Properties

Label 768.2.s.a.335.5
Level $768$
Weight $2$
Character 768.335
Analytic conductor $6.133$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,2,Mod(47,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.s (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 335.5
Character \(\chi\) \(=\) 768.335
Dual form 768.2.s.a.431.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39786 + 1.02274i) q^{3} +(-0.0417075 - 0.0624196i) q^{5} +(0.100307 - 0.242162i) q^{7} +(0.908014 - 2.85929i) q^{9} +(2.15600 + 0.428854i) q^{11} +(0.751836 + 0.502361i) q^{13} +(0.122140 + 0.0445980i) q^{15} +(-1.66843 - 1.66843i) q^{17} +(1.06552 + 0.711956i) q^{19} +(0.107454 + 0.441097i) q^{21} +(-0.745366 - 1.79947i) q^{23} +(1.91126 - 4.61419i) q^{25} +(1.65503 + 4.92553i) q^{27} +(1.26847 + 6.37705i) q^{29} +10.1205 q^{31} +(-3.45238 + 1.60554i) q^{33} +(-0.0192992 + 0.00383886i) q^{35} +(2.54831 + 3.81381i) q^{37} +(-1.56474 + 0.0667024i) q^{39} +(4.77720 - 1.97878i) q^{41} +(9.37912 + 1.86562i) q^{43} +(-0.216346 + 0.0625756i) q^{45} +(-8.04483 + 8.04483i) q^{47} +(4.90117 + 4.90117i) q^{49} +(4.03859 + 0.625860i) q^{51} +(-1.29422 + 6.50649i) q^{53} +(-0.0631522 - 0.152463i) q^{55} +(-2.21759 + 0.0945320i) q^{57} +(-3.86117 + 2.57995i) q^{59} +(-0.853477 - 4.29072i) q^{61} +(-0.601331 - 0.506693i) q^{63} -0.0678815i q^{65} +(-1.79590 + 0.357228i) q^{67} +(2.88230 + 1.75309i) q^{69} +(-5.21738 - 2.16111i) q^{71} +(10.0231 - 4.15171i) q^{73} +(2.04744 + 8.40470i) q^{75} +(0.320114 - 0.479085i) q^{77} +(5.93698 - 5.93698i) q^{79} +(-7.35102 - 5.19254i) q^{81} +(6.79190 - 10.1648i) q^{83} +(-0.0345567 + 0.173728i) q^{85} +(-8.29520 - 7.61690i) q^{87} +(13.5709 + 5.62127i) q^{89} +(0.197067 - 0.131676i) q^{91} +(-14.1470 + 10.3506i) q^{93} -0.0962031i q^{95} +13.0044i q^{97} +(3.18389 - 5.77520i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 8 q^{3} + 16 q^{7} - 8 q^{9} - 16 q^{13} + 8 q^{15} + 16 q^{19} - 8 q^{21} - 16 q^{25} + 8 q^{27} + 32 q^{31} - 16 q^{37} + 8 q^{39} + 16 q^{43} - 8 q^{45} - 16 q^{49} + 8 q^{51} + 80 q^{55} - 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.39786 + 1.02274i −0.807054 + 0.590478i
\(4\) 0 0
\(5\) −0.0417075 0.0624196i −0.0186521 0.0279149i 0.822026 0.569449i \(-0.192844\pi\)
−0.840679 + 0.541535i \(0.817844\pi\)
\(6\) 0 0
\(7\) 0.100307 0.242162i 0.0379125 0.0915288i −0.903789 0.427978i \(-0.859226\pi\)
0.941702 + 0.336449i \(0.109226\pi\)
\(8\) 0 0
\(9\) 0.908014 2.85929i 0.302671 0.953095i
\(10\) 0 0
\(11\) 2.15600 + 0.428854i 0.650058 + 0.129304i 0.509095 0.860710i \(-0.329980\pi\)
0.140963 + 0.990015i \(0.454980\pi\)
\(12\) 0 0
\(13\) 0.751836 + 0.502361i 0.208522 + 0.139330i 0.655446 0.755242i \(-0.272481\pi\)
−0.446924 + 0.894572i \(0.647481\pi\)
\(14\) 0 0
\(15\) 0.122140 + 0.0445980i 0.0315364 + 0.0115151i
\(16\) 0 0
\(17\) −1.66843 1.66843i −0.404653 0.404653i 0.475216 0.879869i \(-0.342370\pi\)
−0.879869 + 0.475216i \(0.842370\pi\)
\(18\) 0 0
\(19\) 1.06552 + 0.711956i 0.244446 + 0.163334i 0.671758 0.740770i \(-0.265539\pi\)
−0.427312 + 0.904104i \(0.640539\pi\)
\(20\) 0 0
\(21\) 0.107454 + 0.441097i 0.0234484 + 0.0962552i
\(22\) 0 0
\(23\) −0.745366 1.79947i −0.155419 0.375216i 0.826921 0.562318i \(-0.190090\pi\)
−0.982340 + 0.187102i \(0.940090\pi\)
\(24\) 0 0
\(25\) 1.91126 4.61419i 0.382252 0.922838i
\(26\) 0 0
\(27\) 1.65503 + 4.92553i 0.318510 + 0.947920i
\(28\) 0 0
\(29\) 1.26847 + 6.37705i 0.235550 + 1.18419i 0.899672 + 0.436566i \(0.143805\pi\)
−0.664123 + 0.747624i \(0.731195\pi\)
\(30\) 0 0
\(31\) 10.1205 1.81769 0.908844 0.417137i \(-0.136967\pi\)
0.908844 + 0.417137i \(0.136967\pi\)
\(32\) 0 0
\(33\) −3.45238 + 1.60554i −0.600983 + 0.279489i
\(34\) 0 0
\(35\) −0.0192992 + 0.00383886i −0.00326217 + 0.000648885i
\(36\) 0 0
\(37\) 2.54831 + 3.81381i 0.418939 + 0.626986i 0.979576 0.201075i \(-0.0644436\pi\)
−0.560637 + 0.828062i \(0.689444\pi\)
\(38\) 0 0
\(39\) −1.56474 + 0.0667024i −0.250559 + 0.0106809i
\(40\) 0 0
\(41\) 4.77720 1.97878i 0.746073 0.309033i 0.0229347 0.999737i \(-0.492699\pi\)
0.723138 + 0.690704i \(0.242699\pi\)
\(42\) 0 0
\(43\) 9.37912 + 1.86562i 1.43030 + 0.284505i 0.848659 0.528940i \(-0.177410\pi\)
0.581643 + 0.813444i \(0.302410\pi\)
\(44\) 0 0
\(45\) −0.216346 + 0.0625756i −0.0322510 + 0.00932823i
\(46\) 0 0
\(47\) −8.04483 + 8.04483i −1.17346 + 1.17346i −0.192080 + 0.981379i \(0.561523\pi\)
−0.981379 + 0.192080i \(0.938477\pi\)
\(48\) 0 0
\(49\) 4.90117 + 4.90117i 0.700167 + 0.700167i
\(50\) 0 0
\(51\) 4.03859 + 0.625860i 0.565516 + 0.0876380i
\(52\) 0 0
\(53\) −1.29422 + 6.50649i −0.177775 + 0.893735i 0.784181 + 0.620532i \(0.213083\pi\)
−0.961956 + 0.273203i \(0.911917\pi\)
\(54\) 0 0
\(55\) −0.0631522 0.152463i −0.00851544 0.0205581i
\(56\) 0 0
\(57\) −2.21759 + 0.0945320i −0.293727 + 0.0125211i
\(58\) 0 0
\(59\) −3.86117 + 2.57995i −0.502681 + 0.335881i −0.780920 0.624631i \(-0.785249\pi\)
0.278239 + 0.960512i \(0.410249\pi\)
\(60\) 0 0
\(61\) −0.853477 4.29072i −0.109277 0.549370i −0.996173 0.0874022i \(-0.972143\pi\)
0.886897 0.461968i \(-0.152857\pi\)
\(62\) 0 0
\(63\) −0.601331 0.506693i −0.0757606 0.0638373i
\(64\) 0 0
\(65\) 0.0678815i 0.00841967i
\(66\) 0 0
\(67\) −1.79590 + 0.357228i −0.219405 + 0.0436423i −0.303568 0.952810i \(-0.598178\pi\)
0.0841638 + 0.996452i \(0.473178\pi\)
\(68\) 0 0
\(69\) 2.88230 + 1.75309i 0.346989 + 0.211048i
\(70\) 0 0
\(71\) −5.21738 2.16111i −0.619190 0.256477i 0.0509625 0.998701i \(-0.483771\pi\)
−0.670152 + 0.742224i \(0.733771\pi\)
\(72\) 0 0
\(73\) 10.0231 4.15171i 1.17312 0.485921i 0.290895 0.956755i \(-0.406047\pi\)
0.882222 + 0.470834i \(0.156047\pi\)
\(74\) 0 0
\(75\) 2.04744 + 8.40470i 0.236418 + 0.970491i
\(76\) 0 0
\(77\) 0.320114 0.479085i 0.0364804 0.0545967i
\(78\) 0 0
\(79\) 5.93698 5.93698i 0.667963 0.667963i −0.289281 0.957244i \(-0.593416\pi\)
0.957244 + 0.289281i \(0.0934163\pi\)
\(80\) 0 0
\(81\) −7.35102 5.19254i −0.816780 0.576949i
\(82\) 0 0
\(83\) 6.79190 10.1648i 0.745508 1.11573i −0.243790 0.969828i \(-0.578391\pi\)
0.989299 0.145904i \(-0.0466091\pi\)
\(84\) 0 0
\(85\) −0.0345567 + 0.173728i −0.00374820 + 0.0188435i
\(86\) 0 0
\(87\) −8.29520 7.61690i −0.889339 0.816617i
\(88\) 0 0
\(89\) 13.5709 + 5.62127i 1.43852 + 0.595853i 0.959438 0.281919i \(-0.0909708\pi\)
0.479079 + 0.877772i \(0.340971\pi\)
\(90\) 0 0
\(91\) 0.197067 0.131676i 0.0206583 0.0138034i
\(92\) 0 0
\(93\) −14.1470 + 10.3506i −1.46697 + 1.07330i
\(94\) 0 0
\(95\) 0.0962031i 0.00987023i
\(96\) 0 0
\(97\) 13.0044i 1.32039i 0.751092 + 0.660197i \(0.229527\pi\)
−0.751092 + 0.660197i \(0.770473\pi\)
\(98\) 0 0
\(99\) 3.18389 5.77520i 0.319993 0.580430i
\(100\) 0 0
\(101\) −9.68443 + 6.47093i −0.963637 + 0.643882i −0.934601 0.355697i \(-0.884244\pi\)
−0.0290356 + 0.999578i \(0.509244\pi\)
\(102\) 0 0
\(103\) −12.4024 5.13724i −1.22204 0.506187i −0.323985 0.946062i \(-0.605023\pi\)
−0.898059 + 0.439875i \(0.855023\pi\)
\(104\) 0 0
\(105\) 0.0230514 0.0251042i 0.00224959 0.00244992i
\(106\) 0 0
\(107\) 2.77724 13.9621i 0.268486 1.34977i −0.577424 0.816445i \(-0.695942\pi\)
0.845910 0.533326i \(-0.179058\pi\)
\(108\) 0 0
\(109\) 5.47007 8.18653i 0.523937 0.784128i −0.471262 0.881993i \(-0.656201\pi\)
0.995200 + 0.0978654i \(0.0312015\pi\)
\(110\) 0 0
\(111\) −7.46270 2.72491i −0.708328 0.258637i
\(112\) 0 0
\(113\) 7.56860 7.56860i 0.711994 0.711994i −0.254958 0.966952i \(-0.582062\pi\)
0.966952 + 0.254958i \(0.0820617\pi\)
\(114\) 0 0
\(115\) −0.0812350 + 0.121577i −0.00757521 + 0.0113371i
\(116\) 0 0
\(117\) 2.11907 1.69356i 0.195908 0.156570i
\(118\) 0 0
\(119\) −0.571385 + 0.236676i −0.0523788 + 0.0216960i
\(120\) 0 0
\(121\) −5.69827 2.36030i −0.518024 0.214573i
\(122\) 0 0
\(123\) −4.65407 + 7.65187i −0.419643 + 0.689946i
\(124\) 0 0
\(125\) −0.735875 + 0.146375i −0.0658186 + 0.0130921i
\(126\) 0 0
\(127\) 0.413244i 0.0366695i 0.999832 + 0.0183347i \(0.00583646\pi\)
−0.999832 + 0.0183347i \(0.994164\pi\)
\(128\) 0 0
\(129\) −15.0187 + 6.98451i −1.32232 + 0.614951i
\(130\) 0 0
\(131\) −1.04858 5.27154i −0.0916144 0.460577i −0.999173 0.0406521i \(-0.987056\pi\)
0.907559 0.419925i \(-0.137944\pi\)
\(132\) 0 0
\(133\) 0.279288 0.186614i 0.0242173 0.0161815i
\(134\) 0 0
\(135\) 0.238423 0.308738i 0.0205202 0.0265719i
\(136\) 0 0
\(137\) −5.79645 13.9939i −0.495224 1.19558i −0.952028 0.306010i \(-0.901006\pi\)
0.456804 0.889567i \(-0.348994\pi\)
\(138\) 0 0
\(139\) −1.71904 + 8.64218i −0.145807 + 0.733021i 0.836827 + 0.547467i \(0.184408\pi\)
−0.982634 + 0.185554i \(0.940592\pi\)
\(140\) 0 0
\(141\) 3.01777 19.4733i 0.254142 1.63995i
\(142\) 0 0
\(143\) 1.40552 + 1.40552i 0.117535 + 0.117535i
\(144\) 0 0
\(145\) 0.345148 0.345148i 0.0286630 0.0286630i
\(146\) 0 0
\(147\) −11.8637 1.83852i −0.978505 0.151639i
\(148\) 0 0
\(149\) 6.01868 + 1.19719i 0.493069 + 0.0980776i 0.435361 0.900256i \(-0.356621\pi\)
0.0577083 + 0.998333i \(0.481621\pi\)
\(150\) 0 0
\(151\) −7.84809 + 3.25079i −0.638669 + 0.264545i −0.678431 0.734664i \(-0.737340\pi\)
0.0397624 + 0.999209i \(0.487340\pi\)
\(152\) 0 0
\(153\) −6.28546 + 3.25556i −0.508150 + 0.263196i
\(154\) 0 0
\(155\) −0.422098 0.631715i −0.0339038 0.0507406i
\(156\) 0 0
\(157\) −12.5487 + 2.49608i −1.00149 + 0.199209i −0.668493 0.743718i \(-0.733060\pi\)
−0.332998 + 0.942927i \(0.608060\pi\)
\(158\) 0 0
\(159\) −4.84530 10.4188i −0.384257 0.826264i
\(160\) 0 0
\(161\) −0.510530 −0.0402354
\(162\) 0 0
\(163\) −1.41044 7.09076i −0.110474 0.555391i −0.995888 0.0905883i \(-0.971125\pi\)
0.885414 0.464803i \(-0.153875\pi\)
\(164\) 0 0
\(165\) 0.244207 + 0.148533i 0.0190115 + 0.0115633i
\(166\) 0 0
\(167\) −5.06460 + 12.2270i −0.391911 + 0.946156i 0.597613 + 0.801785i \(0.296116\pi\)
−0.989524 + 0.144371i \(0.953884\pi\)
\(168\) 0 0
\(169\) −4.66199 11.2550i −0.358615 0.865773i
\(170\) 0 0
\(171\) 3.00319 2.40015i 0.229660 0.183544i
\(172\) 0 0
\(173\) −20.0687 13.4095i −1.52580 1.01950i −0.983830 0.179104i \(-0.942680\pi\)
−0.541966 0.840400i \(-0.682320\pi\)
\(174\) 0 0
\(175\) −0.925671 0.925671i −0.0699742 0.0699742i
\(176\) 0 0
\(177\) 2.75875 7.55536i 0.207360 0.567896i
\(178\) 0 0
\(179\) 10.2002 + 6.81555i 0.762398 + 0.509418i 0.874941 0.484229i \(-0.160900\pi\)
−0.112543 + 0.993647i \(0.535900\pi\)
\(180\) 0 0
\(181\) 10.3436 + 2.05747i 0.768834 + 0.152931i 0.563897 0.825845i \(-0.309301\pi\)
0.204936 + 0.978775i \(0.434301\pi\)
\(182\) 0 0
\(183\) 5.58132 + 5.12493i 0.412583 + 0.378846i
\(184\) 0 0
\(185\) 0.131773 0.318128i 0.00968815 0.0233893i
\(186\) 0 0
\(187\) −2.88161 4.31264i −0.210724 0.315371i
\(188\) 0 0
\(189\) 1.35879 + 0.0932803i 0.0988374 + 0.00678514i
\(190\) 0 0
\(191\) 27.5926 1.99653 0.998265 0.0588807i \(-0.0187532\pi\)
0.998265 + 0.0588807i \(0.0187532\pi\)
\(192\) 0 0
\(193\) −5.03806 −0.362648 −0.181324 0.983423i \(-0.558038\pi\)
−0.181324 + 0.983423i \(0.558038\pi\)
\(194\) 0 0
\(195\) 0.0694250 + 0.0948887i 0.00497163 + 0.00679512i
\(196\) 0 0
\(197\) −7.59394 11.3651i −0.541046 0.809732i 0.455718 0.890124i \(-0.349383\pi\)
−0.996763 + 0.0803923i \(0.974383\pi\)
\(198\) 0 0
\(199\) −4.56453 + 11.0197i −0.323571 + 0.781169i 0.675470 + 0.737387i \(0.263941\pi\)
−0.999041 + 0.0437818i \(0.986059\pi\)
\(200\) 0 0
\(201\) 2.14507 2.33609i 0.151301 0.164775i
\(202\) 0 0
\(203\) 1.67152 + 0.332486i 0.117318 + 0.0233359i
\(204\) 0 0
\(205\) −0.322759 0.215661i −0.0225425 0.0150624i
\(206\) 0 0
\(207\) −5.82201 + 0.497268i −0.404657 + 0.0345625i
\(208\) 0 0
\(209\) 1.99193 + 1.99193i 0.137784 + 0.137784i
\(210\) 0 0
\(211\) −2.76673 1.84867i −0.190470 0.127268i 0.456679 0.889631i \(-0.349039\pi\)
−0.647149 + 0.762364i \(0.724039\pi\)
\(212\) 0 0
\(213\) 9.50341 2.31509i 0.651163 0.158627i
\(214\) 0 0
\(215\) −0.274728 0.663251i −0.0187363 0.0452334i
\(216\) 0 0
\(217\) 1.01515 2.45079i 0.0689130 0.166371i
\(218\) 0 0
\(219\) −9.76478 + 16.0545i −0.659843 + 1.08486i
\(220\) 0 0
\(221\) −0.416231 2.09254i −0.0279988 0.140759i
\(222\) 0 0
\(223\) 12.6115 0.844531 0.422265 0.906472i \(-0.361235\pi\)
0.422265 + 0.906472i \(0.361235\pi\)
\(224\) 0 0
\(225\) −11.4578 9.65459i −0.763856 0.643639i
\(226\) 0 0
\(227\) −13.6050 + 2.70621i −0.902997 + 0.179617i −0.624688 0.780874i \(-0.714774\pi\)
−0.278309 + 0.960492i \(0.589774\pi\)
\(228\) 0 0
\(229\) −0.0914294 0.136834i −0.00604182 0.00904223i 0.828436 0.560083i \(-0.189231\pi\)
−0.834478 + 0.551041i \(0.814231\pi\)
\(230\) 0 0
\(231\) 0.0425040 + 0.997085i 0.00279656 + 0.0656034i
\(232\) 0 0
\(233\) −15.0334 + 6.22705i −0.984873 + 0.407948i −0.816229 0.577729i \(-0.803939\pi\)
−0.168645 + 0.985677i \(0.553939\pi\)
\(234\) 0 0
\(235\) 0.837684 + 0.166626i 0.0546445 + 0.0108695i
\(236\) 0 0
\(237\) −2.22708 + 14.3710i −0.144664 + 0.933499i
\(238\) 0 0
\(239\) −9.91200 + 9.91200i −0.641154 + 0.641154i −0.950839 0.309685i \(-0.899776\pi\)
0.309685 + 0.950839i \(0.399776\pi\)
\(240\) 0 0
\(241\) 6.54008 + 6.54008i 0.421283 + 0.421283i 0.885645 0.464362i \(-0.153716\pi\)
−0.464362 + 0.885645i \(0.653716\pi\)
\(242\) 0 0
\(243\) 15.5863 0.259739i 0.999861 0.0166623i
\(244\) 0 0
\(245\) 0.101514 0.510344i 0.00648548 0.0326047i
\(246\) 0 0
\(247\) 0.443436 + 1.07055i 0.0282151 + 0.0681174i
\(248\) 0 0
\(249\) 0.901814 + 21.1553i 0.0571502 + 1.34066i
\(250\) 0 0
\(251\) −18.8565 + 12.5995i −1.19021 + 0.795273i −0.983105 0.183045i \(-0.941405\pi\)
−0.207106 + 0.978318i \(0.566405\pi\)
\(252\) 0 0
\(253\) −0.835295 4.19931i −0.0525145 0.264008i
\(254\) 0 0
\(255\) −0.129373 0.278190i −0.00810167 0.0174209i
\(256\) 0 0
\(257\) 0.247927i 0.0154652i 0.999970 + 0.00773262i \(0.00246139\pi\)
−0.999970 + 0.00773262i \(0.997539\pi\)
\(258\) 0 0
\(259\) 1.17917 0.234552i 0.0732703 0.0145744i
\(260\) 0 0
\(261\) 19.3856 + 2.16352i 1.19994 + 0.133919i
\(262\) 0 0
\(263\) 24.7866 + 10.2669i 1.52841 + 0.633087i 0.979254 0.202635i \(-0.0649504\pi\)
0.549153 + 0.835722i \(0.314950\pi\)
\(264\) 0 0
\(265\) 0.460111 0.190584i 0.0282644 0.0117075i
\(266\) 0 0
\(267\) −24.7193 + 6.02179i −1.51280 + 0.368527i
\(268\) 0 0
\(269\) 7.89201 11.8112i 0.481184 0.720143i −0.508868 0.860845i \(-0.669936\pi\)
0.990052 + 0.140701i \(0.0449358\pi\)
\(270\) 0 0
\(271\) 7.91386 7.91386i 0.480733 0.480733i −0.424633 0.905366i \(-0.639597\pi\)
0.905366 + 0.424633i \(0.139597\pi\)
\(272\) 0 0
\(273\) −0.140802 + 0.385613i −0.00852172 + 0.0233384i
\(274\) 0 0
\(275\) 6.09949 9.12853i 0.367813 0.550471i
\(276\) 0 0
\(277\) −4.80902 + 24.1766i −0.288946 + 1.45263i 0.514622 + 0.857417i \(0.327932\pi\)
−0.803568 + 0.595213i \(0.797068\pi\)
\(278\) 0 0
\(279\) 9.18951 28.9373i 0.550161 1.73243i
\(280\) 0 0
\(281\) 21.3506 + 8.84369i 1.27367 + 0.527570i 0.914077 0.405540i \(-0.132916\pi\)
0.359590 + 0.933110i \(0.382916\pi\)
\(282\) 0 0
\(283\) 2.13260 1.42496i 0.126770 0.0847050i −0.490569 0.871403i \(-0.663211\pi\)
0.617339 + 0.786698i \(0.288211\pi\)
\(284\) 0 0
\(285\) 0.0983905 + 0.134478i 0.00582815 + 0.00796580i
\(286\) 0 0
\(287\) 1.35534i 0.0800034i
\(288\) 0 0
\(289\) 11.4327i 0.672512i
\(290\) 0 0
\(291\) −13.3001 18.1783i −0.779664 1.06563i
\(292\) 0 0
\(293\) −15.6865 + 10.4814i −0.916416 + 0.612329i −0.921804 0.387656i \(-0.873285\pi\)
0.00538828 + 0.999985i \(0.498285\pi\)
\(294\) 0 0
\(295\) 0.322079 + 0.133409i 0.0187522 + 0.00776740i
\(296\) 0 0
\(297\) 1.45589 + 11.3292i 0.0844795 + 0.657387i
\(298\) 0 0
\(299\) 0.343591 1.72735i 0.0198704 0.0998953i
\(300\) 0 0
\(301\) 1.39257 2.08414i 0.0802667 0.120128i
\(302\) 0 0
\(303\) 6.91939 18.9501i 0.397509 1.08865i
\(304\) 0 0
\(305\) −0.232229 + 0.232229i −0.0132974 + 0.0132974i
\(306\) 0 0
\(307\) −7.34995 + 11.0000i −0.419484 + 0.627802i −0.979682 0.200556i \(-0.935725\pi\)
0.560198 + 0.828359i \(0.310725\pi\)
\(308\) 0 0
\(309\) 22.5908 5.50327i 1.28515 0.313070i
\(310\) 0 0
\(311\) −4.34991 + 1.80179i −0.246661 + 0.102170i −0.502589 0.864526i \(-0.667619\pi\)
0.255928 + 0.966696i \(0.417619\pi\)
\(312\) 0 0
\(313\) −8.83610 3.66003i −0.499446 0.206877i 0.118716 0.992928i \(-0.462122\pi\)
−0.618162 + 0.786051i \(0.712122\pi\)
\(314\) 0 0
\(315\) −0.00654758 + 0.0586678i −0.000368914 + 0.00330555i
\(316\) 0 0
\(317\) 1.84684 0.367359i 0.103729 0.0206329i −0.142953 0.989729i \(-0.545660\pi\)
0.246682 + 0.969097i \(0.420660\pi\)
\(318\) 0 0
\(319\) 14.2929i 0.800249i
\(320\) 0 0
\(321\) 10.3974 + 22.3575i 0.580327 + 1.24787i
\(322\) 0 0
\(323\) −0.589892 2.96559i −0.0328225 0.165010i
\(324\) 0 0
\(325\) 3.75494 2.50897i 0.208287 0.139173i
\(326\) 0 0
\(327\) 0.726304 + 17.0381i 0.0401647 + 0.942207i
\(328\) 0 0
\(329\) 1.14120 + 2.75511i 0.0629166 + 0.151894i
\(330\) 0 0
\(331\) 5.48542 27.5771i 0.301506 1.51577i −0.471780 0.881716i \(-0.656388\pi\)
0.773286 0.634057i \(-0.218612\pi\)
\(332\) 0 0
\(333\) 13.2187 3.82334i 0.724378 0.209518i
\(334\) 0 0
\(335\) 0.0972006 + 0.0972006i 0.00531064 + 0.00531064i
\(336\) 0 0
\(337\) −14.8867 + 14.8867i −0.810928 + 0.810928i −0.984773 0.173845i \(-0.944381\pi\)
0.173845 + 0.984773i \(0.444381\pi\)
\(338\) 0 0
\(339\) −2.83913 + 18.3205i −0.154200 + 0.995034i
\(340\) 0 0
\(341\) 21.8197 + 4.34020i 1.18160 + 0.235035i
\(342\) 0 0
\(343\) 3.37364 1.39741i 0.182159 0.0754528i
\(344\) 0 0
\(345\) −0.0107862 0.253029i −0.000580710 0.0136226i
\(346\) 0 0
\(347\) −10.7084 16.0262i −0.574855 0.860332i 0.424119 0.905606i \(-0.360584\pi\)
−0.998975 + 0.0452745i \(0.985584\pi\)
\(348\) 0 0
\(349\) 18.0984 3.59999i 0.968783 0.192703i 0.314755 0.949173i \(-0.398078\pi\)
0.654028 + 0.756470i \(0.273078\pi\)
\(350\) 0 0
\(351\) −1.23009 + 4.53461i −0.0656572 + 0.242040i
\(352\) 0 0
\(353\) −10.1922 −0.542474 −0.271237 0.962513i \(-0.587433\pi\)
−0.271237 + 0.962513i \(0.587433\pi\)
\(354\) 0 0
\(355\) 0.0827081 + 0.415802i 0.00438969 + 0.0220685i
\(356\) 0 0
\(357\) 0.556659 0.915217i 0.0294615 0.0484384i
\(358\) 0 0
\(359\) 6.12003 14.7751i 0.323003 0.779798i −0.676074 0.736834i \(-0.736320\pi\)
0.999077 0.0429641i \(-0.0136801\pi\)
\(360\) 0 0
\(361\) −6.64254 16.0365i −0.349607 0.844027i
\(362\) 0 0
\(363\) 10.3793 2.52847i 0.544774 0.132710i
\(364\) 0 0
\(365\) −0.677187 0.452482i −0.0354456 0.0236840i
\(366\) 0 0
\(367\) 9.95497 + 9.95497i 0.519645 + 0.519645i 0.917464 0.397819i \(-0.130233\pi\)
−0.397819 + 0.917464i \(0.630233\pi\)
\(368\) 0 0
\(369\) −1.32014 15.4561i −0.0687235 0.804614i
\(370\) 0 0
\(371\) 1.44581 + 0.966058i 0.0750626 + 0.0501552i
\(372\) 0 0
\(373\) −19.3566 3.85026i −1.00224 0.199359i −0.333420 0.942779i \(-0.608203\pi\)
−0.668825 + 0.743420i \(0.733203\pi\)
\(374\) 0 0
\(375\) 0.878945 0.957218i 0.0453885 0.0494305i
\(376\) 0 0
\(377\) −2.24990 + 5.43173i −0.115876 + 0.279748i
\(378\) 0 0
\(379\) −0.800844 1.19855i −0.0411366 0.0615653i 0.810331 0.585972i \(-0.199287\pi\)
−0.851468 + 0.524407i \(0.824287\pi\)
\(380\) 0 0
\(381\) −0.422641 0.577657i −0.0216525 0.0295942i
\(382\) 0 0
\(383\) 21.7067 1.10916 0.554580 0.832130i \(-0.312879\pi\)
0.554580 + 0.832130i \(0.312879\pi\)
\(384\) 0 0
\(385\) −0.0432554 −0.00220450
\(386\) 0 0
\(387\) 13.8507 25.1236i 0.704071 1.27710i
\(388\) 0 0
\(389\) −17.4324 26.0894i −0.883858 1.32279i −0.945814 0.324708i \(-0.894734\pi\)
0.0619565 0.998079i \(-0.480266\pi\)
\(390\) 0 0
\(391\) −1.75870 + 4.24588i −0.0889413 + 0.214723i
\(392\) 0 0
\(393\) 6.85717 + 6.29645i 0.345898 + 0.317614i
\(394\) 0 0
\(395\) −0.618201 0.122968i −0.0311050 0.00618718i
\(396\) 0 0
\(397\) 10.9547 + 7.31968i 0.549799 + 0.367364i 0.799227 0.601029i \(-0.205242\pi\)
−0.249428 + 0.968393i \(0.580242\pi\)
\(398\) 0 0
\(399\) −0.199547 + 0.546499i −0.00998986 + 0.0273591i
\(400\) 0 0
\(401\) 20.2825 + 20.2825i 1.01286 + 1.01286i 0.999916 + 0.0129431i \(0.00412004\pi\)
0.0129431 + 0.999916i \(0.495880\pi\)
\(402\) 0 0
\(403\) 7.60892 + 5.08412i 0.379027 + 0.253258i
\(404\) 0 0
\(405\) −0.0175239 + 0.675416i −0.000870767 + 0.0335617i
\(406\) 0 0
\(407\) 3.85857 + 9.31541i 0.191262 + 0.461748i
\(408\) 0 0
\(409\) −6.31288 + 15.2406i −0.312152 + 0.753601i 0.687473 + 0.726210i \(0.258720\pi\)
−0.999625 + 0.0273914i \(0.991280\pi\)
\(410\) 0 0
\(411\) 22.4147 + 13.6332i 1.10563 + 0.672476i
\(412\) 0 0
\(413\) 0.237465 + 1.19382i 0.0116849 + 0.0587439i
\(414\) 0 0
\(415\) −0.917756 −0.0450509
\(416\) 0 0
\(417\) −6.43572 13.8387i −0.315159 0.677683i
\(418\) 0 0
\(419\) −31.4491 + 6.25562i −1.53639 + 0.305607i −0.889485 0.456964i \(-0.848937\pi\)
−0.646904 + 0.762571i \(0.723937\pi\)
\(420\) 0 0
\(421\) −9.69566 14.5106i −0.472537 0.707202i 0.516266 0.856428i \(-0.327322\pi\)
−0.988803 + 0.149226i \(0.952322\pi\)
\(422\) 0 0
\(423\) 15.6976 + 30.3073i 0.763246 + 1.47359i
\(424\) 0 0
\(425\) −10.8872 + 4.50964i −0.528109 + 0.218750i
\(426\) 0 0
\(427\) −1.12466 0.223709i −0.0544262 0.0108260i
\(428\) 0 0
\(429\) −3.40219 0.527237i −0.164259 0.0254553i
\(430\) 0 0
\(431\) −13.1610 + 13.1610i −0.633944 + 0.633944i −0.949055 0.315111i \(-0.897958\pi\)
0.315111 + 0.949055i \(0.397958\pi\)
\(432\) 0 0
\(433\) 18.5364 + 18.5364i 0.890803 + 0.890803i 0.994599 0.103795i \(-0.0330987\pi\)
−0.103795 + 0.994599i \(0.533099\pi\)
\(434\) 0 0
\(435\) −0.129472 + 0.835465i −0.00620771 + 0.0400575i
\(436\) 0 0
\(437\) 0.486945 2.44804i 0.0232937 0.117105i
\(438\) 0 0
\(439\) −8.76979 21.1722i −0.418559 1.01049i −0.982765 0.184858i \(-0.940818\pi\)
0.564206 0.825634i \(-0.309182\pi\)
\(440\) 0 0
\(441\) 18.4642 9.56351i 0.879246 0.455405i
\(442\) 0 0
\(443\) 5.76224 3.85021i 0.273773 0.182929i −0.411103 0.911589i \(-0.634856\pi\)
0.684876 + 0.728660i \(0.259856\pi\)
\(444\) 0 0
\(445\) −0.215132 1.08154i −0.0101982 0.0512700i
\(446\) 0 0
\(447\) −9.63767 + 4.48203i −0.455846 + 0.211993i
\(448\) 0 0
\(449\) 6.65138i 0.313898i 0.987607 + 0.156949i \(0.0501659\pi\)
−0.987607 + 0.156949i \(0.949834\pi\)
\(450\) 0 0
\(451\) 11.1482 2.21752i 0.524950 0.104419i
\(452\) 0 0
\(453\) 7.64582 12.5707i 0.359232 0.590622i
\(454\) 0 0
\(455\) −0.0164384 0.00680899i −0.000770642 0.000319210i
\(456\) 0 0
\(457\) −15.3039 + 6.33908i −0.715886 + 0.296530i −0.710738 0.703457i \(-0.751639\pi\)
−0.00514839 + 0.999987i \(0.501639\pi\)
\(458\) 0 0
\(459\) 5.45661 10.9792i 0.254693 0.512465i
\(460\) 0 0
\(461\) −14.2247 + 21.2887i −0.662509 + 0.991515i 0.336253 + 0.941772i \(0.390840\pi\)
−0.998762 + 0.0497436i \(0.984160\pi\)
\(462\) 0 0
\(463\) −9.91878 + 9.91878i −0.460965 + 0.460965i −0.898972 0.438007i \(-0.855685\pi\)
0.438007 + 0.898972i \(0.355685\pi\)
\(464\) 0 0
\(465\) 1.23611 + 0.451352i 0.0573233 + 0.0209309i
\(466\) 0 0
\(467\) 2.12128 3.17472i 0.0981612 0.146909i −0.779138 0.626852i \(-0.784343\pi\)
0.877299 + 0.479944i \(0.159343\pi\)
\(468\) 0 0
\(469\) −0.0936346 + 0.470733i −0.00432365 + 0.0217364i
\(470\) 0 0
\(471\) 14.9884 16.3232i 0.690629 0.752131i
\(472\) 0 0
\(473\) 19.4213 + 8.04455i 0.892991 + 0.369889i
\(474\) 0 0
\(475\) 5.32158 3.55577i 0.244171 0.163150i
\(476\) 0 0
\(477\) 17.4287 + 9.60853i 0.798007 + 0.439944i
\(478\) 0 0
\(479\) 4.64745i 0.212347i 0.994348 + 0.106174i \(0.0338599\pi\)
−0.994348 + 0.106174i \(0.966140\pi\)
\(480\) 0 0
\(481\) 4.14753i 0.189111i
\(482\) 0 0
\(483\) 0.713648 0.522138i 0.0324721 0.0237581i
\(484\) 0 0
\(485\) 0.811728 0.542380i 0.0368587 0.0246282i
\(486\) 0 0
\(487\) −18.0003 7.45596i −0.815670 0.337862i −0.0644565 0.997921i \(-0.520531\pi\)
−0.751214 + 0.660059i \(0.770531\pi\)
\(488\) 0 0
\(489\) 9.22358 + 8.46936i 0.417105 + 0.382998i
\(490\) 0 0
\(491\) 2.10722 10.5937i 0.0950974 0.478087i −0.903660 0.428251i \(-0.859130\pi\)
0.998757 0.0498362i \(-0.0158699\pi\)
\(492\) 0 0
\(493\) 8.52329 12.7560i 0.383870 0.574502i
\(494\) 0 0
\(495\) −0.493278 + 0.0421318i −0.0221712 + 0.00189368i
\(496\) 0 0
\(497\) −1.04668 + 1.04668i −0.0469500 + 0.0469500i
\(498\) 0 0
\(499\) −19.8260 + 29.6718i −0.887535 + 1.32829i 0.0564854 + 0.998403i \(0.482011\pi\)
−0.944021 + 0.329887i \(0.892989\pi\)
\(500\) 0 0
\(501\) −5.42546 22.2714i −0.242391 0.995013i
\(502\) 0 0
\(503\) −0.0322396 + 0.0133541i −0.00143749 + 0.000595428i −0.383402 0.923582i \(-0.625248\pi\)
0.381965 + 0.924177i \(0.375248\pi\)
\(504\) 0 0
\(505\) 0.807826 + 0.334612i 0.0359478 + 0.0148901i
\(506\) 0 0
\(507\) 18.0278 + 10.9650i 0.800641 + 0.486971i
\(508\) 0 0
\(509\) 3.75595 0.747106i 0.166480 0.0331149i −0.111147 0.993804i \(-0.535452\pi\)
0.277626 + 0.960689i \(0.410452\pi\)
\(510\) 0 0
\(511\) 2.84367i 0.125796i
\(512\) 0 0
\(513\) −1.74330 + 6.42655i −0.0769688 + 0.283739i
\(514\) 0 0
\(515\) 0.196608 + 0.988414i 0.00866357 + 0.0435547i
\(516\) 0 0
\(517\) −20.7947 + 13.8946i −0.914549 + 0.611082i
\(518\) 0 0
\(519\) 41.7676 1.78048i 1.83339 0.0781545i
\(520\) 0 0
\(521\) −5.37144 12.9678i −0.235327 0.568130i 0.761461 0.648210i \(-0.224482\pi\)
−0.996788 + 0.0800804i \(0.974482\pi\)
\(522\) 0 0
\(523\) 2.63083 13.2261i 0.115038 0.578337i −0.879669 0.475587i \(-0.842236\pi\)
0.994707 0.102750i \(-0.0327642\pi\)
\(524\) 0 0
\(525\) 2.24068 + 0.347238i 0.0977911 + 0.0151547i
\(526\) 0 0
\(527\) −16.8852 16.8852i −0.735533 0.735533i
\(528\) 0 0
\(529\) 13.5809 13.5809i 0.590475 0.590475i
\(530\) 0 0
\(531\) 3.87082 + 13.3828i 0.167979 + 0.580764i
\(532\) 0 0
\(533\) 4.58573 + 0.912158i 0.198630 + 0.0395100i
\(534\) 0 0
\(535\) −0.987343 + 0.408971i −0.0426866 + 0.0176814i
\(536\) 0 0
\(537\) −21.2289 + 0.904954i −0.916096 + 0.0390516i
\(538\) 0 0
\(539\) 8.46501 + 12.6688i 0.364614 + 0.545683i
\(540\) 0 0
\(541\) 26.2221 5.21590i 1.12738 0.224249i 0.404037 0.914743i \(-0.367607\pi\)
0.723339 + 0.690494i \(0.242607\pi\)
\(542\) 0 0
\(543\) −16.5631 + 7.70274i −0.710792 + 0.330556i
\(544\) 0 0
\(545\) −0.739143 −0.0316614
\(546\) 0 0
\(547\) 6.71870 + 33.7772i 0.287271 + 1.44421i 0.807341 + 0.590085i \(0.200906\pi\)
−0.520070 + 0.854124i \(0.674094\pi\)
\(548\) 0 0
\(549\) −13.0434 1.45570i −0.556677 0.0621276i
\(550\) 0 0
\(551\) −3.18860 + 7.69796i −0.135839 + 0.327944i
\(552\) 0 0
\(553\) −0.842194 2.03324i −0.0358137 0.0864620i
\(554\) 0 0
\(555\) 0.141162 + 0.579468i 0.00599199 + 0.0245970i
\(556\) 0 0
\(557\) 11.7060 + 7.82170i 0.495999 + 0.331416i 0.778282 0.627915i \(-0.216092\pi\)
−0.282282 + 0.959331i \(0.591092\pi\)
\(558\) 0 0
\(559\) 6.11434 + 6.11434i 0.258609 + 0.258609i
\(560\) 0 0
\(561\) 8.43878 + 3.08132i 0.356286 + 0.130093i
\(562\) 0 0
\(563\) 1.45663 + 0.973290i 0.0613897 + 0.0410193i 0.585886 0.810393i \(-0.300746\pi\)
−0.524497 + 0.851412i \(0.675746\pi\)
\(564\) 0 0
\(565\) −0.788096 0.156762i −0.0331554 0.00659503i
\(566\) 0 0
\(567\) −1.99480 + 1.25929i −0.0837736 + 0.0528854i
\(568\) 0 0
\(569\) 3.39021 8.18469i 0.142125 0.343120i −0.836748 0.547588i \(-0.815546\pi\)
0.978873 + 0.204468i \(0.0655463\pi\)
\(570\) 0 0
\(571\) −18.1245 27.1252i −0.758486 1.13515i −0.986859 0.161581i \(-0.948341\pi\)
0.228373 0.973574i \(-0.426659\pi\)
\(572\) 0 0
\(573\) −38.5705 + 28.2200i −1.61131 + 1.17891i
\(574\) 0 0
\(575\) −9.72770 −0.405673
\(576\) 0 0
\(577\) 18.8087 0.783017 0.391509 0.920174i \(-0.371953\pi\)
0.391509 + 0.920174i \(0.371953\pi\)
\(578\) 0 0
\(579\) 7.04250 5.15262i 0.292676 0.214136i
\(580\) 0 0
\(581\) −1.78026 2.66435i −0.0738576 0.110536i
\(582\) 0 0
\(583\) −5.58067 + 13.4729i −0.231128 + 0.557992i
\(584\) 0 0
\(585\) −0.194093 0.0616373i −0.00802474 0.00254839i
\(586\) 0 0
\(587\) 34.1088 + 6.78466i 1.40782 + 0.280033i 0.839762 0.542955i \(-0.182694\pi\)
0.568059 + 0.822988i \(0.307694\pi\)
\(588\) 0 0
\(589\) 10.7835 + 7.20532i 0.444327 + 0.296890i
\(590\) 0 0
\(591\) 22.2388 + 8.12023i 0.914782 + 0.334022i
\(592\) 0 0
\(593\) 1.14918 + 1.14918i 0.0471910 + 0.0471910i 0.730308 0.683118i \(-0.239376\pi\)
−0.683118 + 0.730308i \(0.739376\pi\)
\(594\) 0 0
\(595\) 0.0386042 + 0.0257945i 0.00158262 + 0.00105747i
\(596\) 0 0
\(597\) −4.88975 20.0724i −0.200124 0.821507i
\(598\) 0 0
\(599\) 1.00985 + 2.43798i 0.0412612 + 0.0996132i 0.943167 0.332320i \(-0.107831\pi\)
−0.901905 + 0.431934i \(0.857831\pi\)
\(600\) 0 0
\(601\) −1.00588 + 2.42841i −0.0410307 + 0.0990568i −0.943066 0.332605i \(-0.892073\pi\)
0.902036 + 0.431662i \(0.142073\pi\)
\(602\) 0 0
\(603\) −0.609290 + 5.45937i −0.0248122 + 0.222323i
\(604\) 0 0
\(605\) 0.0903312 + 0.454126i 0.00367249 + 0.0184628i
\(606\) 0 0
\(607\) −42.0620 −1.70725 −0.853623 0.520892i \(-0.825600\pi\)
−0.853623 + 0.520892i \(0.825600\pi\)
\(608\) 0 0
\(609\) −2.67659 + 1.24476i −0.108461 + 0.0504402i
\(610\) 0 0
\(611\) −10.0898 + 2.00699i −0.408190 + 0.0811940i
\(612\) 0 0
\(613\) −16.8711 25.2494i −0.681417 1.01981i −0.997471 0.0710711i \(-0.977358\pi\)
0.316055 0.948741i \(-0.397642\pi\)
\(614\) 0 0
\(615\) 0.671736 0.0286350i 0.0270870 0.00115467i
\(616\) 0 0
\(617\) −15.9796 + 6.61898i −0.643316 + 0.266470i −0.680399 0.732842i \(-0.738193\pi\)
0.0370828 + 0.999312i \(0.488193\pi\)
\(618\) 0 0
\(619\) −34.6693 6.89615i −1.39348 0.277180i −0.559432 0.828876i \(-0.688981\pi\)
−0.834045 + 0.551696i \(0.813981\pi\)
\(620\) 0 0
\(621\) 7.62976 6.64950i 0.306172 0.266835i
\(622\) 0 0
\(623\) 2.72252 2.72252i 0.109075 0.109075i
\(624\) 0 0
\(625\) −17.6179 17.6179i −0.704717 0.704717i
\(626\) 0 0
\(627\) −4.82165 0.747211i −0.192558 0.0298407i
\(628\) 0 0
\(629\) 2.11140 10.6147i 0.0841870 0.423237i
\(630\) 0 0
\(631\) −1.74700 4.21763i −0.0695470 0.167901i 0.885284 0.465051i \(-0.153964\pi\)
−0.954831 + 0.297150i \(0.903964\pi\)
\(632\) 0 0
\(633\) 5.75820 0.245462i 0.228868 0.00975626i
\(634\) 0 0
\(635\) 0.0257945 0.0172354i 0.00102363 0.000683964i
\(636\) 0 0
\(637\) 1.22272 + 6.14703i 0.0484459 + 0.243554i
\(638\) 0 0
\(639\) −10.9167 + 12.9557i −0.431858 + 0.512518i
\(640\) 0 0
\(641\) 31.5734i 1.24708i −0.781793 0.623538i \(-0.785695\pi\)
0.781793 0.623538i \(-0.214305\pi\)
\(642\) 0 0
\(643\) −24.3933 + 4.85212i −0.961976 + 0.191349i −0.651008 0.759071i \(-0.725653\pi\)
−0.310969 + 0.950420i \(0.600653\pi\)
\(644\) 0 0
\(645\) 1.06236 + 0.646157i 0.0418305 + 0.0254424i
\(646\) 0 0
\(647\) −17.3176 7.17319i −0.680826 0.282007i 0.0153463 0.999882i \(-0.495115\pi\)
−0.696172 + 0.717875i \(0.745115\pi\)
\(648\) 0 0
\(649\) −9.43108 + 3.90648i −0.370202 + 0.153343i
\(650\) 0 0
\(651\) 1.08748 + 4.46410i 0.0426218 + 0.174962i
\(652\) 0 0
\(653\) −18.8122 + 28.1544i −0.736178 + 1.10177i 0.254702 + 0.967020i \(0.418023\pi\)
−0.990880 + 0.134748i \(0.956977\pi\)
\(654\) 0 0
\(655\) −0.285314 + 0.285314i −0.0111482 + 0.0111482i
\(656\) 0 0
\(657\) −2.76980 32.4288i −0.108060 1.26517i
\(658\) 0 0
\(659\) 2.59960 3.89057i 0.101266 0.151555i −0.777376 0.629036i \(-0.783450\pi\)
0.878642 + 0.477481i \(0.158450\pi\)
\(660\) 0 0
\(661\) −5.49642 + 27.6324i −0.213786 + 1.07477i 0.713567 + 0.700587i \(0.247078\pi\)
−0.927353 + 0.374187i \(0.877922\pi\)
\(662\) 0 0
\(663\) 2.72195 + 2.49937i 0.105712 + 0.0970676i
\(664\) 0 0
\(665\) −0.0232968 0.00964984i −0.000903410 0.000374205i
\(666\) 0 0
\(667\) 10.5299 7.03582i 0.407718 0.272428i
\(668\) 0 0
\(669\) −17.6291 + 12.8983i −0.681581 + 0.498677i
\(670\) 0 0
\(671\) 9.61679i 0.371252i
\(672\) 0 0
\(673\) 11.0254i 0.424996i −0.977161 0.212498i \(-0.931840\pi\)
0.977161 0.212498i \(-0.0681599\pi\)
\(674\) 0 0
\(675\) 25.8905 + 1.77737i 0.996527 + 0.0684111i
\(676\) 0 0
\(677\) 10.9422 7.31133i 0.420542 0.280997i −0.327240 0.944941i \(-0.606119\pi\)
0.747782 + 0.663944i \(0.231119\pi\)
\(678\) 0 0
\(679\) 3.14917 + 1.30443i 0.120854 + 0.0500594i
\(680\) 0 0
\(681\) 16.2501 17.6973i 0.622707 0.678161i
\(682\) 0 0
\(683\) −6.11205 + 30.7273i −0.233871 + 1.17575i 0.668140 + 0.744036i \(0.267091\pi\)
−0.902011 + 0.431713i \(0.857909\pi\)
\(684\) 0 0
\(685\) −0.631737 + 0.945461i −0.0241374 + 0.0361242i
\(686\) 0 0
\(687\) 0.267750 + 0.0977658i 0.0102153 + 0.00373000i
\(688\) 0 0
\(689\) −4.24165 + 4.24165i −0.161594 + 0.161594i
\(690\) 0 0
\(691\) −3.78957 + 5.67149i −0.144162 + 0.215754i −0.896523 0.442998i \(-0.853915\pi\)
0.752361 + 0.658751i \(0.228915\pi\)
\(692\) 0 0
\(693\) −1.07917 1.35031i −0.0409943 0.0512941i
\(694\) 0 0
\(695\) 0.611138 0.253142i 0.0231818 0.00960222i
\(696\) 0 0
\(697\) −11.2719 4.66896i −0.426952 0.176849i
\(698\) 0 0
\(699\) 14.6460 24.0798i 0.553961 0.910782i
\(700\) 0 0
\(701\) 45.6378 9.07793i 1.72372 0.342869i 0.768743 0.639558i \(-0.220882\pi\)
0.954974 + 0.296689i \(0.0958824\pi\)
\(702\) 0 0
\(703\) 5.87796i 0.221692i
\(704\) 0 0
\(705\) −1.34138 + 0.623813i −0.0505192 + 0.0234941i
\(706\) 0 0
\(707\) 0.595600 + 2.99429i 0.0223999 + 0.112612i
\(708\) 0 0
\(709\) −32.9914 + 22.0441i −1.23902 + 0.827885i −0.990062 0.140630i \(-0.955087\pi\)
−0.248955 + 0.968515i \(0.580087\pi\)
\(710\) 0 0
\(711\) −11.5847 22.3664i −0.434459 0.838805i
\(712\) 0 0
\(713\) −7.54344 18.2115i −0.282504 0.682025i
\(714\) 0 0
\(715\) 0.0291113 0.146352i 0.00108870 0.00547327i
\(716\) 0 0
\(717\) 3.71819 23.9929i 0.138858 0.896033i
\(718\) 0 0
\(719\) −27.3837 27.3837i −1.02124 1.02124i −0.999770 0.0214686i \(-0.993166\pi\)
−0.0214686 0.999770i \(-0.506834\pi\)
\(720\) 0 0
\(721\) −2.48809 + 2.48809i −0.0926614 + 0.0926614i
\(722\) 0 0
\(723\) −15.8309 2.45331i −0.588757 0.0912397i
\(724\) 0 0
\(725\) 31.8493 + 6.33523i 1.18285 + 0.235284i
\(726\) 0 0
\(727\) −0.372141 + 0.154146i −0.0138019 + 0.00571695i −0.389574 0.920995i \(-0.627378\pi\)
0.375772 + 0.926712i \(0.377378\pi\)
\(728\) 0 0
\(729\) −21.5218 + 16.3038i −0.797103 + 0.603843i
\(730\) 0 0
\(731\) −12.5357 18.7610i −0.463650 0.693902i
\(732\) 0 0
\(733\) −20.6905 + 4.11560i −0.764223 + 0.152013i −0.561787 0.827282i \(-0.689886\pi\)
−0.202436 + 0.979295i \(0.564886\pi\)
\(734\) 0 0
\(735\) 0.380047 + 0.817211i 0.0140182 + 0.0301433i
\(736\) 0 0
\(737\) −4.02516 −0.148269
\(738\) 0 0
\(739\) 1.24476 + 6.25783i 0.0457892 + 0.230198i 0.996903 0.0786433i \(-0.0250588\pi\)
−0.951114 + 0.308841i \(0.900059\pi\)
\(740\) 0 0
\(741\) −1.71475 1.04296i −0.0629929 0.0383139i
\(742\) 0 0
\(743\) 14.4970 34.9988i 0.531843 1.28398i −0.398459 0.917186i \(-0.630455\pi\)
0.930302 0.366795i \(-0.119545\pi\)
\(744\) 0 0
\(745\) −0.176296 0.425615i −0.00645897 0.0155933i
\(746\) 0 0
\(747\) −22.8969 28.6498i −0.837755 1.04824i
\(748\) 0 0
\(749\) −3.10253 2.07304i −0.113364 0.0757474i
\(750\) 0 0
\(751\) −16.0660 16.0660i −0.586258 0.586258i 0.350358 0.936616i \(-0.386060\pi\)
−0.936616 + 0.350358i \(0.886060\pi\)
\(752\) 0 0
\(753\) 13.4727 36.8976i 0.490972 1.34462i
\(754\) 0 0
\(755\) 0.530237 + 0.354293i 0.0192973 + 0.0128940i
\(756\) 0 0
\(757\) −46.1515 9.18010i −1.67740 0.333656i −0.737566 0.675276i \(-0.764025\pi\)
−0.939838 + 0.341619i \(0.889025\pi\)
\(758\) 0 0
\(759\) 5.46242 + 5.01575i 0.198273 + 0.182060i
\(760\) 0 0
\(761\) 13.3019 32.1135i 0.482192 1.16412i −0.476373 0.879243i \(-0.658049\pi\)
0.958566 0.284872i \(-0.0919511\pi\)
\(762\) 0 0
\(763\) −1.43379 2.14581i −0.0519065 0.0776836i
\(764\) 0 0
\(765\) 0.465361 + 0.256555i 0.0168252 + 0.00927578i
\(766\) 0 0
\(767\) −4.19903 −0.151618
\(768\) 0 0
\(769\) −29.4345 −1.06144 −0.530718 0.847549i \(-0.678078\pi\)
−0.530718 + 0.847549i \(0.678078\pi\)
\(770\) 0 0
\(771\) −0.253564 0.346566i −0.00913189 0.0124813i
\(772\) 0 0
\(773\) 3.03986 + 4.54947i 0.109336 + 0.163633i 0.882103 0.471057i \(-0.156128\pi\)
−0.772766 + 0.634691i \(0.781128\pi\)
\(774\) 0 0
\(775\) 19.3428 46.6977i 0.694815 1.67743i
\(776\) 0 0
\(777\) −1.40843 + 1.53386i −0.0505272 + 0.0550268i
\(778\) 0 0
\(779\) 6.49899 + 1.29273i 0.232851 + 0.0463168i
\(780\) 0 0
\(781\) −10.3219 6.89685i −0.369345 0.246789i
\(782\) 0 0
\(783\) −29.3110 + 16.8021i −1.04749 + 0.600458i
\(784\) 0 0
\(785\) 0.679177 + 0.679177i 0.0242409 + 0.0242409i
\(786\) 0 0
\(787\) 4.45487 + 2.97665i 0.158799 + 0.106106i 0.632431 0.774617i \(-0.282057\pi\)
−0.473632 + 0.880723i \(0.657057\pi\)
\(788\) 0 0
\(789\) −45.1485 + 10.9985i −1.60733 + 0.391556i
\(790\) 0 0
\(791\) −1.07365 2.59201i −0.0381745 0.0921614i
\(792\) 0 0
\(793\) 1.51381 3.65467i 0.0537571 0.129781i
\(794\) 0 0
\(795\) −0.448252 + 0.736983i −0.0158979 + 0.0261381i
\(796\) 0 0
\(797\) 1.68618 + 8.47701i 0.0597276 + 0.300271i 0.999090 0.0426555i \(-0.0135818\pi\)
−0.939362 + 0.342927i \(0.888582\pi\)
\(798\) 0 0
\(799\) 26.8444 0.949688
\(800\) 0 0
\(801\) 28.3954 33.6990i 1.00330 1.19070i
\(802\) 0 0
\(803\) 23.3903 4.65262i 0.825425 0.164187i
\(804\) 0 0
\(805\) 0.0212929 + 0.0318671i 0.000750476 + 0.00112317i
\(806\) 0 0
\(807\) 1.04788 + 24.5819i 0.0368873 + 0.865323i
\(808\) 0 0
\(809\) −13.8531 + 5.73816i −0.487050 + 0.201743i −0.612675 0.790335i \(-0.709906\pi\)
0.125625 + 0.992078i \(0.459906\pi\)
\(810\) 0 0
\(811\) 20.2295 + 4.02389i 0.710352 + 0.141298i 0.537025 0.843566i \(-0.319548\pi\)
0.173327 + 0.984864i \(0.444548\pi\)
\(812\) 0 0
\(813\) −2.96865 + 19.1563i −0.104115 + 0.671840i
\(814\) 0 0
\(815\) −0.383776 + 0.383776i −0.0134431 + 0.0134431i
\(816\) 0 0
\(817\) 8.66537 + 8.66537i 0.303163 + 0.303163i
\(818\) 0 0
\(819\) −0.197560 0.683036i −0.00690330 0.0238672i
\(820\) 0 0
\(821\) −9.97627 + 50.1541i −0.348174 + 1.75039i 0.268602 + 0.963251i \(0.413438\pi\)
−0.616776 + 0.787138i \(0.711562\pi\)
\(822\) 0 0
\(823\) 6.20664 + 14.9842i 0.216350 + 0.522315i 0.994375 0.105919i \(-0.0337783\pi\)
−0.778025 + 0.628233i \(0.783778\pi\)
\(824\) 0 0
\(825\) 0.809877 + 18.9986i 0.0281963 + 0.661445i
\(826\) 0 0
\(827\) 20.0660 13.4077i 0.697763 0.466230i −0.155416 0.987849i \(-0.549672\pi\)
0.853178 + 0.521619i \(0.174672\pi\)
\(828\) 0 0
\(829\) 0.773289 + 3.88759i 0.0268575 + 0.135022i 0.991888 0.127117i \(-0.0405723\pi\)
−0.965030 + 0.262138i \(0.915572\pi\)
\(830\) 0 0
\(831\) −18.0040 38.7138i −0.624551 1.34297i
\(832\) 0 0
\(833\) 16.3545i 0.566649i
\(834\) 0 0
\(835\) 0.974438 0.193828i 0.0337218 0.00670769i
\(836\) 0 0
\(837\) 16.7496 + 49.8486i 0.578951 + 1.72302i
\(838\) 0 0
\(839\) −38.8599 16.0963i −1.34159 0.555705i −0.407652 0.913137i \(-0.633652\pi\)
−0.933939 + 0.357432i \(0.883652\pi\)
\(840\) 0 0
\(841\) −12.2653 + 5.08045i −0.422941 + 0.175188i
\(842\) 0 0
\(843\) −38.8898 + 9.47381i −1.33944 + 0.326295i
\(844\) 0 0
\(845\) −0.508096 + 0.760419i −0.0174790 + 0.0261592i
\(846\) 0 0
\(847\) −1.14315 + 1.14315i −0.0392792 + 0.0392792i
\(848\) 0 0
\(849\) −1.52371 + 4.17298i −0.0522937 + 0.143216i
\(850\) 0 0
\(851\) 4.96342 7.42829i 0.170144 0.254638i
\(852\) 0 0
\(853\) 10.2912 51.7372i 0.352363 1.77145i −0.245046 0.969511i \(-0.578803\pi\)
0.597409 0.801937i \(-0.296197\pi\)
\(854\) 0 0
\(855\) −0.275072 0.0873537i −0.00940726 0.00298743i
\(856\) 0 0
\(857\) −35.5270 14.7158i −1.21358 0.502681i −0.318216 0.948018i \(-0.603084\pi\)
−0.895363 + 0.445338i \(0.853084\pi\)
\(858\) 0 0
\(859\) −31.9131 + 21.3237i −1.08886 + 0.727554i −0.964341 0.264663i \(-0.914739\pi\)
−0.124520 + 0.992217i \(0.539739\pi\)
\(860\) 0 0
\(861\) 1.38616 + 1.89458i 0.0472402 + 0.0645670i
\(862\) 0 0
\(863\) 56.5922i 1.92642i −0.268751 0.963210i \(-0.586611\pi\)
0.268751 0.963210i \(-0.413389\pi\)
\(864\) 0 0
\(865\) 1.81196i 0.0616084i
\(866\) 0 0
\(867\) 11.6927 + 15.9813i 0.397103 + 0.542753i
\(868\) 0 0
\(869\) 15.3462 10.2540i 0.520585 0.347844i
\(870\) 0 0
\(871\) −1.52968 0.633615i −0.0518313 0.0214692i
\(872\) 0 0
\(873\) 37.1832 + 11.8082i 1.25846 + 0.399645i
\(874\) 0 0
\(875\) −0.0383669 + 0.192884i −0.00129704 + 0.00652066i
\(876\) 0 0
\(877\) −18.4579 + 27.6242i −0.623279 + 0.932802i 0.376700 + 0.926335i \(0.377059\pi\)
−0.999979 + 0.00646722i \(0.997941\pi\)
\(878\) 0 0
\(879\) 11.2078 30.6947i 0.378030 1.03531i
\(880\) 0 0
\(881\) −28.1610 + 28.1610i −0.948767 + 0.948767i −0.998750 0.0499827i \(-0.984083\pi\)
0.0499827 + 0.998750i \(0.484083\pi\)
\(882\) 0 0
\(883\) 7.45192 11.1526i 0.250777 0.375314i −0.684628 0.728893i \(-0.740035\pi\)
0.935405 + 0.353578i \(0.115035\pi\)
\(884\) 0 0
\(885\) −0.586663 + 0.142915i −0.0197205 + 0.00480403i
\(886\) 0 0
\(887\) −23.8945 + 9.89741i −0.802298 + 0.332323i −0.745876 0.666085i \(-0.767969\pi\)
−0.0564213 + 0.998407i \(0.517969\pi\)
\(888\) 0 0
\(889\) 0.100072 + 0.0414513i 0.00335631 + 0.00139023i
\(890\) 0 0
\(891\) −13.6219 14.3476i −0.456352 0.480663i
\(892\) 0 0
\(893\) −14.2995 + 2.84434i −0.478514 + 0.0951823i
\(894\) 0 0
\(895\) 0.920951i 0.0307840i
\(896\) 0 0
\(897\) 1.28634 + 2.76599i 0.0429495 + 0.0923539i
\(898\) 0 0
\(899\) 12.8375 + 64.5387i 0.428156 + 2.15249i
\(900\) 0 0
\(901\) 13.0149 8.69629i 0.433590 0.289715i
\(902\) 0 0
\(903\) 0.184903 + 4.33756i 0.00615319 + 0.144345i
\(904\) 0 0
\(905\) −0.302979 0.731455i −0.0100714 0.0243144i
\(906\) 0 0
\(907\) 0.344578 1.73231i 0.0114415 0.0575205i −0.974643 0.223767i \(-0.928165\pi\)
0.986084 + 0.166246i \(0.0531646\pi\)
\(908\) 0 0
\(909\) 9.70864 + 33.5662i 0.322015 + 1.11332i
\(910\) 0 0
\(911\) 16.1986 + 16.1986i 0.536684 + 0.536684i 0.922554 0.385869i \(-0.126098\pi\)
−0.385869 + 0.922554i \(0.626098\pi\)
\(912\) 0 0
\(913\) 19.0025 19.0025i 0.628893 0.628893i
\(914\) 0 0
\(915\) 0.0871136 0.562132i 0.00287989 0.0185835i
\(916\) 0 0
\(917\) −1.38175 0.274847i −0.0456294 0.00907625i
\(918\) 0 0
\(919\) 25.4121 10.5260i 0.838266 0.347221i 0.0780965 0.996946i \(-0.475116\pi\)
0.760170 + 0.649725i \(0.225116\pi\)
\(920\) 0 0
\(921\) −0.975911 22.8935i −0.0321574 0.754366i
\(922\) 0 0
\(923\) −2.83696 4.24581i −0.0933797 0.139753i
\(924\) 0 0
\(925\) 22.4681 4.46919i 0.738747 0.146946i
\(926\) 0 0
\(927\) −25.9504 + 30.7973i −0.852322 + 1.01152i
\(928\) 0 0
\(929\) 45.2667 1.48515 0.742576 0.669762i \(-0.233604\pi\)
0.742576 + 0.669762i \(0.233604\pi\)
\(930\) 0 0
\(931\) 1.73286 + 8.71169i 0.0567923 + 0.285514i
\(932\) 0 0
\(933\) 4.23780 6.96747i 0.138739 0.228105i
\(934\) 0 0
\(935\) −0.149008 + 0.359738i −0.00487310 + 0.0117647i
\(936\) 0 0
\(937\) 16.4387 + 39.6866i 0.537030 + 1.29650i 0.926787 + 0.375587i \(0.122559\pi\)
−0.389758 + 0.920917i \(0.627441\pi\)
\(938\) 0 0
\(939\) 16.0949 3.92081i 0.525236 0.127951i
\(940\) 0 0
\(941\) 13.4371 + 8.97839i 0.438037 + 0.292687i 0.754968 0.655762i \(-0.227652\pi\)
−0.316931 + 0.948449i \(0.602652\pi\)
\(942\) 0 0
\(943\) −7.12152 7.12152i −0.231908 0.231908i
\(944\) 0 0
\(945\) −0.0508492 0.0887057i −0.00165412 0.00288560i
\(946\) 0 0
\(947\) −11.2306 7.50405i −0.364946 0.243849i 0.359554 0.933124i \(-0.382929\pi\)
−0.724499 + 0.689276i \(0.757929\pi\)
\(948\) 0 0
\(949\) 9.62140 + 1.91381i 0.312324 + 0.0621250i
\(950\) 0 0
\(951\) −2.20591 + 2.40235i −0.0715314 + 0.0779015i
\(952\) 0 0
\(953\) −16.3000 + 39.3517i −0.528009 + 1.27473i 0.404817 + 0.914398i \(0.367335\pi\)
−0.932826 + 0.360328i \(0.882665\pi\)
\(954\) 0 0
\(955\) −1.15082 1.72232i −0.0372396 0.0557329i
\(956\) 0 0
\(957\) −14.6179 19.9794i −0.472529 0.645844i
\(958\) 0 0
\(959\) −3.97022 −0.128205
\(960\) 0 0
\(961\) 71.4236 2.30399
\(962\) 0 0
\(963\) −37.4000 20.6187i −1.20520 0.664429i
\(964\) 0 0
\(965\) 0.210125 + 0.314474i 0.00676416 + 0.0101233i
\(966\) 0 0
\(967\) −1.80085 + 4.34765i −0.0579116 + 0.139811i −0.950187 0.311681i \(-0.899108\pi\)
0.892275 + 0.451492i \(0.149108\pi\)
\(968\) 0 0
\(969\) 3.85760 + 3.54216i 0.123924 + 0.113791i
\(970\) 0 0
\(971\) 49.1172 + 9.77002i 1.57625 + 0.313535i 0.904245 0.427015i \(-0.140435\pi\)
0.672002 + 0.740550i \(0.265435\pi\)
\(972\) 0 0
\(973\) 1.92038 + 1.28316i 0.0615646 + 0.0411361i
\(974\) 0 0
\(975\) −2.68286 + 7.34751i −0.0859201 + 0.235309i
\(976\) 0 0
\(977\) −14.3409 14.3409i −0.458806 0.458806i 0.439457 0.898263i \(-0.355171\pi\)
−0.898263 + 0.439457i \(0.855171\pi\)
\(978\) 0 0
\(979\) 26.8482 + 17.9394i 0.858073 + 0.573346i
\(980\) 0 0
\(981\) −18.4407 23.0740i −0.588768 0.736695i
\(982\) 0 0
\(983\) 20.8007 + 50.2173i 0.663439 + 1.60168i 0.792378 + 0.610030i \(0.208843\pi\)
−0.128939 + 0.991652i \(0.541157\pi\)
\(984\) 0 0
\(985\) −0.392683 + 0.948021i −0.0125119 + 0.0302065i
\(986\) 0 0
\(987\) −4.41299 2.68410i −0.140467 0.0854358i
\(988\) 0 0
\(989\) −3.63374 18.2680i −0.115546 0.580890i
\(990\) 0 0
\(991\) 21.0842 0.669761 0.334880 0.942261i \(-0.391304\pi\)
0.334880 + 0.942261i \(0.391304\pi\)
\(992\) 0 0
\(993\) 20.5363 + 44.1590i 0.651700 + 1.40134i
\(994\) 0 0
\(995\) 0.878223 0.174689i 0.0278415 0.00553803i
\(996\) 0 0
\(997\) 34.7772 + 52.0478i 1.10141 + 1.64837i 0.660525 + 0.750804i \(0.270334\pi\)
0.440881 + 0.897566i \(0.354666\pi\)
\(998\) 0 0
\(999\) −14.5675 + 18.8637i −0.460896 + 0.596822i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.2.s.a.335.5 240
3.2 odd 2 inner 768.2.s.a.335.2 240
4.3 odd 2 192.2.s.a.107.24 yes 240
12.11 even 2 192.2.s.a.107.7 240
64.3 odd 16 inner 768.2.s.a.431.2 240
64.61 even 16 192.2.s.a.131.7 yes 240
192.125 odd 16 192.2.s.a.131.24 yes 240
192.131 even 16 inner 768.2.s.a.431.5 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.2.s.a.107.7 240 12.11 even 2
192.2.s.a.107.24 yes 240 4.3 odd 2
192.2.s.a.131.7 yes 240 64.61 even 16
192.2.s.a.131.24 yes 240 192.125 odd 16
768.2.s.a.335.2 240 3.2 odd 2 inner
768.2.s.a.335.5 240 1.1 even 1 trivial
768.2.s.a.431.2 240 64.3 odd 16 inner
768.2.s.a.431.5 240 192.131 even 16 inner