(575\) −11.3164 −0.471927
\(576\) 0 0
\(577\) 5.58949 0.232693 0.116347 0.993209i \(-0.462882\pi\)
0.116347 + 0.993209i \(0.462882\pi\)
\(578\) 0 0
\(579\) −16.5162 + 15.6323i −0.686391 + 0.649657i
\(580\) 0 0
\(581\) −1.10996 + 1.66118i −0.0460490 + 0.0689172i
\(582\) 0 0
\(583\) 7.52540 + 18.1679i 0.311670 + 0.752439i
\(584\) 0 0
\(585\) 14.9150 + 0.820787i 0.616659 + 0.0339354i
\(586\) 0 0
\(587\) −1.57303 + 0.312895i −0.0649258 + 0.0129145i −0.227446 0.973791i \(-0.573038\pi\)
0.162521 + 0.986705i \(0.448038\pi\)
\(588\) 0 0
\(589\) −23.6436 + 15.7981i −0.974217 + 0.650951i
\(590\) 0 0
\(591\) 2.14729 + 12.5952i 0.0883278 + 0.518096i
\(592\) 0 0
\(593\) 4.33456 4.33456i 0.177999 0.177999i −0.612484 0.790483i \(-0.709830\pi\)
0.790483 + 0.612484i \(0.209830\pi\)
\(594\) 0 0
\(595\) 3.17391 2.12074i 0.130118 0.0869419i
\(596\) 0 0
\(597\) −21.9510 9.80762i −0.898393 0.401399i
\(598\) 0 0
\(599\) 9.62407 23.2346i 0.393229 0.949338i −0.596003 0.802982i \(-0.703245\pi\)
0.989232 0.146356i \(-0.0467546\pi\)
\(600\) 0 0
\(601\) 0.673957 + 1.62708i 0.0274913 + 0.0663699i 0.937029 0.349252i \(-0.113564\pi\)
−0.909538 + 0.415621i \(0.863564\pi\)
\(602\) 0 0
\(603\) 6.12849 23.8691i 0.249572 0.972026i
\(604\) 0 0
\(605\) 1.63738 8.23165i 0.0665689 0.334664i
\(606\) 0 0
\(607\) −11.3664 −0.461349 −0.230674 0.973031i \(-0.574093\pi\)
−0.230674 + 0.973031i \(0.574093\pi\)
\(608\) 0 0
\(609\) −1.62017 + 2.28613i −0.0656525 + 0.0926388i
\(610\) 0 0
\(611\) −10.9102 2.17017i −0.441379 0.0877958i
\(612\) 0 0
\(613\) 1.91745 2.86967i 0.0774453 0.115905i −0.790725 0.612172i \(-0.790296\pi\)
0.868170 + 0.496267i \(0.165296\pi\)
\(614\) 0 0
\(615\) 5.12288 22.5031i 0.206574 0.907413i
\(616\) 0 0
\(617\) −13.8035 5.71758i −0.555706 0.230181i 0.0871137 0.996198i \(-0.472236\pi\)
−0.642820 + 0.766017i \(0.722236\pi\)
\(618\) 0 0
\(619\) 6.75340 1.34333i 0.271442 0.0539932i −0.0574924 0.998346i \(-0.518310\pi\)
0.328934 + 0.944353i \(0.393310\pi\)
\(620\) 0 0
\(621\) −24.3879 + 7.81847i −0.978655 + 0.313744i
\(622\) 0 0
\(623\) 0.937177 + 0.937177i 0.0375472 + 0.0375472i
\(624\) 0 0
\(625\) 22.0677 22.0677i 0.882706 0.882706i
\(626\) 0 0
\(627\) −0.789196 + 28.7035i −0.0315175 + 1.14631i
\(628\) 0 0
\(629\) 11.0436 + 55.5198i 0.440336 + 2.21372i
\(630\) 0 0
\(631\) 1.24136 2.99691i 0.0494179 0.119305i −0.897243 0.441538i \(-0.854433\pi\)
0.946661 + 0.322232i \(0.104433\pi\)
\(632\) 0 0
\(633\) 1.50975 6.63185i 0.0600074 0.263592i
\(634\) 0 0
\(635\) −13.1866 8.81102i −0.523295 0.349655i
\(636\) 0 0
\(637\) −2.49922 + 12.5644i −0.0990227 + 0.497821i
\(638\) 0 0
\(639\) 2.72115 + 7.74866i 0.107647 + 0.306532i
\(640\) 0 0
\(641\) 34.0351i 1.34431i 0.740412 + 0.672153i \(0.234630\pi\)
−0.740412 + 0.672153i \(0.765370\pi\)
\(642\) 0 0
\(643\) −8.02330 1.59593i −0.316408 0.0629374i 0.0343316 0.999410i \(-0.489070\pi\)
−0.350740 + 0.936473i \(0.614070\pi\)
\(644\) 0 0
\(645\) −2.63216 6.88391i −0.103641 0.271054i
\(646\) 0 0
\(647\) −42.9113 + 17.7744i −1.68702 + 0.698785i −0.999622 0.0275003i \(-0.991245\pi\)
−0.687394 + 0.726285i \(0.741245\pi\)
\(648\) 0 0
\(649\) 31.1863 + 12.9178i 1.22417 + 0.507067i
\(650\) 0 0
\(651\) −2.28958 1.02298i −0.0897359 0.0400937i
\(652\) 0 0
\(653\) −4.61269 6.90338i −0.180509 0.270150i 0.730170 0.683265i \(-0.239441\pi\)
−0.910679 + 0.413115i \(0.864441\pi\)
\(654\) 0 0
\(655\) 18.0359 + 18.0359i 0.704721 + 0.704721i
\(656\) 0 0
\(657\) 8.30555 17.2964i 0.324030 0.674796i
\(658\) 0 0
\(659\) −8.44152 12.6336i −0.328835 0.492136i 0.629807 0.776752i \(-0.283134\pi\)
−0.958642 + 0.284615i \(0.908134\pi\)
\(660\) 0 0
\(661\) 3.84431 + 19.3267i 0.149526 + 0.751720i 0.980671 + 0.195664i \(0.0626861\pi\)
−0.831145 + 0.556056i \(0.812314\pi\)
\(662\) 0 0
\(663\) 10.6915 + 16.9942i 0.415223 + 0.659999i
\(664\) 0 0
\(665\) 2.47541 1.02535i 0.0959922 0.0397613i
\(666\) 0 0
\(667\) 29.5001 + 19.7114i 1.14225 + 0.763227i
\(668\) 0 0
\(669\) 27.4740 26.0037i 1.06221 1.00536i
\(670\) 0 0
\(671\) 15.7071i 0.606367i
\(672\) 0 0
\(673\) 3.92280i 0.151213i 0.997138 + 0.0756064i \(0.0240893\pi\)
−0.997138 + 0.0756064i \(0.975911\pi\)
\(674\) 0 0
\(675\) −5.45794 + 10.6087i −0.210076 + 0.408329i
\(676\) 0 0
\(677\) −11.1725 7.46522i −0.429394 0.286912i 0.322033 0.946728i \(-0.395634\pi\)
−0.751426 + 0.659817i \(0.770634\pi\)
\(678\) 0 0
\(679\) −3.39479 + 1.40617i −0.130280 + 0.0539637i
\(680\) 0 0
\(681\) 22.5281 14.1730i 0.863279 0.543111i
\(682\) 0 0
\(683\) 7.51550 + 37.7830i 0.287573 + 1.44572i 0.806666 + 0.591007i \(0.201270\pi\)
−0.519094 + 0.854717i \(0.673730\pi\)
\(684\) 0 0
\(685\) −10.5439 15.7801i −0.402862 0.602926i
\(686\) 0 0
\(687\) 4.21343 + 24.7143i 0.160752 + 0.942911i
\(688\) 0 0
\(689\) 6.82449 + 6.82449i 0.259992 + 0.259992i
\(690\) 0 0
\(691\) −18.6673 27.9376i −0.710137 1.06280i −0.994567 0.104099i \(-0.966804\pi\)
0.284430 0.958697i \(-0.408196\pi\)
\(692\) 0 0
\(693\) −2.17964 + 1.28904i −0.0827977 + 0.0489667i
\(694\) 0 0
\(695\) 34.1017 + 14.1254i 1.29355 + 0.535806i
\(696\) 0 0
\(697\) 28.6591 11.8710i 1.08554 0.449645i
\(698\) 0 0
\(699\) 11.3002 4.32078i 0.427412 0.163427i
\(700\) 0 0
\(701\) 12.3453 + 2.45562i 0.466274 + 0.0927476i 0.422635 0.906300i \(-0.361105\pi\)
0.0436384 + 0.999047i \(0.486105\pi\)
\(702\) 0 0
\(703\) 39.7335i 1.49858i
\(704\) 0 0
\(705\) 16.3243 23.0343i 0.614807 0.867523i
\(706\) 0 0
\(707\) 0.367191 1.84599i 0.0138096 0.0694258i
\(708\) 0 0
\(709\) −0.942734 0.629915i −0.0354051 0.0236569i 0.537742 0.843110i \(-0.319278\pi\)
−0.573147 + 0.819453i \(0.694278\pi\)
\(710\) 0 0
\(711\) 27.8078 24.9069i 1.04288 0.934081i
\(712\) 0 0
\(713\) −12.1514 + 29.3360i −0.455072 + 1.09864i
\(714\) 0 0
\(715\) −3.64850 18.3423i −0.136446 0.685961i
\(716\) 0 0
\(717\) −36.5141 1.00395i −1.36365 0.0374931i
\(718\) 0 0
\(719\) −22.8751 + 22.8751i −0.853097 + 0.853097i −0.990513 0.137416i \(-0.956120\pi\)
0.137416 + 0.990513i \(0.456120\pi\)
\(720\) 0 0
\(721\) 0.605660 + 0.605660i 0.0225559 + 0.0225559i
\(722\) 0 0
\(723\) 1.45258 52.8312i 0.0540220 1.96481i
\(724\) 0 0
\(725\) 16.2101 3.22439i 0.602029 0.119751i
\(726\) 0 0
\(727\) −30.7003 12.7165i −1.13861 0.471628i −0.267911 0.963444i \(-0.586333\pi\)
−0.870699 + 0.491815i \(0.836333\pi\)
\(728\) 0 0
\(729\) −4.43286 + 26.6336i −0.164180 + 0.986430i
\(730\) 0 0
\(731\) 5.50348 8.23654i 0.203554 0.304639i
\(732\) 0 0
\(733\) −23.5980 4.69393i −0.871610 0.173374i −0.261032 0.965330i \(-0.584063\pi\)
−0.610578 + 0.791956i \(0.709063\pi\)
\(734\) 0 0
\(735\) −26.5269 18.7994i −0.978458 0.693426i
\(736\) 0 0
\(737\) −30.8531 −1.13649
\(738\) 0 0
\(739\) −2.09191 + 10.5168i −0.0769523 + 0.386865i 0.923045 + 0.384691i \(0.125692\pi\)
−0.999998 + 0.00217415i \(0.999308\pi\)
\(740\) 0 0
\(741\) 5.03317 + 13.1633i 0.184898 + 0.483565i
\(742\) 0 0
\(743\) −6.77485 16.3559i −0.248545 0.600041i 0.749536 0.661964i \(-0.230277\pi\)
−0.998081 + 0.0619227i \(0.980277\pi\)
\(744\) 0 0
\(745\) −13.5665 + 32.7525i −0.497039 + 1.19996i
\(746\) 0 0
\(747\) 22.9558 13.5761i 0.839908 0.496723i
\(748\) 0 0
\(749\) 2.56880 1.71642i 0.0938620 0.0627166i
\(750\) 0 0
\(751\) 14.3761 14.3761i 0.524591 0.524591i −0.394364 0.918954i \(-0.629035\pi\)
0.918954 + 0.394364i \(0.129035\pi\)
\(752\) 0 0
\(753\) 29.6112 5.04828i 1.07909 0.183969i
\(754\) 0 0
\(755\) 29.6550 19.8149i 1.07926 0.721137i
\(756\) 0 0
\(757\) 47.9560 9.53904i 1.74299 0.346702i 0.781999 0.623280i \(-0.214200\pi\)
0.960992 + 0.276578i \(0.0892003\pi\)
\(758\) 0 0
\(759\) 17.0744 + 27.1398i 0.619760 + 0.985113i
\(760\) 0 0
\(761\) −1.03255 2.49280i −0.0374300 0.0903641i 0.904059 0.427408i \(-0.140573\pi\)
−0.941489 + 0.337043i \(0.890573\pi\)
\(762\) 0 0
\(763\) −1.79898 + 2.69237i −0.0651275 + 0.0974702i
\(764\) 0 0
\(765\) −50.4481 + 7.17994i −1.82395 + 0.259591i
\(766\) 0 0
\(767\) 16.5670 0.598199
\(768\) 0 0
\(769\) 35.0025 1.26222 0.631111 0.775693i \(-0.282599\pi\)
0.631111 + 0.775693i \(0.282599\pi\)
\(770\) 0 0
\(771\) 26.0002 + 27.4704i 0.936376 + 0.989322i
\(772\) 0 0
\(773\) −21.1773 + 31.6940i −0.761694 + 1.13996i 0.224519 + 0.974470i \(0.427919\pi\)
−0.986212 + 0.165485i \(0.947081\pi\)
\(774\) 0 0
\(775\) 5.66056 + 13.6658i 0.203333 + 0.490890i
\(776\) 0 0
\(777\) −2.96591 + 1.86593i −0.106401 + 0.0669399i
\(778\) 0 0
\(779\) 21.3552 4.24781i 0.765129 0.152194i
\(780\) 0 0
\(781\) 8.54919 5.71239i 0.305914 0.204405i
\(782\) 0 0
\(783\) 32.7066 18.1484i 1.16884 0.648571i
\(784\) 0 0
\(785\) 27.2347 27.2347i 0.972050 0.972050i
\(786\) 0 0
\(787\) −3.91417 + 2.61536i −0.139525 + 0.0932276i −0.623374 0.781924i \(-0.714238\pi\)
0.483849 + 0.875152i \(0.339238\pi\)
\(788\) 0 0
\(789\) −10.4296 + 23.3431i −0.371305 + 0.831037i
\(790\) 0 0
\(791\) 0.751976 1.81543i 0.0267372 0.0645493i
\(792\) 0 0
\(793\) 2.95006 + 7.12208i 0.104760 + 0.252913i
\(794\) 0 0
\(795\) −22.8793 + 8.74821i −0.811444 + 0.310267i
\(796\) 0 0
\(797\) −6.71269 + 33.7469i −0.237776 + 1.19538i 0.658742 + 0.752369i \(0.271089\pi\)
−0.896517 + 0.443009i \(0.853911\pi\)
\(798\) 0 0
\(799\) 37.9471 1.34247
\(800\) 0 0
\(801\) −5.86221 16.6930i −0.207131 0.589818i
\(802\) 0 0
\(803\) −23.5605 4.68647i −0.831430 0.165382i
\(804\) 0 0
\(805\) 1.66222 2.48769i 0.0585856 0.0876796i
\(806\) 0 0
\(807\) −38.1701 8.68950i −1.34365 0.305885i
\(808\) 0 0
\(809\) −51.7697 21.4437i −1.82013 0.753921i −0.975997 0.217784i \(-0.930117\pi\)
−0.844130 0.536138i \(-0.819883\pi\)
\(810\) 0 0
\(811\) −7.49147 + 1.49015i −0.263061 + 0.0523261i −0.324859 0.945763i \(-0.605317\pi\)
0.0617975 + 0.998089i \(0.480317\pi\)
\(812\) 0 0
\(813\) −1.66705 0.0458350i −0.0584659 0.00160750i
\(814\) 0 0
\(815\) −18.1658 18.1658i −0.636320 0.636320i
\(816\) 0 0
\(817\) 4.91662 4.91662i 0.172011 0.172011i
\(818\) 0 0
\(819\) −0.746211 + 0.993865i −0.0260747 + 0.0347284i
\(820\) 0 0
\(821\) −0.780146 3.92206i −0.0272273 0.136881i 0.964781 0.263055i \(-0.0847301\pi\)
−0.992008 + 0.126174i \(0.959730\pi\)
\(822\) 0 0
\(823\) −1.40574 + 3.39375i −0.0490010 + 0.118299i −0.946485 0.322749i \(-0.895393\pi\)
0.897484 + 0.441048i \(0.145393\pi\)
\(824\) 0 0
\(825\) 14.5640 + 3.31553i 0.507054 + 0.115432i
\(826\) 0 0
\(827\) −24.9397 16.6642i −0.867240 0.579471i 0.0404176 0.999183i \(-0.487131\pi\)
−0.907657 + 0.419712i \(0.862131\pi\)
\(828\) 0 0
\(829\) −3.24515 + 16.3145i −0.112709 + 0.566625i 0.882620 + 0.470086i \(0.155777\pi\)
−0.995329 + 0.0965390i \(0.969223\pi\)
\(830\) 0 0
\(831\) −21.9751 15.5736i −0.762308 0.540242i
\(832\) 0 0
\(833\) 43.7007i 1.51414i
\(834\) 0 0
\(835\) 46.9126 + 9.33150i 1.62348 + 0.322930i
\(836\) 0 0
\(837\) 21.6407 + 25.5403i 0.748013 + 0.882801i
\(838\) 0 0
\(839\) 36.1705 14.9823i 1.24874 0.517246i 0.342307 0.939588i \(-0.388792\pi\)
0.906437 + 0.422342i \(0.138792\pi\)
\(840\) 0 0
\(841\) −21.0812 8.73210i −0.726937 0.301107i
\(842\) 0 0
\(843\) 2.21465 4.95673i 0.0762766 0.170719i
\(844\) 0 0
\(845\) 14.4092 + 21.5649i 0.495692 + 0.741855i
\(846\) 0 0
\(847\) 0.493772 + 0.493772i 0.0169662 + 0.0169662i
\(848\) 0 0
\(849\) −25.9484 + 4.42383i −0.890548 + 0.151825i
\(850\) 0 0
\(851\) 24.6499 + 36.8911i 0.844986 + 1.26461i
\(852\) 0 0
\(853\) −6.90740 34.7258i −0.236505 1.18899i −0.898326 0.439329i \(-0.855216\pi\)
0.661821 0.749662i \(-0.269784\pi\)
\(854\) 0 0
\(855\) −35.7129 1.96532i −1.22136 0.0672125i
\(856\) 0 0
\(857\) 31.3906 13.0024i 1.07228 0.444154i 0.224487 0.974477i \(-0.427929\pi\)
0.847796 + 0.530323i \(0.177929\pi\)
\(858\) 0 0
\(859\) 9.06812 + 6.05912i 0.309400 + 0.206735i 0.700570 0.713584i \(-0.252929\pi\)
−0.391169 + 0.920319i \(0.627929\pi\)
\(860\) 0 0
\(861\) 1.31994 + 1.39458i 0.0449836 + 0.0475271i
\(862\) 0 0
\(863\) 38.2716i 1.30278i 0.758743 + 0.651390i \(0.225814\pi\)
−0.758743 + 0.651390i \(0.774186\pi\)
\(864\) 0 0
\(865\) 7.64946i 0.260089i
\(866\) 0 0
\(867\) −26.8403 28.3580i −0.911545 0.963087i
\(868\) 0 0
\(869\) −38.8615 25.9664i −1.31829 0.880850i
\(870\) 0 0
\(871\) −13.9897 + 5.79473i −0.474024 + 0.196347i
\(872\) 0 0
\(873\) 48.9769 + 2.69525i 1.65762 + 0.0912204i
\(874\) 0 0
\(875\) 0.320225 + 1.60988i 0.0108256 + 0.0544239i
\(876\) 0 0
\(877\) −31.1713 46.6511i −1.05258 1.57530i −0.792658 0.609666i \(-0.791304\pi\)
−0.259921 0.965630i \(-0.583696\pi\)
\(878\) 0 0
\(879\) −1.61906 + 0.276025i −0.0546094 + 0.00931010i
\(880\) 0 0
\(881\) −10.8757 10.8757i −0.366411 0.366411i 0.499756 0.866166i \(-0.333423\pi\)
−0.866166 + 0.499756i \(0.833423\pi\)
\(882\) 0 0
\(883\) 27.8748 + 41.7176i 0.938062 + 1.40391i 0.914679 + 0.404182i \(0.132444\pi\)
0.0233832 + 0.999727i \(0.492556\pi\)
\(884\) 0 0
\(885\) −17.1521 + 38.3890i −0.576561 + 1.29043i
\(886\) 0 0
\(887\) 1.11945 + 0.463689i 0.0375873 + 0.0155692i 0.401398 0.915904i \(-0.368524\pi\)
−0.363811 + 0.931473i \(0.618524\pi\)
\(888\) 0 0
\(889\) 1.21908 0.504958i 0.0408865 0.0169357i
\(890\) 0 0
\(891\) 33.6775 2.91694i 1.12824 0.0977213i
\(892\) 0 0
\(893\) 26.1237 + 5.19633i 0.874197 + 0.173889i
\(894\) 0 0
\(895\) 48.3079i 1.61476i
\(896\) 0 0
\(897\) 12.8393 + 9.09916i 0.428693 + 0.303812i
\(898\) 0 0
\(899\) 9.04742 45.4845i 0.301748 1.51699i
\(900\) 0 0
\(901\) −27.3748 18.2913i −0.911988 0.609371i
\(902\) 0 0
\(903\) 0.597892 + 0.136111i 0.0198966 + 0.00452950i
\(904\) 0 0
\(905\) −3.38321 + 8.16780i −0.112462 + 0.271507i
\(906\) 0 0
\(907\) 5.34813 + 26.8869i 0.177582 + 0.892763i 0.962108 + 0.272668i \(0.0879061\pi\)
−0.784527 + 0.620095i \(0.787094\pi\)
\(908\) 0 0
\(909\) −15.0855 + 20.0922i −0.500356 + 0.666415i
\(910\) 0 0
\(911\) −0.887056 + 0.887056i −0.0293895 + 0.0293895i −0.721649 0.692259i \(-0.756615\pi\)
0.692259 + 0.721649i \(0.256615\pi\)
\(912\) 0 0
\(913\) −23.6104 23.6104i −0.781391 0.781391i
\(914\) 0 0
\(915\) −19.5576 0.537730i −0.646553 0.0177768i
\(916\) 0 0
\(917\) −2.08140 + 0.414016i −0.0687338 + 0.0136720i
\(918\) 0 0
\(919\) 28.5724 + 11.8351i 0.942517 + 0.390403i 0.800413 0.599448i \(-0.204613\pi\)
0.142104 + 0.989852i \(0.454613\pi\)
\(920\) 0 0
\(921\) 12.4745 + 2.83985i 0.411049 + 0.0935762i
\(922\) 0 0
\(923\) 2.80358 4.19585i 0.0922809 0.138108i
\(924\) 0 0
\(925\) 20.2714 + 4.03223i 0.666520 + 0.132579i
\(926\) 0 0
\(927\) −3.78851 10.7880i −0.124431 0.354325i
\(928\) 0 0
\(929\) −6.51999 −0.213914 −0.106957 0.994264i \(-0.534111\pi\)
−0.106957 + 0.994264i \(0.534111\pi\)
\(930\) 0 0
\(931\) 5.98422 30.0847i 0.196125 0.985986i
\(932\) 0 0
\(933\) 7.89988 3.02063i 0.258631 0.0988911i
\(934\) 0 0
\(935\) 24.4140 + 58.9405i 0.798422 + 1.92756i
\(936\) 0 0
\(937\) −11.7888 + 28.4606i −0.385122 + 0.929767i 0.605835 + 0.795590i \(0.292839\pi\)
−0.990957 + 0.134177i \(0.957161\pi\)
\(938\) 0 0
\(939\) −22.8570 + 51.1574i −0.745909 + 1.66946i
\(940\) 0 0
\(941\) 25.9536 17.3417i 0.846064 0.565322i −0.0552578 0.998472i \(-0.517598\pi\)
0.901322 + 0.433150i \(0.142598\pi\)
\(942\) 0 0
\(943\) 17.1923 17.1923i 0.559857 0.559857i
\(944\) 0 0
\(945\) −1.53042 2.75809i −0.0497846 0.0897207i
\(946\) 0 0
\(947\) −24.8159 + 16.5814i −0.806408 + 0.538824i −0.889080 0.457752i \(-0.848655\pi\)
0.0826720 + 0.996577i \(0.473655\pi\)
\(948\) 0 0
\(949\) −11.5632 + 2.30007i −0.375358 + 0.0746634i
\(950\) 0 0
\(951\) −30.7396 + 19.3391i −0.996799 + 0.627112i
\(952\) 0 0
\(953\) 1.96929 + 4.75430i 0.0637917 + 0.154007i 0.952561 0.304348i \(-0.0984387\pi\)
−0.888769 + 0.458355i \(0.848439\pi\)
\(954\) 0 0
\(955\) 14.5826 21.8244i 0.471881 0.706220i
\(956\) 0 0
\(957\) −32.1910 34.0112i −1.04059 1.09943i
\(958\) 0 0
\(959\) 1.57903 0.0509896
\(960\) 0 0
\(961\) 10.5047 0.338860
\(962\) 0 0
\(963\) −40.8301 + 5.81107i −1.31573 + 0.187259i
\(964\) 0 0
\(965\) −19.7029 + 29.4875i −0.634260 + 0.949237i
\(966\) 0 0
\(967\) 8.73678 + 21.0925i 0.280956 + 0.678287i 0.999858 0.0168233i \(-0.00535529\pi\)
−0.718903 + 0.695111i \(0.755355\pi\)
\(968\) 0 0
\(969\) −25.6000 40.6914i −0.822392 1.30720i
\(970\) 0 0
\(971\) 4.59135 0.913277i 0.147344 0.0293085i −0.120867 0.992669i \(-0.538568\pi\)
0.268211 + 0.963360i \(0.413568\pi\)
\(972\) 0 0
\(973\) −2.55350 + 1.70619i −0.0818613 + 0.0546980i
\(974\) 0 0
\(975\) 7.22648 1.23201i 0.231432 0.0394558i
\(976\) 0 0
\(977\) 2.06409 2.06409i 0.0660360 0.0660360i −0.673317 0.739353i \(-0.735131\pi\)
0.739353 + 0.673317i \(0.235131\pi\)
\(978\) 0 0
\(979\) −18.4176 + 12.3062i −0.588629 + 0.393309i
\(980\) 0 0
\(981\) 37.2058 22.0036i 1.18789 0.702520i
\(982\) 0 0
\(983\) −12.7549 + 30.7931i −0.406818 + 0.982146i 0.579151 + 0.815220i \(0.303384\pi\)
−0.985969 + 0.166926i \(0.946616\pi\)
\(984\) 0 0
\(985\) 7.62513 + 18.4087i 0.242957 + 0.586549i
\(986\) 0 0
\(987\) 0.838920 + 2.19404i 0.0267031 + 0.0698369i
\(988\) 0 0
\(989\) 1.51473 7.61507i 0.0481657 0.242145i
\(990\) 0 0
\(991\) −49.3048 −1.56622 −0.783109 0.621885i \(-0.786367\pi\)
−0.783109 + 0.621885i \(0.786367\pi\)
\(992\) 0 0
\(993\) 9.93275 + 7.03927i 0.315206 + 0.223385i
\(994\) 0 0
\(995\) −36.7733 7.31466i −1.16579 0.231890i
\(996\) 0 0
\(997\) 0.00817348 0.0122325i 0.000258857 0.000387407i −0.831340 0.555764i \(-0.812426\pi\)
0.831599 + 0.555377i \(0.187426\pi\)
\(998\) 0 0
\(999\) 46.4727 5.31559i 1.47033 0.168178i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.2.s.a.431.23 240
3.2 odd 2 inner 768.2.s.a.431.20 240
4.3 odd 2 192.2.s.a.131.22 yes 240
12.11 even 2 192.2.s.a.131.9 yes 240
64.21 even 16 192.2.s.a.107.9 240
64.43 odd 16 inner 768.2.s.a.335.20 240
192.107 even 16 inner 768.2.s.a.335.23 240
192.149 odd 16 192.2.s.a.107.22 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.2.s.a.107.9 240 64.21 even 16
192.2.s.a.107.22 yes 240 192.149 odd 16
192.2.s.a.131.9 yes 240 12.11 even 2
192.2.s.a.131.22 yes 240 4.3 odd 2
768.2.s.a.335.20 240 64.43 odd 16 inner
768.2.s.a.335.23 240 192.107 even 16 inner
768.2.s.a.431.20 240 3.2 odd 2 inner
768.2.s.a.431.23 240 1.1 even 1 trivial