Properties

Label 768.2.s.a.431.14
Level $768$
Weight $2$
Character 768.431
Analytic conductor $6.133$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,2,Mod(47,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.s (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 431.14
Character \(\chi\) \(=\) 768.431
Dual form 768.2.s.a.335.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.00323701 + 1.73205i) q^{3} +(0.951414 - 1.42389i) q^{5} +(0.304742 + 0.735711i) q^{7} +(-2.99998 - 0.0112133i) q^{9} +(-5.27874 + 1.05001i) q^{11} +(-2.38495 + 1.59357i) q^{13} +(2.46317 + 1.65250i) q^{15} +(-3.60610 + 3.60610i) q^{17} +(2.23180 - 1.49124i) q^{19} +(-1.27527 + 0.525445i) q^{21} +(-2.89265 + 6.98348i) q^{23} +(0.791139 + 1.90998i) q^{25} +(0.0291330 - 5.19607i) q^{27} +(-0.806254 + 4.05331i) q^{29} +6.95599 q^{31} +(-1.80158 - 9.14643i) q^{33} +(1.33751 + 0.266047i) q^{35} +(-2.51344 + 3.76162i) q^{37} +(-2.75242 - 4.13600i) q^{39} +(-1.08807 - 0.450693i) q^{41} +(-1.84512 + 0.367016i) q^{43} +(-2.87019 + 4.26097i) q^{45} +(4.93192 + 4.93192i) q^{47} +(4.50134 - 4.50134i) q^{49} +(-6.23427 - 6.25761i) q^{51} +(-1.88555 - 9.47932i) q^{53} +(-3.52717 + 8.51534i) q^{55} +(2.57568 + 3.87042i) q^{57} +(-2.08460 - 1.39288i) q^{59} +(-0.211398 + 1.06277i) q^{61} +(-0.905968 - 2.21053i) q^{63} +4.91205i q^{65} +(-13.8689 - 2.75869i) q^{67} +(-12.0864 - 5.03282i) q^{69} +(-4.58122 + 1.89760i) q^{71} +(0.638643 + 0.264535i) q^{73} +(-3.31074 + 1.36411i) q^{75} +(-2.38115 - 3.56365i) q^{77} +(-2.62297 - 2.62297i) q^{79} +(8.99975 + 0.0672794i) q^{81} +(1.68471 + 2.52135i) q^{83} +(1.70380 + 8.56559i) q^{85} +(-7.01792 - 1.40959i) q^{87} +(14.6543 - 6.06999i) q^{89} +(-1.89920 - 1.26900i) q^{91} +(-0.0225166 + 12.0481i) q^{93} -4.59663i q^{95} +0.149313i q^{97} +(15.8479 - 3.09081i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 8 q^{3} + 16 q^{7} - 8 q^{9} - 16 q^{13} + 8 q^{15} + 16 q^{19} - 8 q^{21} - 16 q^{25} + 8 q^{27} + 32 q^{31} - 16 q^{37} + 8 q^{39} + 16 q^{43} - 8 q^{45} - 16 q^{49} + 8 q^{51} + 80 q^{55} - 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.00323701 + 1.73205i −0.00186889 + 0.999998i
\(4\) 0 0
\(5\) 0.951414 1.42389i 0.425485 0.636783i −0.555351 0.831616i \(-0.687416\pi\)
0.980837 + 0.194832i \(0.0624163\pi\)
\(6\) 0 0
\(7\) 0.304742 + 0.735711i 0.115181 + 0.278073i 0.970948 0.239289i \(-0.0769143\pi\)
−0.855767 + 0.517361i \(0.826914\pi\)
\(8\) 0 0
\(9\) −2.99998 0.0112133i −0.999993 0.00373777i
\(10\) 0 0
\(11\) −5.27874 + 1.05001i −1.59160 + 0.316589i −0.909831 0.414978i \(-0.863789\pi\)
−0.681769 + 0.731567i \(0.738789\pi\)
\(12\) 0 0
\(13\) −2.38495 + 1.59357i −0.661465 + 0.441977i −0.840460 0.541873i \(-0.817715\pi\)
0.178995 + 0.983850i \(0.442715\pi\)
\(14\) 0 0
\(15\) 2.46317 + 1.65250i 0.635987 + 0.426674i
\(16\) 0 0
\(17\) −3.60610 + 3.60610i −0.874608 + 0.874608i −0.992970 0.118362i \(-0.962236\pi\)
0.118362 + 0.992970i \(0.462236\pi\)
\(18\) 0 0
\(19\) 2.23180 1.49124i 0.512011 0.342115i −0.272575 0.962134i \(-0.587875\pi\)
0.784586 + 0.620020i \(0.212875\pi\)
\(20\) 0 0
\(21\) −1.27527 + 0.525445i −0.278287 + 0.114662i
\(22\) 0 0
\(23\) −2.89265 + 6.98348i −0.603160 + 1.45616i 0.267151 + 0.963655i \(0.413918\pi\)
−0.870311 + 0.492502i \(0.836082\pi\)
\(24\) 0 0
\(25\) 0.791139 + 1.90998i 0.158228 + 0.381996i
\(26\) 0 0
\(27\) 0.0291330 5.19607i 0.00560664 0.999984i
\(28\) 0 0
\(29\) −0.806254 + 4.05331i −0.149718 + 0.752681i 0.830850 + 0.556497i \(0.187855\pi\)
−0.980567 + 0.196184i \(0.937145\pi\)
\(30\) 0 0
\(31\) 6.95599 1.24933 0.624666 0.780892i \(-0.285235\pi\)
0.624666 + 0.780892i \(0.285235\pi\)
\(32\) 0 0
\(33\) −1.80158 9.14643i −0.313614 1.59219i
\(34\) 0 0
\(35\) 1.33751 + 0.266047i 0.226080 + 0.0449701i
\(36\) 0 0
\(37\) −2.51344 + 3.76162i −0.413206 + 0.618407i −0.978442 0.206523i \(-0.933785\pi\)
0.565235 + 0.824930i \(0.308785\pi\)
\(38\) 0 0
\(39\) −2.75242 4.13600i −0.440740 0.662290i
\(40\) 0 0
\(41\) −1.08807 0.450693i −0.169928 0.0703865i 0.296098 0.955158i \(-0.404315\pi\)
−0.466026 + 0.884771i \(0.654315\pi\)
\(42\) 0 0
\(43\) −1.84512 + 0.367016i −0.281377 + 0.0559695i −0.333761 0.942658i \(-0.608318\pi\)
0.0523840 + 0.998627i \(0.483318\pi\)
\(44\) 0 0
\(45\) −2.87019 + 4.26097i −0.427862 + 0.635189i
\(46\) 0 0
\(47\) 4.93192 + 4.93192i 0.719394 + 0.719394i 0.968481 0.249087i \(-0.0801306\pi\)
−0.249087 + 0.968481i \(0.580131\pi\)
\(48\) 0 0
\(49\) 4.50134 4.50134i 0.643049 0.643049i
\(50\) 0 0
\(51\) −6.23427 6.25761i −0.872972 0.876241i
\(52\) 0 0
\(53\) −1.88555 9.47932i −0.259001 1.30208i −0.863042 0.505132i \(-0.831444\pi\)
0.604041 0.796953i \(-0.293556\pi\)
\(54\) 0 0
\(55\) −3.52717 + 8.51534i −0.475604 + 1.14821i
\(56\) 0 0
\(57\) 2.57568 + 3.87042i 0.341157 + 0.512649i
\(58\) 0 0
\(59\) −2.08460 1.39288i −0.271392 0.181338i 0.412426 0.910991i \(-0.364682\pi\)
−0.683817 + 0.729653i \(0.739682\pi\)
\(60\) 0 0
\(61\) −0.211398 + 1.06277i −0.0270668 + 0.136074i −0.991956 0.126583i \(-0.959599\pi\)
0.964889 + 0.262657i \(0.0845988\pi\)
\(62\) 0 0
\(63\) −0.905968 2.21053i −0.114141 0.278501i
\(64\) 0 0
\(65\) 4.91205i 0.609264i
\(66\) 0 0
\(67\) −13.8689 2.75869i −1.69435 0.337027i −0.748873 0.662714i \(-0.769405\pi\)
−0.945478 + 0.325687i \(0.894405\pi\)
\(68\) 0 0
\(69\) −12.0864 5.03282i −1.45503 0.605880i
\(70\) 0 0
\(71\) −4.58122 + 1.89760i −0.543691 + 0.225204i −0.637588 0.770378i \(-0.720068\pi\)
0.0938968 + 0.995582i \(0.470068\pi\)
\(72\) 0 0
\(73\) 0.638643 + 0.264535i 0.0747476 + 0.0309615i 0.419744 0.907643i \(-0.362120\pi\)
−0.344996 + 0.938604i \(0.612120\pi\)
\(74\) 0 0
\(75\) −3.31074 + 1.36411i −0.382291 + 0.157514i
\(76\) 0 0
\(77\) −2.38115 3.56365i −0.271358 0.406115i
\(78\) 0 0
\(79\) −2.62297 2.62297i −0.295108 0.295108i 0.543986 0.839094i \(-0.316914\pi\)
−0.839094 + 0.543986i \(0.816914\pi\)
\(80\) 0 0
\(81\) 8.99975 + 0.0672794i 0.999972 + 0.00747549i
\(82\) 0 0
\(83\) 1.68471 + 2.52135i 0.184921 + 0.276754i 0.912335 0.409445i \(-0.134278\pi\)
−0.727414 + 0.686199i \(0.759278\pi\)
\(84\) 0 0
\(85\) 1.70380 + 8.56559i 0.184803 + 0.929069i
\(86\) 0 0
\(87\) −7.01792 1.40959i −0.752400 0.151124i
\(88\) 0 0
\(89\) 14.6543 6.06999i 1.55335 0.643418i 0.569430 0.822040i \(-0.307164\pi\)
0.983918 + 0.178622i \(0.0571639\pi\)
\(90\) 0 0
\(91\) −1.89920 1.26900i −0.199090 0.133028i
\(92\) 0 0
\(93\) −0.0225166 + 12.0481i −0.00233486 + 1.24933i
\(94\) 0 0
\(95\) 4.59663i 0.471605i
\(96\) 0 0
\(97\) 0.149313i 0.0151604i 0.999971 + 0.00758022i \(0.00241288\pi\)
−0.999971 + 0.00758022i \(0.997587\pi\)
\(98\) 0 0
\(99\) 15.8479 3.09081i 1.59277 0.310638i
\(100\) 0 0
\(101\) 1.92669 + 1.28738i 0.191713 + 0.128099i 0.647723 0.761876i \(-0.275722\pi\)
−0.456009 + 0.889975i \(0.650722\pi\)
\(102\) 0 0
\(103\) 16.6745 6.90682i 1.64299 0.680549i 0.646397 0.763002i \(-0.276275\pi\)
0.996595 + 0.0824521i \(0.0262751\pi\)
\(104\) 0 0
\(105\) −0.465135 + 2.31577i −0.0453926 + 0.225996i
\(106\) 0 0
\(107\) −1.86716 9.38684i −0.180505 0.907460i −0.959775 0.280772i \(-0.909410\pi\)
0.779270 0.626689i \(-0.215590\pi\)
\(108\) 0 0
\(109\) 3.82994 + 5.73191i 0.366842 + 0.549017i 0.968269 0.249910i \(-0.0804011\pi\)
−0.601427 + 0.798927i \(0.705401\pi\)
\(110\) 0 0
\(111\) −6.50718 4.36557i −0.617634 0.414361i
\(112\) 0 0
\(113\) −10.9819 10.9819i −1.03309 1.03309i −0.999434 0.0336525i \(-0.989286\pi\)
−0.0336525 0.999434i \(-0.510714\pi\)
\(114\) 0 0
\(115\) 7.19161 + 10.7630i 0.670621 + 1.00366i
\(116\) 0 0
\(117\) 7.17266 4.75393i 0.663112 0.439501i
\(118\) 0 0
\(119\) −3.75198 1.55412i −0.343943 0.142466i
\(120\) 0 0
\(121\) 16.5999 6.87591i 1.50908 0.625083i
\(122\) 0 0
\(123\) 0.784144 1.88313i 0.0707039 0.169796i
\(124\) 0 0
\(125\) 11.8703 + 2.36114i 1.06171 + 0.211187i
\(126\) 0 0
\(127\) 20.2770i 1.79929i 0.436624 + 0.899644i \(0.356174\pi\)
−0.436624 + 0.899644i \(0.643826\pi\)
\(128\) 0 0
\(129\) −0.629717 3.19702i −0.0554435 0.281482i
\(130\) 0 0
\(131\) −0.249189 + 1.25276i −0.0217717 + 0.109454i −0.990143 0.140059i \(-0.955271\pi\)
0.968371 + 0.249513i \(0.0802706\pi\)
\(132\) 0 0
\(133\) 1.77725 + 1.18752i 0.154107 + 0.102971i
\(134\) 0 0
\(135\) −7.37092 4.98509i −0.634388 0.429049i
\(136\) 0 0
\(137\) −3.45449 + 8.33988i −0.295137 + 0.712524i 0.704858 + 0.709348i \(0.251011\pi\)
−0.999995 + 0.00317519i \(0.998989\pi\)
\(138\) 0 0
\(139\) 1.01764 + 5.11603i 0.0863153 + 0.433936i 0.999643 + 0.0267113i \(0.00850349\pi\)
−0.913328 + 0.407225i \(0.866497\pi\)
\(140\) 0 0
\(141\) −8.55828 + 8.52635i −0.720737 + 0.718048i
\(142\) 0 0
\(143\) 10.9163 10.9163i 0.912863 0.912863i
\(144\) 0 0
\(145\) 5.00439 + 5.00439i 0.415592 + 0.415592i
\(146\) 0 0
\(147\) 7.78197 + 7.81111i 0.641846 + 0.644250i
\(148\) 0 0
\(149\) 16.6513 3.31215i 1.36413 0.271342i 0.541872 0.840461i \(-0.317716\pi\)
0.822255 + 0.569119i \(0.192716\pi\)
\(150\) 0 0
\(151\) 5.96083 + 2.46906i 0.485086 + 0.200929i 0.611804 0.791010i \(-0.290444\pi\)
−0.126718 + 0.991939i \(0.540444\pi\)
\(152\) 0 0
\(153\) 10.8587 10.7778i 0.877871 0.871333i
\(154\) 0 0
\(155\) 6.61802 9.90457i 0.531572 0.795554i
\(156\) 0 0
\(157\) −13.1331 2.61233i −1.04813 0.208487i −0.359162 0.933275i \(-0.616938\pi\)
−0.688972 + 0.724788i \(0.741938\pi\)
\(158\) 0 0
\(159\) 16.4247 3.23519i 1.30257 0.256567i
\(160\) 0 0
\(161\) −6.01934 −0.474390
\(162\) 0 0
\(163\) −4.06143 + 20.4182i −0.318116 + 1.59928i 0.408849 + 0.912602i \(0.365930\pi\)
−0.726965 + 0.686675i \(0.759070\pi\)
\(164\) 0 0
\(165\) −14.7376 6.13679i −1.14732 0.477749i
\(166\) 0 0
\(167\) 4.47253 + 10.7976i 0.346095 + 0.835546i 0.997073 + 0.0764504i \(0.0243587\pi\)
−0.650979 + 0.759096i \(0.725641\pi\)
\(168\) 0 0
\(169\) −1.82638 + 4.40928i −0.140491 + 0.339175i
\(170\) 0 0
\(171\) −6.71209 + 4.44867i −0.513286 + 0.340199i
\(172\) 0 0
\(173\) −10.2207 + 6.82923i −0.777062 + 0.519217i −0.879715 0.475501i \(-0.842267\pi\)
0.102653 + 0.994717i \(0.467267\pi\)
\(174\) 0 0
\(175\) −1.16410 + 1.16410i −0.0879977 + 0.0879977i
\(176\) 0 0
\(177\) 2.41929 3.60611i 0.181845 0.271052i
\(178\) 0 0
\(179\) 6.50009 4.34322i 0.485839 0.324627i −0.288411 0.957507i \(-0.593127\pi\)
0.774251 + 0.632879i \(0.218127\pi\)
\(180\) 0 0
\(181\) 12.7875 2.54359i 0.950487 0.189064i 0.304586 0.952485i \(-0.401482\pi\)
0.645901 + 0.763421i \(0.276482\pi\)
\(182\) 0 0
\(183\) −1.84008 0.369592i −0.136023 0.0273210i
\(184\) 0 0
\(185\) 2.96482 + 7.15772i 0.217978 + 0.526246i
\(186\) 0 0
\(187\) 15.2492 22.8221i 1.11514 1.66892i
\(188\) 0 0
\(189\) 3.83168 1.56202i 0.278714 0.113621i
\(190\) 0 0
\(191\) 11.6080 0.839922 0.419961 0.907542i \(-0.362044\pi\)
0.419961 + 0.907542i \(0.362044\pi\)
\(192\) 0 0
\(193\) −23.6837 −1.70479 −0.852396 0.522896i \(-0.824852\pi\)
−0.852396 + 0.522896i \(0.824852\pi\)
\(194\) 0 0
\(195\) −8.50790 0.0159003i −0.609263 0.00113865i
\(196\) 0 0
\(197\) 5.94160 8.89224i 0.423322 0.633546i −0.557102 0.830444i \(-0.688087\pi\)
0.980424 + 0.196898i \(0.0630869\pi\)
\(198\) 0 0
\(199\) 0.0481228 + 0.116179i 0.00341134 + 0.00823569i 0.925576 0.378562i \(-0.123581\pi\)
−0.922165 + 0.386797i \(0.873581\pi\)
\(200\) 0 0
\(201\) 4.82307 24.0126i 0.340193 1.69372i
\(202\) 0 0
\(203\) −3.22776 + 0.642042i −0.226545 + 0.0450625i
\(204\) 0 0
\(205\) −1.67694 + 1.12050i −0.117123 + 0.0782589i
\(206\) 0 0
\(207\) 8.75621 20.9179i 0.608598 1.45389i
\(208\) 0 0
\(209\) −10.2153 + 10.2153i −0.706607 + 0.706607i
\(210\) 0 0
\(211\) 11.9918 8.01268i 0.825551 0.551615i −0.0694988 0.997582i \(-0.522140\pi\)
0.895050 + 0.445967i \(0.147140\pi\)
\(212\) 0 0
\(213\) −3.27191 7.94104i −0.224188 0.544111i
\(214\) 0 0
\(215\) −1.23288 + 2.97643i −0.0840815 + 0.202991i
\(216\) 0 0
\(217\) 2.11978 + 5.11760i 0.143900 + 0.347405i
\(218\) 0 0
\(219\) −0.460254 + 1.10530i −0.0311011 + 0.0746896i
\(220\) 0 0
\(221\) 2.85378 14.3469i 0.191966 0.965079i
\(222\) 0 0
\(223\) −15.4594 −1.03524 −0.517618 0.855612i \(-0.673181\pi\)
−0.517618 + 0.855612i \(0.673181\pi\)
\(224\) 0 0
\(225\) −2.35198 5.73877i −0.156799 0.382585i
\(226\) 0 0
\(227\) −8.37592 1.66607i −0.555929 0.110581i −0.0908733 0.995862i \(-0.528966\pi\)
−0.465056 + 0.885281i \(0.653966\pi\)
\(228\) 0 0
\(229\) 1.16297 1.74050i 0.0768510 0.115016i −0.791053 0.611748i \(-0.790467\pi\)
0.867904 + 0.496732i \(0.165467\pi\)
\(230\) 0 0
\(231\) 6.18012 4.11274i 0.406622 0.270598i
\(232\) 0 0
\(233\) 9.34754 + 3.87188i 0.612378 + 0.253655i 0.667245 0.744839i \(-0.267473\pi\)
−0.0548670 + 0.998494i \(0.517473\pi\)
\(234\) 0 0
\(235\) 11.7148 2.33022i 0.764189 0.152007i
\(236\) 0 0
\(237\) 4.55161 4.53463i 0.295659 0.294556i
\(238\) 0 0
\(239\) 8.11977 + 8.11977i 0.525224 + 0.525224i 0.919145 0.393920i \(-0.128881\pi\)
−0.393920 + 0.919145i \(0.628881\pi\)
\(240\) 0 0
\(241\) −20.6545 + 20.6545i −1.33047 + 1.33047i −0.425523 + 0.904948i \(0.639910\pi\)
−0.904948 + 0.425523i \(0.860090\pi\)
\(242\) 0 0
\(243\) −0.145663 + 15.5878i −0.00934431 + 0.999956i
\(244\) 0 0
\(245\) −2.12678 10.6921i −0.135875 0.683091i
\(246\) 0 0
\(247\) −2.94633 + 7.11307i −0.187470 + 0.452594i
\(248\) 0 0
\(249\) −4.37255 + 2.90984i −0.277099 + 0.184403i
\(250\) 0 0
\(251\) −6.36129 4.25048i −0.401521 0.268288i 0.338372 0.941013i \(-0.390124\pi\)
−0.739893 + 0.672725i \(0.765124\pi\)
\(252\) 0 0
\(253\) 7.93686 39.9013i 0.498986 2.50857i
\(254\) 0 0
\(255\) −14.8415 + 2.92334i −0.929412 + 0.183067i
\(256\) 0 0
\(257\) 2.41242i 0.150483i −0.997165 0.0752414i \(-0.976027\pi\)
0.997165 0.0752414i \(-0.0239727\pi\)
\(258\) 0 0
\(259\) −3.53342 0.702840i −0.219556 0.0436724i
\(260\) 0 0
\(261\) 2.46420 12.1508i 0.152530 0.752116i
\(262\) 0 0
\(263\) 15.6931 6.50028i 0.967676 0.400825i 0.157830 0.987466i \(-0.449550\pi\)
0.809847 + 0.586642i \(0.199550\pi\)
\(264\) 0 0
\(265\) −15.2915 6.33393i −0.939347 0.389090i
\(266\) 0 0
\(267\) 10.4661 + 25.4015i 0.640514 + 1.55455i
\(268\) 0 0
\(269\) 9.94484 + 14.8835i 0.606348 + 0.907464i 0.999930 0.0118258i \(-0.00376437\pi\)
−0.393582 + 0.919289i \(0.628764\pi\)
\(270\) 0 0
\(271\) −20.7141 20.7141i −1.25829 1.25829i −0.951909 0.306382i \(-0.900882\pi\)
−0.306382 0.951909i \(-0.599118\pi\)
\(272\) 0 0
\(273\) 2.20412 3.28540i 0.133400 0.198841i
\(274\) 0 0
\(275\) −6.18171 9.25159i −0.372771 0.557892i
\(276\) 0 0
\(277\) 4.98281 + 25.0503i 0.299388 + 1.50513i 0.778652 + 0.627456i \(0.215904\pi\)
−0.479264 + 0.877671i \(0.659096\pi\)
\(278\) 0 0
\(279\) −20.8678 0.0779997i −1.24932 0.00466972i
\(280\) 0 0
\(281\) −28.1242 + 11.6494i −1.67775 + 0.694947i −0.999215 0.0396211i \(-0.987385\pi\)
−0.678535 + 0.734568i \(0.737385\pi\)
\(282\) 0 0
\(283\) −9.93766 6.64013i −0.590732 0.394715i 0.223968 0.974596i \(-0.428099\pi\)
−0.814701 + 0.579882i \(0.803099\pi\)
\(284\) 0 0
\(285\) 7.96159 + 0.0148793i 0.471604 + 0.000881377i
\(286\) 0 0
\(287\) 0.937850i 0.0553595i
\(288\) 0 0
\(289\) 9.00794i 0.529879i
\(290\) 0 0
\(291\) −0.258617 0.000483328i −0.0151604 2.83332e-5i
\(292\) 0 0
\(293\) 7.07296 + 4.72600i 0.413207 + 0.276096i 0.744749 0.667344i \(-0.232569\pi\)
−0.331542 + 0.943440i \(0.607569\pi\)
\(294\) 0 0
\(295\) −3.96663 + 1.64303i −0.230946 + 0.0956610i
\(296\) 0 0
\(297\) 5.30213 + 27.4593i 0.307661 + 1.59335i
\(298\) 0 0
\(299\) −4.22985 21.2649i −0.244618 1.22978i
\(300\) 0 0
\(301\) −0.832301 1.24563i −0.0479730 0.0717967i
\(302\) 0 0
\(303\) −2.23603 + 3.33296i −0.128457 + 0.191474i
\(304\) 0 0
\(305\) 1.31214 + 1.31214i 0.0751330 + 0.0751330i
\(306\) 0 0
\(307\) 6.07810 + 9.09652i 0.346895 + 0.519166i 0.963358 0.268218i \(-0.0864349\pi\)
−0.616463 + 0.787384i \(0.711435\pi\)
\(308\) 0 0
\(309\) 11.9090 + 28.9035i 0.677478 + 1.64426i
\(310\) 0 0
\(311\) −11.0707 4.58563i −0.627761 0.260027i 0.0460403 0.998940i \(-0.485340\pi\)
−0.673802 + 0.738912i \(0.735340\pi\)
\(312\) 0 0
\(313\) 20.1965 8.36565i 1.14157 0.472855i 0.269873 0.962896i \(-0.413018\pi\)
0.871699 + 0.490041i \(0.163018\pi\)
\(314\) 0 0
\(315\) −4.00951 0.813133i −0.225910 0.0458148i
\(316\) 0 0
\(317\) 0.376393 + 0.0748693i 0.0211404 + 0.00420508i 0.205649 0.978626i \(-0.434069\pi\)
−0.184509 + 0.982831i \(0.559069\pi\)
\(318\) 0 0
\(319\) 22.2430i 1.24537i
\(320\) 0 0
\(321\) 16.2645 3.20362i 0.907796 0.178809i
\(322\) 0 0
\(323\) −2.67053 + 13.4257i −0.148593 + 0.747025i
\(324\) 0 0
\(325\) −4.93051 3.29446i −0.273495 0.182744i
\(326\) 0 0
\(327\) −9.94034 + 6.61508i −0.549702 + 0.365815i
\(328\) 0 0
\(329\) −2.12551 + 5.13142i −0.117183 + 0.282905i
\(330\) 0 0
\(331\) −1.37154 6.89518i −0.0753865 0.378994i 0.924612 0.380911i \(-0.124390\pi\)
−0.999998 + 0.00191754i \(0.999390\pi\)
\(332\) 0 0
\(333\) 7.58244 11.2566i 0.415515 0.616858i
\(334\) 0 0
\(335\) −17.1231 + 17.1231i −0.935534 + 0.935534i
\(336\) 0 0
\(337\) 17.3354 + 17.3354i 0.944318 + 0.944318i 0.998529 0.0542113i \(-0.0172645\pi\)
−0.0542113 + 0.998529i \(0.517264\pi\)
\(338\) 0 0
\(339\) 19.0566 18.9856i 1.03502 1.03115i
\(340\) 0 0
\(341\) −36.7189 + 7.30384i −1.98844 + 0.395525i
\(342\) 0 0
\(343\) 9.83341 + 4.07313i 0.530954 + 0.219929i
\(344\) 0 0
\(345\) −18.6653 + 12.4214i −1.00491 + 0.668744i
\(346\) 0 0
\(347\) −10.1675 + 15.2167i −0.545819 + 0.816875i −0.997147 0.0754825i \(-0.975950\pi\)
0.451328 + 0.892358i \(0.350950\pi\)
\(348\) 0 0
\(349\) 13.3260 + 2.65070i 0.713322 + 0.141889i 0.538395 0.842693i \(-0.319031\pi\)
0.174927 + 0.984581i \(0.444031\pi\)
\(350\) 0 0
\(351\) 8.21082 + 12.4388i 0.438261 + 0.663933i
\(352\) 0 0
\(353\) 13.2033 0.702743 0.351372 0.936236i \(-0.385715\pi\)
0.351372 + 0.936236i \(0.385715\pi\)
\(354\) 0 0
\(355\) −1.65665 + 8.32857i −0.0879261 + 0.442034i
\(356\) 0 0
\(357\) 2.70396 6.49357i 0.143108 0.343676i
\(358\) 0 0
\(359\) 9.51903 + 22.9810i 0.502395 + 1.21289i 0.948176 + 0.317747i \(0.102926\pi\)
−0.445780 + 0.895142i \(0.647074\pi\)
\(360\) 0 0
\(361\) −4.51385 + 10.8974i −0.237571 + 0.573547i
\(362\) 0 0
\(363\) 11.8557 + 28.7741i 0.622262 + 1.51025i
\(364\) 0 0
\(365\) 0.984283 0.657677i 0.0515197 0.0344244i
\(366\) 0 0
\(367\) −6.04728 + 6.04728i −0.315665 + 0.315665i −0.847100 0.531434i \(-0.821653\pi\)
0.531434 + 0.847100i \(0.321653\pi\)
\(368\) 0 0
\(369\) 3.25913 + 1.36427i 0.169664 + 0.0710211i
\(370\) 0 0
\(371\) 6.39943 4.27597i 0.332242 0.221997i
\(372\) 0 0
\(373\) 26.8149 5.33382i 1.38842 0.276175i 0.556401 0.830914i \(-0.312182\pi\)
0.832024 + 0.554739i \(0.187182\pi\)
\(374\) 0 0
\(375\) −4.12804 + 20.5522i −0.213171 + 1.06131i
\(376\) 0 0
\(377\) −4.53636 10.9517i −0.233635 0.564044i
\(378\) 0 0
\(379\) −5.46511 + 8.17912i −0.280724 + 0.420133i −0.944858 0.327481i \(-0.893800\pi\)
0.664134 + 0.747614i \(0.268800\pi\)
\(380\) 0 0
\(381\) −35.1207 0.0656367i −1.79929 0.00336267i
\(382\) 0 0
\(383\) 9.12965 0.466503 0.233252 0.972416i \(-0.425063\pi\)
0.233252 + 0.972416i \(0.425063\pi\)
\(384\) 0 0
\(385\) −7.33971 −0.374066
\(386\) 0 0
\(387\) 5.53942 1.08035i 0.281585 0.0549173i
\(388\) 0 0
\(389\) −0.446040 + 0.667546i −0.0226151 + 0.0338459i −0.842605 0.538532i \(-0.818979\pi\)
0.819990 + 0.572378i \(0.193979\pi\)
\(390\) 0 0
\(391\) −14.7519 35.6143i −0.746038 1.80110i
\(392\) 0 0
\(393\) −2.16903 0.435662i −0.109413 0.0219763i
\(394\) 0 0
\(395\) −6.23036 + 1.23930i −0.313484 + 0.0623558i
\(396\) 0 0
\(397\) −26.1544 + 17.4758i −1.31265 + 0.877086i −0.997410 0.0719252i \(-0.977086\pi\)
−0.315242 + 0.949011i \(0.602086\pi\)
\(398\) 0 0
\(399\) −2.06259 + 3.07443i −0.103259 + 0.153914i
\(400\) 0 0
\(401\) −12.4507 + 12.4507i −0.621757 + 0.621757i −0.945981 0.324223i \(-0.894897\pi\)
0.324223 + 0.945981i \(0.394897\pi\)
\(402\) 0 0
\(403\) −16.5897 + 11.0849i −0.826390 + 0.552176i
\(404\) 0 0
\(405\) 8.65828 12.7507i 0.430233 0.633585i
\(406\) 0 0
\(407\) 9.31805 22.4958i 0.461879 1.11507i
\(408\) 0 0
\(409\) −6.02622 14.5486i −0.297977 0.719381i −0.999974 0.00720056i \(-0.997708\pi\)
0.701997 0.712180i \(-0.252292\pi\)
\(410\) 0 0
\(411\) −14.4339 6.01034i −0.711971 0.296468i
\(412\) 0 0
\(413\) 0.389497 1.95813i 0.0191659 0.0963534i
\(414\) 0 0
\(415\) 5.19298 0.254913
\(416\) 0 0
\(417\) −8.86451 + 1.74604i −0.434097 + 0.0855042i
\(418\) 0 0
\(419\) −20.4761 4.07294i −1.00032 0.198976i −0.332344 0.943158i \(-0.607840\pi\)
−0.667977 + 0.744182i \(0.732840\pi\)
\(420\) 0 0
\(421\) 4.56603 6.83355i 0.222535 0.333047i −0.703356 0.710838i \(-0.748316\pi\)
0.925891 + 0.377791i \(0.123316\pi\)
\(422\) 0 0
\(423\) −14.7403 14.8509i −0.716700 0.722078i
\(424\) 0 0
\(425\) −9.74051 4.03465i −0.472484 0.195709i
\(426\) 0 0
\(427\) −0.846314 + 0.168342i −0.0409560 + 0.00814665i
\(428\) 0 0
\(429\) 18.8721 + 18.9428i 0.911155 + 0.914567i
\(430\) 0 0
\(431\) −22.1459 22.1459i −1.06673 1.06673i −0.997608 0.0691236i \(-0.977980\pi\)
−0.0691236 0.997608i \(-0.522020\pi\)
\(432\) 0 0
\(433\) −7.75001 + 7.75001i −0.372442 + 0.372442i −0.868366 0.495924i \(-0.834829\pi\)
0.495924 + 0.868366i \(0.334829\pi\)
\(434\) 0 0
\(435\) −8.68405 + 8.65165i −0.416368 + 0.414815i
\(436\) 0 0
\(437\) 3.95824 + 19.8994i 0.189348 + 0.951918i
\(438\) 0 0
\(439\) 1.60466 3.87398i 0.0765861 0.184895i −0.880950 0.473210i \(-0.843095\pi\)
0.957536 + 0.288315i \(0.0930951\pi\)
\(440\) 0 0
\(441\) −13.5544 + 13.4535i −0.645448 + 0.640641i
\(442\) 0 0
\(443\) 13.5119 + 9.02838i 0.641971 + 0.428951i 0.833488 0.552538i \(-0.186341\pi\)
−0.191517 + 0.981489i \(0.561341\pi\)
\(444\) 0 0
\(445\) 5.29925 26.6411i 0.251209 1.26291i
\(446\) 0 0
\(447\) 5.68290 + 28.8516i 0.268792 + 1.36463i
\(448\) 0 0
\(449\) 4.44342i 0.209698i 0.994488 + 0.104849i \(0.0334359\pi\)
−0.994488 + 0.104849i \(0.966564\pi\)
\(450\) 0 0
\(451\) 6.21687 + 1.23661i 0.292741 + 0.0582298i
\(452\) 0 0
\(453\) −4.29582 + 10.3165i −0.201835 + 0.484709i
\(454\) 0 0
\(455\) −3.61385 + 1.49690i −0.169420 + 0.0701760i
\(456\) 0 0
\(457\) 3.26785 + 1.35359i 0.152864 + 0.0633182i 0.457803 0.889053i \(-0.348636\pi\)
−0.304940 + 0.952372i \(0.598636\pi\)
\(458\) 0 0
\(459\) 18.6325 + 18.8426i 0.869691 + 0.879498i
\(460\) 0 0
\(461\) −0.445238 0.666345i −0.0207368 0.0310348i 0.820956 0.570991i \(-0.193441\pi\)
−0.841693 + 0.539956i \(0.818441\pi\)
\(462\) 0 0
\(463\) −13.5750 13.5750i −0.630885 0.630885i 0.317405 0.948290i \(-0.397189\pi\)
−0.948290 + 0.317405i \(0.897189\pi\)
\(464\) 0 0
\(465\) 17.1338 + 11.4948i 0.794559 + 0.533058i
\(466\) 0 0
\(467\) 22.5240 + 33.7096i 1.04229 + 1.55989i 0.809284 + 0.587417i \(0.199855\pi\)
0.233003 + 0.972476i \(0.425145\pi\)
\(468\) 0 0
\(469\) −2.19682 11.0442i −0.101440 0.509972i
\(470\) 0 0
\(471\) 4.56720 22.7387i 0.210445 1.04774i
\(472\) 0 0
\(473\) 9.35452 3.87477i 0.430121 0.178162i
\(474\) 0 0
\(475\) 4.61391 + 3.08292i 0.211701 + 0.141454i
\(476\) 0 0
\(477\) 5.55033 + 28.4589i 0.254132 + 1.30304i
\(478\) 0 0
\(479\) 0.596301i 0.0272457i 0.999907 + 0.0136228i \(0.00433642\pi\)
−0.999907 + 0.0136228i \(0.995664\pi\)
\(480\) 0 0
\(481\) 12.9766i 0.591682i
\(482\) 0 0
\(483\) 0.0194847 10.4258i 0.000886582 0.474389i
\(484\) 0 0
\(485\) 0.212605 + 0.142058i 0.00965392 + 0.00645054i
\(486\) 0 0
\(487\) 14.1819 5.87434i 0.642644 0.266192i −0.0374708 0.999298i \(-0.511930\pi\)
0.680114 + 0.733106i \(0.261930\pi\)
\(488\) 0 0
\(489\) −35.3521 7.10069i −1.59868 0.321104i
\(490\) 0 0
\(491\) −0.00640918 0.0322211i −0.000289242 0.00145412i 0.980640 0.195817i \(-0.0627360\pi\)
−0.980930 + 0.194363i \(0.937736\pi\)
\(492\) 0 0
\(493\) −11.7092 17.5241i −0.527357 0.789245i
\(494\) 0 0
\(495\) 10.6769 25.5063i 0.479892 1.14642i
\(496\) 0 0
\(497\) −2.79218 2.79218i −0.125246 0.125246i
\(498\) 0 0
\(499\) −5.40096 8.08311i −0.241780 0.361850i 0.690656 0.723183i \(-0.257322\pi\)
−0.932437 + 0.361333i \(0.882322\pi\)
\(500\) 0 0
\(501\) −18.7165 + 7.71168i −0.836192 + 0.344532i
\(502\) 0 0
\(503\) −8.11650 3.36197i −0.361897 0.149903i 0.194323 0.980938i \(-0.437749\pi\)
−0.556220 + 0.831035i \(0.687749\pi\)
\(504\) 0 0
\(505\) 3.66617 1.51858i 0.163142 0.0675758i
\(506\) 0 0
\(507\) −7.63117 3.17766i −0.338912 0.141125i
\(508\) 0 0
\(509\) 26.0046 + 5.17263i 1.15263 + 0.229273i 0.734173 0.678962i \(-0.237570\pi\)
0.418460 + 0.908235i \(0.362570\pi\)
\(510\) 0 0
\(511\) 0.550472i 0.0243514i
\(512\) 0 0
\(513\) −7.68359 11.6401i −0.339239 0.513921i
\(514\) 0 0
\(515\) 6.02983 30.3140i 0.265706 1.33579i
\(516\) 0 0
\(517\) −31.2129 20.8558i −1.37274 0.917235i
\(518\) 0 0
\(519\) −11.7955 17.7248i −0.517763 0.778031i
\(520\) 0 0
\(521\) 1.81662 4.38572i 0.0795877 0.192142i −0.879077 0.476680i \(-0.841840\pi\)
0.958665 + 0.284538i \(0.0918402\pi\)
\(522\) 0 0
\(523\) 4.42990 + 22.2706i 0.193706 + 0.973826i 0.948237 + 0.317562i \(0.102864\pi\)
−0.754531 + 0.656264i \(0.772136\pi\)
\(524\) 0 0
\(525\) −2.01251 2.02004i −0.0878331 0.0881620i
\(526\) 0 0
\(527\) −25.0840 + 25.0840i −1.09268 + 1.09268i
\(528\) 0 0
\(529\) −24.1381 24.1381i −1.04948 1.04948i
\(530\) 0 0
\(531\) 6.23813 + 4.20200i 0.270712 + 0.182351i
\(532\) 0 0
\(533\) 3.31320 0.659036i 0.143511 0.0285460i
\(534\) 0 0
\(535\) −15.1423 6.27214i −0.654658 0.271168i
\(536\) 0 0
\(537\) 7.50162 + 11.2725i 0.323719 + 0.486445i
\(538\) 0 0
\(539\) −19.0350 + 28.4879i −0.819895 + 1.22706i
\(540\) 0 0
\(541\) −1.34295 0.267129i −0.0577379 0.0114848i 0.166137 0.986103i \(-0.446871\pi\)
−0.223875 + 0.974618i \(0.571871\pi\)
\(542\) 0 0
\(543\) 4.36423 + 22.1568i 0.187287 + 0.950838i
\(544\) 0 0
\(545\) 11.8055 0.505691
\(546\) 0 0
\(547\) 5.22689 26.2774i 0.223486 1.12354i −0.692219 0.721687i \(-0.743367\pi\)
0.915705 0.401851i \(-0.131633\pi\)
\(548\) 0 0
\(549\) 0.646107 3.18592i 0.0275752 0.135972i
\(550\) 0 0
\(551\) 4.24507 + 10.2485i 0.180846 + 0.436601i
\(552\) 0 0
\(553\) 1.13042 2.72908i 0.0480704 0.116052i
\(554\) 0 0
\(555\) −12.4071 + 5.11205i −0.526652 + 0.216994i
\(556\) 0 0
\(557\) −6.81107 + 4.55101i −0.288594 + 0.192833i −0.691437 0.722437i \(-0.743022\pi\)
0.402843 + 0.915269i \(0.368022\pi\)
\(558\) 0 0
\(559\) 3.81563 3.81563i 0.161384 0.161384i
\(560\) 0 0
\(561\) 39.4796 + 26.4863i 1.66683 + 1.11825i
\(562\) 0 0
\(563\) 1.37594 0.919371i 0.0579888 0.0387469i −0.526238 0.850337i \(-0.676398\pi\)
0.584227 + 0.811590i \(0.301398\pi\)
\(564\) 0 0
\(565\) −26.0853 + 5.18868i −1.09741 + 0.218289i
\(566\) 0 0
\(567\) 2.69310 + 6.64172i 0.113100 + 0.278926i
\(568\) 0 0
\(569\) −8.37450 20.2178i −0.351077 0.847575i −0.996488 0.0837394i \(-0.973314\pi\)
0.645410 0.763836i \(-0.276686\pi\)
\(570\) 0 0
\(571\) 12.6472 18.9278i 0.529267 0.792104i −0.466451 0.884547i \(-0.654468\pi\)
0.995718 + 0.0924431i \(0.0294676\pi\)
\(572\) 0 0
\(573\) −0.0375751 + 20.1055i −0.00156972 + 0.839920i
\(574\) 0 0
\(575\) −15.6268 −0.651683
\(576\) 0 0
\(577\) 3.02364 0.125876 0.0629378 0.998017i \(-0.479953\pi\)
0.0629378 + 0.998017i \(0.479953\pi\)
\(578\) 0 0
\(579\) 0.0766645 41.0214i 0.00318607 1.70479i
\(580\) 0 0
\(581\) −1.34158 + 2.00782i −0.0556582 + 0.0832984i
\(582\) 0 0
\(583\) 19.9067 + 48.0590i 0.824452 + 1.99040i
\(584\) 0 0
\(585\) 0.0550803 14.7360i 0.00227729 0.609260i
\(586\) 0 0
\(587\) 20.2802 4.03398i 0.837054 0.166500i 0.242091 0.970254i \(-0.422167\pi\)
0.594963 + 0.803753i \(0.297167\pi\)
\(588\) 0 0
\(589\) 15.5244 10.3731i 0.639672 0.427415i
\(590\) 0 0
\(591\) 15.3825 + 10.3199i 0.632753 + 0.424505i
\(592\) 0 0
\(593\) 25.5322 25.5322i 1.04848 1.04848i 0.0497164 0.998763i \(-0.484168\pi\)
0.998763 0.0497164i \(-0.0158318\pi\)
\(594\) 0 0
\(595\) −5.78258 + 3.86380i −0.237063 + 0.158400i
\(596\) 0 0
\(597\) −0.201383 + 0.0829749i −0.00824205 + 0.00339594i
\(598\) 0 0
\(599\) 2.81924 6.80624i 0.115191 0.278095i −0.855761 0.517372i \(-0.826910\pi\)
0.970951 + 0.239277i \(0.0769103\pi\)
\(600\) 0 0
\(601\) −2.76305 6.67058i −0.112707 0.272099i 0.857454 0.514561i \(-0.172045\pi\)
−0.970161 + 0.242462i \(0.922045\pi\)
\(602\) 0 0
\(603\) 41.5753 + 8.43152i 1.69308 + 0.343358i
\(604\) 0 0
\(605\) 6.00284 30.1783i 0.244050 1.22692i
\(606\) 0 0
\(607\) 12.5060 0.507603 0.253802 0.967256i \(-0.418319\pi\)
0.253802 + 0.967256i \(0.418319\pi\)
\(608\) 0 0
\(609\) −1.10160 5.59272i −0.0446391 0.226628i
\(610\) 0 0
\(611\) −19.6217 3.90300i −0.793809 0.157898i
\(612\) 0 0
\(613\) −21.1070 + 31.5888i −0.852503 + 1.27586i 0.107027 + 0.994256i \(0.465867\pi\)
−0.959530 + 0.281605i \(0.909133\pi\)
\(614\) 0 0
\(615\) −1.93533 2.90817i −0.0780399 0.117269i
\(616\) 0 0
\(617\) −1.55951 0.645969i −0.0627834 0.0260057i 0.351071 0.936349i \(-0.385818\pi\)
−0.413854 + 0.910343i \(0.635818\pi\)
\(618\) 0 0
\(619\) 12.4267 2.47182i 0.499469 0.0993507i 0.0610747 0.998133i \(-0.480547\pi\)
0.438395 + 0.898783i \(0.355547\pi\)
\(620\) 0 0
\(621\) 36.2024 + 15.2339i 1.45275 + 0.611315i
\(622\) 0 0
\(623\) 8.93152 + 8.93152i 0.357834 + 0.357834i
\(624\) 0 0
\(625\) 7.34638 7.34638i 0.293855 0.293855i
\(626\) 0 0
\(627\) −17.6603 17.7265i −0.705285 0.707926i
\(628\) 0 0
\(629\) −4.50109 22.6285i −0.179470 0.902258i
\(630\) 0 0
\(631\) 0.496224 1.19799i 0.0197544 0.0476912i −0.913695 0.406402i \(-0.866783\pi\)
0.933449 + 0.358710i \(0.116783\pi\)
\(632\) 0 0
\(633\) 13.8395 + 20.7963i 0.550072 + 0.826580i
\(634\) 0 0
\(635\) 28.8722 + 19.2918i 1.14576 + 0.765570i
\(636\) 0 0
\(637\) −3.56226 + 17.9087i −0.141142 + 0.709567i
\(638\) 0 0
\(639\) 13.7648 5.64140i 0.544529 0.223170i
\(640\) 0 0
\(641\) 36.7026i 1.44967i −0.688925 0.724833i \(-0.741917\pi\)
0.688925 0.724833i \(-0.258083\pi\)
\(642\) 0 0
\(643\) −24.2814 4.82988i −0.957566 0.190472i −0.308518 0.951219i \(-0.599833\pi\)
−0.649049 + 0.760747i \(0.724833\pi\)
\(644\) 0 0
\(645\) −5.15132 2.14504i −0.202833 0.0844607i
\(646\) 0 0
\(647\) 30.2121 12.5143i 1.18776 0.491987i 0.300736 0.953707i \(-0.402768\pi\)
0.887026 + 0.461720i \(0.152768\pi\)
\(648\) 0 0
\(649\) 12.4666 + 5.16383i 0.489357 + 0.202698i
\(650\) 0 0
\(651\) −8.87079 + 3.65499i −0.347674 + 0.143250i
\(652\) 0 0
\(653\) −20.6065 30.8399i −0.806396 1.20686i −0.975226 0.221212i \(-0.928999\pi\)
0.168830 0.985645i \(-0.446001\pi\)
\(654\) 0 0
\(655\) 1.54671 + 1.54671i 0.0604349 + 0.0604349i
\(656\) 0 0
\(657\) −1.91295 0.800760i −0.0746313 0.0312406i
\(658\) 0 0
\(659\) −9.69701 14.5126i −0.377742 0.565330i 0.593077 0.805146i \(-0.297913\pi\)
−0.970818 + 0.239815i \(0.922913\pi\)
\(660\) 0 0
\(661\) −6.05894 30.4603i −0.235665 1.18477i −0.899510 0.436900i \(-0.856076\pi\)
0.663845 0.747870i \(-0.268924\pi\)
\(662\) 0 0
\(663\) 24.8403 + 4.98933i 0.964719 + 0.193769i
\(664\) 0 0
\(665\) 3.38179 1.40079i 0.131140 0.0543201i
\(666\) 0 0
\(667\) −25.9740 17.3553i −1.00572 0.671999i
\(668\) 0 0
\(669\) 0.0500421 26.7764i 0.00193474 1.03523i
\(670\) 0 0
\(671\) 5.83206i 0.225144i
\(672\) 0 0
\(673\) 1.42269i 0.0548405i 0.999624 + 0.0274203i \(0.00872923\pi\)
−0.999624 + 0.0274203i \(0.991271\pi\)
\(674\) 0 0
\(675\) 9.94744 4.05517i 0.382877 0.156084i
\(676\) 0 0
\(677\) 30.5664 + 20.4238i 1.17476 + 0.784951i 0.980600 0.196019i \(-0.0628014\pi\)
0.194161 + 0.980970i \(0.437801\pi\)
\(678\) 0 0
\(679\) −0.109851 + 0.0455019i −0.00421570 + 0.00174620i
\(680\) 0 0
\(681\) 2.91283 14.5021i 0.111620 0.555722i
\(682\) 0 0
\(683\) −0.0811176 0.407806i −0.00310388 0.0156043i 0.979202 0.202886i \(-0.0650322\pi\)
−0.982306 + 0.187282i \(0.940032\pi\)
\(684\) 0 0
\(685\) 8.58843 + 12.8535i 0.328147 + 0.491106i
\(686\) 0 0
\(687\) 3.01087 + 2.01995i 0.114872 + 0.0770659i
\(688\) 0 0
\(689\) 19.6029 + 19.6029i 0.746811 + 0.746811i
\(690\) 0 0
\(691\) 6.46900 + 9.68155i 0.246093 + 0.368303i 0.933867 0.357621i \(-0.116412\pi\)
−0.687774 + 0.725925i \(0.741412\pi\)
\(692\) 0 0
\(693\) 7.10345 + 10.7176i 0.269838 + 0.407127i
\(694\) 0 0
\(695\) 8.25287 + 3.41845i 0.313049 + 0.129669i
\(696\) 0 0
\(697\) 5.54894 2.29844i 0.210181 0.0870598i
\(698\) 0 0
\(699\) −6.73654 + 16.1779i −0.254799 + 0.611903i
\(700\) 0 0
\(701\) −37.1691 7.39339i −1.40386 0.279244i −0.565672 0.824631i \(-0.691383\pi\)
−0.838185 + 0.545386i \(0.816383\pi\)
\(702\) 0 0
\(703\) 12.1434i 0.457995i
\(704\) 0 0
\(705\) 3.99813 + 20.2981i 0.150578 + 0.764472i
\(706\) 0 0
\(707\) −0.359993 + 1.80981i −0.0135389 + 0.0680648i
\(708\) 0 0
\(709\) 38.1803 + 25.5113i 1.43389 + 0.958096i 0.998320 + 0.0579428i \(0.0184541\pi\)
0.435573 + 0.900154i \(0.356546\pi\)
\(710\) 0 0
\(711\) 7.83946 + 7.89828i 0.294003 + 0.296209i
\(712\) 0 0
\(713\) −20.1213 + 48.5770i −0.753547 + 1.81922i
\(714\) 0 0
\(715\) −5.15768 25.9294i −0.192886 0.969706i
\(716\) 0 0
\(717\) −14.0901 + 14.0375i −0.526205 + 0.524242i
\(718\) 0 0
\(719\) −15.3249 + 15.3249i −0.571523 + 0.571523i −0.932554 0.361031i \(-0.882425\pi\)
0.361031 + 0.932554i \(0.382425\pi\)
\(720\) 0 0
\(721\) 10.1629 + 10.1629i 0.378484 + 0.378484i
\(722\) 0 0
\(723\) −35.7076 35.8414i −1.32798 1.33295i
\(724\) 0 0
\(725\) −8.37960 + 1.66681i −0.311210 + 0.0619036i
\(726\) 0 0
\(727\) 5.58340 + 2.31272i 0.207077 + 0.0857740i 0.483811 0.875172i \(-0.339252\pi\)
−0.276734 + 0.960946i \(0.589252\pi\)
\(728\) 0 0
\(729\) −26.9983 0.302754i −0.999937 0.0112131i
\(730\) 0 0
\(731\) 5.33018 7.97717i 0.197144 0.295046i
\(732\) 0 0
\(733\) −16.4103 3.26422i −0.606130 0.120567i −0.117522 0.993070i \(-0.537495\pi\)
−0.488608 + 0.872504i \(0.662495\pi\)
\(734\) 0 0
\(735\) 18.5260 3.64908i 0.683344 0.134598i
\(736\) 0 0
\(737\) 76.1068 2.80343
\(738\) 0 0
\(739\) −4.06626 + 20.4425i −0.149580 + 0.751988i 0.831062 + 0.556179i \(0.187733\pi\)
−0.980642 + 0.195809i \(0.937267\pi\)
\(740\) 0 0
\(741\) −12.3106 5.12621i −0.452243 0.188316i
\(742\) 0 0
\(743\) −11.3675 27.4437i −0.417035 1.00681i −0.983202 0.182521i \(-0.941574\pi\)
0.566167 0.824290i \(-0.308426\pi\)
\(744\) 0 0
\(745\) 11.1261 26.8608i 0.407630 0.984105i
\(746\) 0 0
\(747\) −5.02582 7.58288i −0.183885 0.277443i
\(748\) 0 0
\(749\) 6.33700 4.23425i 0.231549 0.154716i
\(750\) 0 0
\(751\) −9.88591 + 9.88591i −0.360742 + 0.360742i −0.864086 0.503344i \(-0.832103\pi\)
0.503344 + 0.864086i \(0.332103\pi\)
\(752\) 0 0
\(753\) 7.38262 11.0043i 0.269038 0.401019i
\(754\) 0 0
\(755\) 9.18688 6.13848i 0.334345 0.223402i
\(756\) 0 0
\(757\) −2.43551 + 0.484453i −0.0885202 + 0.0176078i −0.239152 0.970982i \(-0.576869\pi\)
0.150631 + 0.988590i \(0.451869\pi\)
\(758\) 0 0
\(759\) 69.0853 + 13.8762i 2.50764 + 0.503674i
\(760\) 0 0
\(761\) −14.2896 34.4982i −0.517999 1.25056i −0.939131 0.343560i \(-0.888367\pi\)
0.421132 0.906999i \(-0.361633\pi\)
\(762\) 0 0
\(763\) −3.04989 + 4.56448i −0.110413 + 0.165245i
\(764\) 0 0
\(765\) −5.01532 25.7157i −0.181329 0.929753i
\(766\) 0 0
\(767\) 7.19131 0.259663
\(768\) 0 0
\(769\) 8.19388 0.295479 0.147739 0.989026i \(-0.452800\pi\)
0.147739 + 0.989026i \(0.452800\pi\)
\(770\) 0 0
\(771\) 4.17843 + 0.00780903i 0.150482 + 0.000281235i
\(772\) 0 0
\(773\) −11.9974 + 17.9553i −0.431515 + 0.645808i −0.981966 0.189060i \(-0.939456\pi\)
0.550451 + 0.834868i \(0.314456\pi\)
\(774\) 0 0
\(775\) 5.50316 + 13.2858i 0.197679 + 0.477240i
\(776\) 0 0
\(777\) 1.22879 6.11777i 0.0440826 0.219474i
\(778\) 0 0
\(779\) −3.10045 + 0.616718i −0.111085 + 0.0220962i
\(780\) 0 0
\(781\) 22.1906 14.8273i 0.794042 0.530562i
\(782\) 0 0
\(783\) 21.0378 + 4.30744i 0.751830 + 0.153935i
\(784\) 0 0
\(785\) −16.2147 + 16.2147i −0.578726 + 0.578726i
\(786\) 0 0
\(787\) 35.1663 23.4974i 1.25354 0.837591i 0.261712 0.965146i \(-0.415713\pi\)
0.991832 + 0.127555i \(0.0407128\pi\)
\(788\) 0 0
\(789\) 11.2080 + 27.2022i 0.399016 + 0.968424i
\(790\) 0 0
\(791\) 4.73285 11.4261i 0.168281 0.406265i
\(792\) 0 0
\(793\) −1.18943 2.87153i −0.0422377 0.101971i
\(794\) 0 0
\(795\) 11.0202 26.4650i 0.390845 0.938618i
\(796\) 0 0
\(797\) 1.56119 7.84862i 0.0553001 0.278012i −0.943235 0.332127i \(-0.892234\pi\)
0.998535 + 0.0541148i \(0.0172337\pi\)
\(798\) 0 0
\(799\) −35.5700 −1.25838
\(800\) 0 0
\(801\) −44.0305 + 18.0455i −1.55574 + 0.637607i
\(802\) 0 0
\(803\) −3.64900 0.725831i −0.128770 0.0256140i
\(804\) 0 0
\(805\) −5.72688 + 8.57088i −0.201846 + 0.302084i
\(806\) 0 0
\(807\) −25.8111 + 17.1768i −0.908595 + 0.604651i
\(808\) 0 0
\(809\) 1.59008 + 0.658632i 0.0559042 + 0.0231563i 0.410460 0.911878i \(-0.365368\pi\)
−0.354556 + 0.935035i \(0.615368\pi\)
\(810\) 0 0
\(811\) −44.0264 + 8.75739i −1.54598 + 0.307514i −0.893067 0.449923i \(-0.851451\pi\)
−0.652908 + 0.757437i \(0.726451\pi\)
\(812\) 0 0
\(813\) 35.9448 35.8107i 1.26064 1.25594i
\(814\) 0 0
\(815\) 25.2092 + 25.2092i 0.883039 + 0.883039i
\(816\) 0 0
\(817\) −3.57062 + 3.57062i −0.124920 + 0.124920i
\(818\) 0 0
\(819\) 5.68333 + 3.82828i 0.198592 + 0.133771i
\(820\) 0 0
\(821\) 5.35307 + 26.9117i 0.186824 + 0.939225i 0.954460 + 0.298340i \(0.0964328\pi\)
−0.767636 + 0.640886i \(0.778567\pi\)
\(822\) 0 0
\(823\) 0.538169 1.29925i 0.0187594 0.0452891i −0.914222 0.405213i \(-0.867197\pi\)
0.932982 + 0.359924i \(0.117197\pi\)
\(824\) 0 0
\(825\) 16.0442 10.6771i 0.558587 0.371728i
\(826\) 0 0
\(827\) 42.6108 + 28.4716i 1.48172 + 0.990056i 0.993063 + 0.117582i \(0.0375142\pi\)
0.488660 + 0.872474i \(0.337486\pi\)
\(828\) 0 0
\(829\) −10.7528 + 54.0581i −0.373461 + 1.87752i 0.0972982 + 0.995255i \(0.468980\pi\)
−0.470760 + 0.882262i \(0.656020\pi\)
\(830\) 0 0
\(831\) −43.4044 + 8.54938i −1.50568 + 0.296575i
\(832\) 0 0
\(833\) 32.4646i 1.12483i
\(834\) 0 0
\(835\) 19.6299 + 3.90463i 0.679320 + 0.135125i
\(836\) 0 0
\(837\) 0.202649 36.1438i 0.00700456 1.24931i
\(838\) 0 0
\(839\) 11.4210 4.73072i 0.394296 0.163323i −0.176721 0.984261i \(-0.556549\pi\)
0.571017 + 0.820938i \(0.306549\pi\)
\(840\) 0 0
\(841\) 11.0132 + 4.56183i 0.379766 + 0.157304i
\(842\) 0 0
\(843\) −20.0863 48.7502i −0.691810 1.67905i
\(844\) 0 0
\(845\) 4.54069 + 6.79562i 0.156204 + 0.233776i
\(846\) 0 0
\(847\) 10.1174 + 10.1174i 0.347637 + 0.347637i
\(848\) 0 0
\(849\) 11.5332 17.1910i 0.395818 0.589994i
\(850\) 0 0
\(851\) −18.9987 28.4336i −0.651268 0.974692i
\(852\) 0 0
\(853\) 8.07843 + 40.6130i 0.276600 + 1.39056i 0.830054 + 0.557683i \(0.188309\pi\)
−0.553454 + 0.832880i \(0.686691\pi\)
\(854\) 0 0
\(855\) −0.0515435 + 13.7898i −0.00176275 + 0.471601i
\(856\) 0 0
\(857\) 11.4578 4.74597i 0.391390 0.162119i −0.178305 0.983975i \(-0.557061\pi\)
0.569695 + 0.821856i \(0.307061\pi\)
\(858\) 0 0
\(859\) −13.4982 9.01922i −0.460553 0.307732i 0.303562 0.952812i \(-0.401824\pi\)
−0.764115 + 0.645080i \(0.776824\pi\)
\(860\) 0 0
\(861\) 1.62440 + 0.00303583i 0.0553594 + 0.000103461i
\(862\) 0 0
\(863\) 25.3881i 0.864222i −0.901820 0.432111i \(-0.857769\pi\)
0.901820 0.432111i \(-0.142231\pi\)
\(864\) 0 0
\(865\) 21.0505i 0.715739i
\(866\) 0 0
\(867\) 15.6022 + 0.0291588i 0.529878 + 0.000990284i
\(868\) 0 0
\(869\) 16.6001 + 11.0919i 0.563121 + 0.376266i
\(870\) 0 0
\(871\) 37.4726 15.5217i 1.26971 0.525932i
\(872\) 0 0
\(873\) 0.00167429 0.447936i 5.66663e−5 0.0151603i
\(874\) 0 0
\(875\) 1.88024 + 9.45263i 0.0635639 + 0.319557i
\(876\) 0 0
\(877\) −14.4959 21.6947i −0.489492 0.732577i 0.501695 0.865044i \(-0.332710\pi\)
−0.991187 + 0.132468i \(0.957710\pi\)
\(878\) 0 0
\(879\) −8.20856 + 12.2354i −0.276868 + 0.412690i
\(880\) 0 0
\(881\) −20.3613 20.3613i −0.685990 0.685990i 0.275353 0.961343i \(-0.411205\pi\)
−0.961343 + 0.275353i \(0.911205\pi\)
\(882\) 0 0
\(883\) −16.0071 23.9562i −0.538680 0.806192i 0.457884 0.889012i \(-0.348607\pi\)
−0.996565 + 0.0828199i \(0.973607\pi\)
\(884\) 0 0
\(885\) −2.83297 6.87571i −0.0952292 0.231124i
\(886\) 0 0
\(887\) −39.4628 16.3460i −1.32503 0.548845i −0.395796 0.918338i \(-0.629531\pi\)
−0.929234 + 0.369493i \(0.879531\pi\)
\(888\) 0 0
\(889\) −14.9180 + 6.17923i −0.500333 + 0.207245i
\(890\) 0 0
\(891\) −47.5780 + 9.09465i −1.59392 + 0.304682i
\(892\) 0 0
\(893\) 18.3618 + 3.65238i 0.614453 + 0.122222i
\(894\) 0 0
\(895\) 13.3876i 0.447499i
\(896\) 0 0
\(897\) 36.8455 7.25746i 1.23023 0.242320i
\(898\) 0 0
\(899\) −5.60829 + 28.1948i −0.187047 + 0.940349i
\(900\) 0 0
\(901\) 40.9829 + 27.3839i 1.36534 + 0.912290i
\(902\) 0 0
\(903\) 2.16018 1.43755i 0.0718863 0.0478388i
\(904\) 0 0
\(905\) 8.54440 20.6280i 0.284025 0.685698i
\(906\) 0 0
\(907\) −3.37324 16.9584i −0.112007 0.563096i −0.995509 0.0946685i \(-0.969821\pi\)
0.883502 0.468427i \(-0.155179\pi\)
\(908\) 0 0
\(909\) −5.76561 3.88371i −0.191233 0.128814i
\(910\) 0 0
\(911\) −2.54657 + 2.54657i −0.0843717 + 0.0843717i −0.748033 0.663661i \(-0.769002\pi\)
0.663661 + 0.748033i \(0.269002\pi\)
\(912\) 0 0
\(913\) −11.5406 11.5406i −0.381938 0.381938i
\(914\) 0 0
\(915\) −2.27694 + 2.26845i −0.0752733 + 0.0749925i
\(916\) 0 0
\(917\) −0.997605 + 0.198436i −0.0329438 + 0.00655294i
\(918\) 0 0
\(919\) 30.5861 + 12.6692i 1.00894 + 0.417918i 0.825069 0.565032i \(-0.191136\pi\)
0.183874 + 0.982950i \(0.441136\pi\)
\(920\) 0 0
\(921\) −15.7753 + 10.4981i −0.519813 + 0.345925i
\(922\) 0 0
\(923\) 7.90200 11.8262i 0.260097 0.389263i
\(924\) 0 0
\(925\) −9.17310 1.82464i −0.301610 0.0599939i
\(926\) 0 0
\(927\) −50.1007 + 20.5333i −1.64552 + 0.674404i
\(928\) 0 0
\(929\) −15.5822 −0.511236 −0.255618 0.966778i \(-0.582279\pi\)
−0.255618 + 0.966778i \(0.582279\pi\)
\(930\) 0 0
\(931\) 3.33352 16.7587i 0.109252 0.549245i
\(932\) 0 0
\(933\) 7.97837 19.1601i 0.261200 0.627274i
\(934\) 0 0
\(935\) −17.9879 43.4265i −0.588266 1.42020i
\(936\) 0 0
\(937\) 13.5497 32.7119i 0.442650 1.06865i −0.532366 0.846514i \(-0.678697\pi\)
0.975016 0.222136i \(-0.0713030\pi\)
\(938\) 0 0
\(939\) 14.4243 + 35.0083i 0.470720 + 1.14245i
\(940\) 0 0
\(941\) −15.8636 + 10.5997i −0.517139 + 0.345541i −0.786593 0.617472i \(-0.788157\pi\)
0.269454 + 0.963013i \(0.413157\pi\)
\(942\) 0 0
\(943\) 6.29482 6.29482i 0.204987 0.204987i
\(944\) 0 0
\(945\) 1.42136 6.94203i 0.0462370 0.225824i
\(946\) 0 0
\(947\) 3.79100 2.53307i 0.123191 0.0823136i −0.492448 0.870342i \(-0.663898\pi\)
0.615639 + 0.788028i \(0.288898\pi\)
\(948\) 0 0
\(949\) −1.94468 + 0.386822i −0.0631271 + 0.0125568i
\(950\) 0 0
\(951\) −0.130896 + 0.651689i −0.00424458 + 0.0211325i
\(952\) 0 0
\(953\) 2.16803 + 5.23408i 0.0702292 + 0.169548i 0.955097 0.296295i \(-0.0957511\pi\)
−0.884867 + 0.465843i \(0.845751\pi\)
\(954\) 0 0
\(955\) 11.0440 16.5285i 0.357374 0.534848i
\(956\) 0 0
\(957\) 38.5259 + 0.0720007i 1.24536 + 0.00232745i
\(958\) 0 0
\(959\) −7.18846 −0.232128
\(960\) 0 0
\(961\) 17.3858 0.560832
\(962\) 0 0
\(963\) 5.49618 + 28.1813i 0.177112 + 0.908129i
\(964\) 0 0
\(965\) −22.5330 + 33.7231i −0.725364 + 1.08558i
\(966\) 0 0
\(967\) 4.84384 + 11.6941i 0.155767 + 0.376056i 0.982427 0.186646i \(-0.0597618\pi\)
−0.826660 + 0.562702i \(0.809762\pi\)
\(968\) 0 0
\(969\) −23.2453 4.66895i −0.746746 0.149988i
\(970\) 0 0
\(971\) 14.2757 2.83961i 0.458129 0.0911275i 0.0393696 0.999225i \(-0.487465\pi\)
0.418760 + 0.908097i \(0.362465\pi\)
\(972\) 0 0
\(973\) −3.45380 + 2.30776i −0.110724 + 0.0739833i
\(974\) 0 0
\(975\) 5.72212 8.52921i 0.183255 0.273153i
\(976\) 0 0
\(977\) 16.4215 16.4215i 0.525370 0.525370i −0.393818 0.919188i \(-0.628846\pi\)
0.919188 + 0.393818i \(0.128846\pi\)
\(978\) 0 0
\(979\) −70.9825 + 47.4290i −2.26861 + 1.51584i
\(980\) 0 0
\(981\) −11.4255 17.2386i −0.364787 0.550385i
\(982\) 0 0
\(983\) −16.4499 + 39.7135i −0.524669 + 1.26666i 0.410306 + 0.911948i \(0.365422\pi\)
−0.934975 + 0.354715i \(0.884578\pi\)
\(984\) 0 0
\(985\) −7.00865 16.9204i −0.223314 0.539128i
\(986\) 0 0
\(987\) −8.88099 3.69809i −0.282685 0.117711i
\(988\) 0 0
\(989\) 2.77423 13.9470i 0.0882153 0.443488i
\(990\) 0 0
\(991\) 24.5959 0.781314 0.390657 0.920536i \(-0.372248\pi\)
0.390657 + 0.920536i \(0.372248\pi\)
\(992\) 0 0
\(993\) 11.9472 2.35325i 0.379134 0.0746781i
\(994\) 0 0
\(995\) 0.211211 + 0.0420124i 0.00669583 + 0.00133188i
\(996\) 0 0
\(997\) 10.5381 15.7713i 0.333744 0.499483i −0.626205 0.779658i \(-0.715393\pi\)
0.959949 + 0.280176i \(0.0903927\pi\)
\(998\) 0 0
\(999\) 19.4724 + 13.1696i 0.616081 + 0.416667i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.2.s.a.431.14 240
3.2 odd 2 inner 768.2.s.a.431.18 240
4.3 odd 2 192.2.s.a.131.26 yes 240
12.11 even 2 192.2.s.a.131.5 yes 240
64.21 even 16 192.2.s.a.107.5 240
64.43 odd 16 inner 768.2.s.a.335.18 240
192.107 even 16 inner 768.2.s.a.335.14 240
192.149 odd 16 192.2.s.a.107.26 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.2.s.a.107.5 240 64.21 even 16
192.2.s.a.107.26 yes 240 192.149 odd 16
192.2.s.a.131.5 yes 240 12.11 even 2
192.2.s.a.131.26 yes 240 4.3 odd 2
768.2.s.a.335.14 240 192.107 even 16 inner
768.2.s.a.335.18 240 64.43 odd 16 inner
768.2.s.a.431.14 240 1.1 even 1 trivial
768.2.s.a.431.18 240 3.2 odd 2 inner