Properties

Label 768.2.n.b.481.4
Level $768$
Weight $2$
Character 768.481
Analytic conductor $6.133$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,2,Mod(97,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 481.4
Character \(\chi\) \(=\) 768.481
Dual form 768.2.n.b.289.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.382683 - 0.923880i) q^{3} +(3.09318 + 1.28124i) q^{5} +(1.73503 + 1.73503i) q^{7} +(-0.707107 + 0.707107i) q^{9} +O(q^{10})\) \(q+(-0.382683 - 0.923880i) q^{3} +(3.09318 + 1.28124i) q^{5} +(1.73503 + 1.73503i) q^{7} +(-0.707107 + 0.707107i) q^{9} +(2.39923 - 5.79225i) q^{11} +(-0.0173304 + 0.00717850i) q^{13} -3.34804i q^{15} +5.57978i q^{17} +(-1.03052 + 0.426856i) q^{19} +(0.938989 - 2.26692i) q^{21} +(-2.01868 + 2.01868i) q^{23} +(4.39068 + 4.39068i) q^{25} +(0.923880 + 0.382683i) q^{27} +(0.706079 + 1.70463i) q^{29} -1.38048 q^{31} -6.26948 q^{33} +(3.14377 + 7.58973i) q^{35} +(2.87315 + 1.19010i) q^{37} +(0.0132641 + 0.0132641i) q^{39} +(6.97897 - 6.97897i) q^{41} +(1.67010 - 4.03197i) q^{43} +(-3.09318 + 1.28124i) q^{45} +1.15993i q^{47} -0.979375i q^{49} +(5.15504 - 2.13529i) q^{51} +(-2.56680 + 6.19681i) q^{53} +(14.8425 - 14.8425i) q^{55} +(0.788727 + 0.788727i) q^{57} +(-0.735935 - 0.304834i) q^{59} +(-4.82262 - 11.6428i) q^{61} -2.45370 q^{63} -0.0628036 q^{65} +(-2.05899 - 4.97085i) q^{67} +(2.63753 + 1.09250i) q^{69} +(1.78298 + 1.78298i) q^{71} +(1.67500 - 1.67500i) q^{73} +(2.37622 - 5.73670i) q^{75} +(14.2124 - 5.88697i) q^{77} -2.67236i q^{79} -1.00000i q^{81} +(-6.91877 + 2.86585i) q^{83} +(-7.14903 + 17.2593i) q^{85} +(1.30466 - 1.30466i) q^{87} +(6.73869 + 6.73869i) q^{89} +(-0.0425236 - 0.0176139i) q^{91} +(0.528286 + 1.27540i) q^{93} -3.73450 q^{95} -1.75001 q^{97} +(2.39923 + 5.79225i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 16 q^{23} + 48 q^{31} - 48 q^{35} - 16 q^{43} + 16 q^{51} + 32 q^{53} - 32 q^{55} + 64 q^{59} + 32 q^{61} - 16 q^{63} + 16 q^{67} + 32 q^{69} - 64 q^{71} + 32 q^{75} + 32 q^{77} - 48 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.382683 0.923880i −0.220942 0.533402i
\(4\) 0 0
\(5\) 3.09318 + 1.28124i 1.38331 + 0.572987i 0.945365 0.326013i \(-0.105705\pi\)
0.437949 + 0.899000i \(0.355705\pi\)
\(6\) 0 0
\(7\) 1.73503 + 1.73503i 0.655778 + 0.655778i 0.954378 0.298600i \(-0.0965198\pi\)
−0.298600 + 0.954378i \(0.596520\pi\)
\(8\) 0 0
\(9\) −0.707107 + 0.707107i −0.235702 + 0.235702i
\(10\) 0 0
\(11\) 2.39923 5.79225i 0.723394 1.74643i 0.0599515 0.998201i \(-0.480905\pi\)
0.663443 0.748227i \(-0.269095\pi\)
\(12\) 0 0
\(13\) −0.0173304 + 0.00717850i −0.00480660 + 0.00199096i −0.385085 0.922881i \(-0.625828\pi\)
0.380279 + 0.924872i \(0.375828\pi\)
\(14\) 0 0
\(15\) 3.34804i 0.864460i
\(16\) 0 0
\(17\) 5.57978i 1.35329i 0.736307 + 0.676647i \(0.236568\pi\)
−0.736307 + 0.676647i \(0.763432\pi\)
\(18\) 0 0
\(19\) −1.03052 + 0.426856i −0.236418 + 0.0979274i −0.497747 0.867322i \(-0.665839\pi\)
0.261329 + 0.965250i \(0.415839\pi\)
\(20\) 0 0
\(21\) 0.938989 2.26692i 0.204904 0.494682i
\(22\) 0 0
\(23\) −2.01868 + 2.01868i −0.420923 + 0.420923i −0.885522 0.464598i \(-0.846199\pi\)
0.464598 + 0.885522i \(0.346199\pi\)
\(24\) 0 0
\(25\) 4.39068 + 4.39068i 0.878136 + 0.878136i
\(26\) 0 0
\(27\) 0.923880 + 0.382683i 0.177801 + 0.0736475i
\(28\) 0 0
\(29\) 0.706079 + 1.70463i 0.131116 + 0.316541i 0.975780 0.218756i \(-0.0701998\pi\)
−0.844664 + 0.535297i \(0.820200\pi\)
\(30\) 0 0
\(31\) −1.38048 −0.247941 −0.123971 0.992286i \(-0.539563\pi\)
−0.123971 + 0.992286i \(0.539563\pi\)
\(32\) 0 0
\(33\) −6.26948 −1.09138
\(34\) 0 0
\(35\) 3.14377 + 7.58973i 0.531394 + 1.28290i
\(36\) 0 0
\(37\) 2.87315 + 1.19010i 0.472342 + 0.195651i 0.606140 0.795358i \(-0.292717\pi\)
−0.133797 + 0.991009i \(0.542717\pi\)
\(38\) 0 0
\(39\) 0.0132641 + 0.0132641i 0.00212396 + 0.00212396i
\(40\) 0 0
\(41\) 6.97897 6.97897i 1.08993 1.08993i 0.0943974 0.995535i \(-0.469908\pi\)
0.995535 0.0943974i \(-0.0300924\pi\)
\(42\) 0 0
\(43\) 1.67010 4.03197i 0.254687 0.614869i −0.743884 0.668309i \(-0.767018\pi\)
0.998571 + 0.0534396i \(0.0170184\pi\)
\(44\) 0 0
\(45\) −3.09318 + 1.28124i −0.461105 + 0.190996i
\(46\) 0 0
\(47\) 1.15993i 0.169193i 0.996415 + 0.0845966i \(0.0269601\pi\)
−0.996415 + 0.0845966i \(0.973040\pi\)
\(48\) 0 0
\(49\) 0.979375i 0.139911i
\(50\) 0 0
\(51\) 5.15504 2.13529i 0.721850 0.299000i
\(52\) 0 0
\(53\) −2.56680 + 6.19681i −0.352577 + 0.851197i 0.643723 + 0.765258i \(0.277389\pi\)
−0.996300 + 0.0859383i \(0.972611\pi\)
\(54\) 0 0
\(55\) 14.8425 14.8425i 2.00136 2.00136i
\(56\) 0 0
\(57\) 0.788727 + 0.788727i 0.104469 + 0.104469i
\(58\) 0 0
\(59\) −0.735935 0.304834i −0.0958106 0.0396860i 0.334263 0.942480i \(-0.391513\pi\)
−0.430074 + 0.902794i \(0.641513\pi\)
\(60\) 0 0
\(61\) −4.82262 11.6428i −0.617473 1.49071i −0.854629 0.519240i \(-0.826215\pi\)
0.237156 0.971472i \(-0.423785\pi\)
\(62\) 0 0
\(63\) −2.45370 −0.309137
\(64\) 0 0
\(65\) −0.0628036 −0.00778983
\(66\) 0 0
\(67\) −2.05899 4.97085i −0.251546 0.607286i 0.746783 0.665068i \(-0.231597\pi\)
−0.998329 + 0.0577816i \(0.981597\pi\)
\(68\) 0 0
\(69\) 2.63753 + 1.09250i 0.317521 + 0.131522i
\(70\) 0 0
\(71\) 1.78298 + 1.78298i 0.211600 + 0.211600i 0.804947 0.593347i \(-0.202194\pi\)
−0.593347 + 0.804947i \(0.702194\pi\)
\(72\) 0 0
\(73\) 1.67500 1.67500i 0.196044 0.196044i −0.602258 0.798302i \(-0.705732\pi\)
0.798302 + 0.602258i \(0.205732\pi\)
\(74\) 0 0
\(75\) 2.37622 5.73670i 0.274382 0.662417i
\(76\) 0 0
\(77\) 14.2124 5.88697i 1.61965 0.670883i
\(78\) 0 0
\(79\) 2.67236i 0.300664i −0.988636 0.150332i \(-0.951966\pi\)
0.988636 0.150332i \(-0.0480343\pi\)
\(80\) 0 0
\(81\) 1.00000i 0.111111i
\(82\) 0 0
\(83\) −6.91877 + 2.86585i −0.759433 + 0.314568i −0.728584 0.684956i \(-0.759821\pi\)
−0.0308494 + 0.999524i \(0.509821\pi\)
\(84\) 0 0
\(85\) −7.14903 + 17.2593i −0.775421 + 1.87203i
\(86\) 0 0
\(87\) 1.30466 1.30466i 0.139875 0.139875i
\(88\) 0 0
\(89\) 6.73869 + 6.73869i 0.714300 + 0.714300i 0.967432 0.253132i \(-0.0814607\pi\)
−0.253132 + 0.967432i \(0.581461\pi\)
\(90\) 0 0
\(91\) −0.0425236 0.0176139i −0.00445769 0.00184643i
\(92\) 0 0
\(93\) 0.528286 + 1.27540i 0.0547807 + 0.132252i
\(94\) 0 0
\(95\) −3.73450 −0.383151
\(96\) 0 0
\(97\) −1.75001 −0.177686 −0.0888431 0.996046i \(-0.528317\pi\)
−0.0888431 + 0.996046i \(0.528317\pi\)
\(98\) 0 0
\(99\) 2.39923 + 5.79225i 0.241131 + 0.582143i
\(100\) 0 0
\(101\) 7.71200 + 3.19442i 0.767373 + 0.317856i 0.731808 0.681511i \(-0.238677\pi\)
0.0355651 + 0.999367i \(0.488677\pi\)
\(102\) 0 0
\(103\) 3.90293 + 3.90293i 0.384567 + 0.384567i 0.872744 0.488177i \(-0.162338\pi\)
−0.488177 + 0.872744i \(0.662338\pi\)
\(104\) 0 0
\(105\) 5.80893 5.80893i 0.566894 0.566894i
\(106\) 0 0
\(107\) −5.55747 + 13.4169i −0.537261 + 1.29706i 0.389366 + 0.921083i \(0.372694\pi\)
−0.926628 + 0.375981i \(0.877306\pi\)
\(108\) 0 0
\(109\) −14.8488 + 6.15056i −1.42225 + 0.589117i −0.955426 0.295231i \(-0.904603\pi\)
−0.466828 + 0.884348i \(0.654603\pi\)
\(110\) 0 0
\(111\) 3.10987i 0.295176i
\(112\) 0 0
\(113\) 2.72924i 0.256745i −0.991726 0.128373i \(-0.959025\pi\)
0.991726 0.128373i \(-0.0409753\pi\)
\(114\) 0 0
\(115\) −8.83055 + 3.65773i −0.823453 + 0.341085i
\(116\) 0 0
\(117\) 0.00717850 0.0173304i 0.000663652 0.00160220i
\(118\) 0 0
\(119\) −9.68106 + 9.68106i −0.887461 + 0.887461i
\(120\) 0 0
\(121\) −20.0157 20.0157i −1.81961 1.81961i
\(122\) 0 0
\(123\) −9.11846 3.77699i −0.822184 0.340560i
\(124\) 0 0
\(125\) 1.54948 + 3.74078i 0.138590 + 0.334585i
\(126\) 0 0
\(127\) −15.3336 −1.36064 −0.680319 0.732916i \(-0.738159\pi\)
−0.680319 + 0.732916i \(0.738159\pi\)
\(128\) 0 0
\(129\) −4.36417 −0.384244
\(130\) 0 0
\(131\) 5.70595 + 13.7754i 0.498531 + 1.20356i 0.950275 + 0.311412i \(0.100802\pi\)
−0.451744 + 0.892148i \(0.649198\pi\)
\(132\) 0 0
\(133\) −2.52859 1.04737i −0.219256 0.0908189i
\(134\) 0 0
\(135\) 2.36742 + 2.36742i 0.203755 + 0.203755i
\(136\) 0 0
\(137\) −3.06155 + 3.06155i −0.261566 + 0.261566i −0.825690 0.564124i \(-0.809214\pi\)
0.564124 + 0.825690i \(0.309214\pi\)
\(138\) 0 0
\(139\) 0.621401 1.50020i 0.0527066 0.127245i −0.895333 0.445397i \(-0.853062\pi\)
0.948040 + 0.318152i \(0.103062\pi\)
\(140\) 0 0
\(141\) 1.07164 0.443886i 0.0902480 0.0373819i
\(142\) 0 0
\(143\) 0.117605i 0.00983462i
\(144\) 0 0
\(145\) 6.17738i 0.513003i
\(146\) 0 0
\(147\) −0.904825 + 0.374791i −0.0746287 + 0.0309122i
\(148\) 0 0
\(149\) 8.53959 20.6164i 0.699591 1.68896i −0.0249118 0.999690i \(-0.507930\pi\)
0.724503 0.689272i \(-0.242070\pi\)
\(150\) 0 0
\(151\) −9.42348 + 9.42348i −0.766872 + 0.766872i −0.977555 0.210683i \(-0.932431\pi\)
0.210683 + 0.977555i \(0.432431\pi\)
\(152\) 0 0
\(153\) −3.94550 3.94550i −0.318975 0.318975i
\(154\) 0 0
\(155\) −4.27007 1.76872i −0.342981 0.142067i
\(156\) 0 0
\(157\) −7.53965 18.2023i −0.601729 1.45270i −0.871800 0.489863i \(-0.837047\pi\)
0.270070 0.962841i \(-0.412953\pi\)
\(158\) 0 0
\(159\) 6.70737 0.531929
\(160\) 0 0
\(161\) −7.00491 −0.552064
\(162\) 0 0
\(163\) −6.01448 14.5202i −0.471090 1.13731i −0.963682 0.267052i \(-0.913950\pi\)
0.492592 0.870260i \(-0.336050\pi\)
\(164\) 0 0
\(165\) −19.3927 8.03271i −1.50972 0.625345i
\(166\) 0 0
\(167\) 11.8392 + 11.8392i 0.916142 + 0.916142i 0.996746 0.0806038i \(-0.0256848\pi\)
−0.0806038 + 0.996746i \(0.525685\pi\)
\(168\) 0 0
\(169\) −9.19214 + 9.19214i −0.707088 + 0.707088i
\(170\) 0 0
\(171\) 0.426856 1.03052i 0.0326425 0.0788059i
\(172\) 0 0
\(173\) −21.0615 + 8.72397i −1.60128 + 0.663271i −0.991596 0.129374i \(-0.958703\pi\)
−0.609683 + 0.792645i \(0.708703\pi\)
\(174\) 0 0
\(175\) 15.2359i 1.15172i
\(176\) 0 0
\(177\) 0.796570i 0.0598739i
\(178\) 0 0
\(179\) −4.75826 + 1.97094i −0.355649 + 0.147315i −0.553353 0.832947i \(-0.686652\pi\)
0.197703 + 0.980262i \(0.436652\pi\)
\(180\) 0 0
\(181\) 3.71100 8.95914i 0.275836 0.665928i −0.723876 0.689931i \(-0.757641\pi\)
0.999712 + 0.0240027i \(0.00764102\pi\)
\(182\) 0 0
\(183\) −8.91104 + 8.91104i −0.658723 + 0.658723i
\(184\) 0 0
\(185\) 7.36237 + 7.36237i 0.541293 + 0.541293i
\(186\) 0 0
\(187\) 32.3195 + 13.3872i 2.36343 + 0.978966i
\(188\) 0 0
\(189\) 0.938989 + 2.26692i 0.0683014 + 0.164894i
\(190\) 0 0
\(191\) −11.4844 −0.830980 −0.415490 0.909598i \(-0.636390\pi\)
−0.415490 + 0.909598i \(0.636390\pi\)
\(192\) 0 0
\(193\) 19.2681 1.38695 0.693474 0.720482i \(-0.256079\pi\)
0.693474 + 0.720482i \(0.256079\pi\)
\(194\) 0 0
\(195\) 0.0240339 + 0.0580229i 0.00172110 + 0.00415511i
\(196\) 0 0
\(197\) −6.48659 2.68683i −0.462151 0.191429i 0.139445 0.990230i \(-0.455468\pi\)
−0.601596 + 0.798801i \(0.705468\pi\)
\(198\) 0 0
\(199\) −14.6525 14.6525i −1.03868 1.03868i −0.999221 0.0394638i \(-0.987435\pi\)
−0.0394638 0.999221i \(-0.512565\pi\)
\(200\) 0 0
\(201\) −3.80452 + 3.80452i −0.268350 + 0.268350i
\(202\) 0 0
\(203\) −1.73250 + 4.18263i −0.121598 + 0.293563i
\(204\) 0 0
\(205\) 30.5290 12.6455i 2.13224 0.883201i
\(206\) 0 0
\(207\) 2.85484i 0.198425i
\(208\) 0 0
\(209\) 6.99316i 0.483727i
\(210\) 0 0
\(211\) −2.80379 + 1.16137i −0.193021 + 0.0799519i −0.477100 0.878849i \(-0.658312\pi\)
0.284079 + 0.958801i \(0.408312\pi\)
\(212\) 0 0
\(213\) 0.964940 2.32957i 0.0661166 0.159620i
\(214\) 0 0
\(215\) 10.3318 10.3318i 0.704625 0.704625i
\(216\) 0 0
\(217\) −2.39517 2.39517i −0.162594 0.162594i
\(218\) 0 0
\(219\) −2.18850 0.906505i −0.147885 0.0612559i
\(220\) 0 0
\(221\) −0.0400544 0.0966999i −0.00269435 0.00650474i
\(222\) 0 0
\(223\) 6.12103 0.409894 0.204947 0.978773i \(-0.434298\pi\)
0.204947 + 0.978773i \(0.434298\pi\)
\(224\) 0 0
\(225\) −6.20936 −0.413957
\(226\) 0 0
\(227\) −6.52469 15.7520i −0.433059 1.04550i −0.978296 0.207214i \(-0.933560\pi\)
0.545237 0.838282i \(-0.316440\pi\)
\(228\) 0 0
\(229\) 8.60895 + 3.56595i 0.568896 + 0.235644i 0.648542 0.761179i \(-0.275379\pi\)
−0.0796463 + 0.996823i \(0.525379\pi\)
\(230\) 0 0
\(231\) −10.8777 10.8777i −0.715701 0.715701i
\(232\) 0 0
\(233\) 7.99720 7.99720i 0.523914 0.523914i −0.394837 0.918751i \(-0.629199\pi\)
0.918751 + 0.394837i \(0.129199\pi\)
\(234\) 0 0
\(235\) −1.48615 + 3.58788i −0.0969456 + 0.234047i
\(236\) 0 0
\(237\) −2.46894 + 1.02267i −0.160375 + 0.0664295i
\(238\) 0 0
\(239\) 6.26707i 0.405383i 0.979243 + 0.202692i \(0.0649689\pi\)
−0.979243 + 0.202692i \(0.935031\pi\)
\(240\) 0 0
\(241\) 15.7602i 1.01520i −0.861592 0.507601i \(-0.830532\pi\)
0.861592 0.507601i \(-0.169468\pi\)
\(242\) 0 0
\(243\) −0.923880 + 0.382683i −0.0592669 + 0.0245492i
\(244\) 0 0
\(245\) 1.25481 3.02939i 0.0801671 0.193541i
\(246\) 0 0
\(247\) 0.0147952 0.0147952i 0.000941395 0.000941395i
\(248\) 0 0
\(249\) 5.29540 + 5.29540i 0.335582 + 0.335582i
\(250\) 0 0
\(251\) −19.0196 7.87816i −1.20050 0.497265i −0.309342 0.950951i \(-0.600109\pi\)
−0.891162 + 0.453686i \(0.850109\pi\)
\(252\) 0 0
\(253\) 6.84941 + 16.5359i 0.430619 + 1.03961i
\(254\) 0 0
\(255\) 18.6813 1.16987
\(256\) 0 0
\(257\) −5.22771 −0.326096 −0.163048 0.986618i \(-0.552132\pi\)
−0.163048 + 0.986618i \(0.552132\pi\)
\(258\) 0 0
\(259\) 2.92013 + 7.04983i 0.181448 + 0.438055i
\(260\) 0 0
\(261\) −1.70463 0.706079i −0.105514 0.0437052i
\(262\) 0 0
\(263\) −5.59065 5.59065i −0.344734 0.344734i 0.513410 0.858144i \(-0.328382\pi\)
−0.858144 + 0.513410i \(0.828382\pi\)
\(264\) 0 0
\(265\) −15.8792 + 15.8792i −0.975450 + 0.975450i
\(266\) 0 0
\(267\) 3.64695 8.80452i 0.223190 0.538828i
\(268\) 0 0
\(269\) −9.92617 + 4.11155i −0.605209 + 0.250686i −0.664179 0.747574i \(-0.731219\pi\)
0.0589693 + 0.998260i \(0.481219\pi\)
\(270\) 0 0
\(271\) 15.4368i 0.937717i 0.883273 + 0.468858i \(0.155335\pi\)
−0.883273 + 0.468858i \(0.844665\pi\)
\(272\) 0 0
\(273\) 0.0460272i 0.00278569i
\(274\) 0 0
\(275\) 35.9662 14.8977i 2.16884 0.898363i
\(276\) 0 0
\(277\) −1.79136 + 4.32473i −0.107633 + 0.259848i −0.968515 0.248956i \(-0.919912\pi\)
0.860882 + 0.508804i \(0.169912\pi\)
\(278\) 0 0
\(279\) 0.976146 0.976146i 0.0584403 0.0584403i
\(280\) 0 0
\(281\) −3.70347 3.70347i −0.220931 0.220931i 0.587960 0.808890i \(-0.299931\pi\)
−0.808890 + 0.587960i \(0.799931\pi\)
\(282\) 0 0
\(283\) −16.1605 6.69389i −0.960641 0.397910i −0.153421 0.988161i \(-0.549029\pi\)
−0.807220 + 0.590250i \(0.799029\pi\)
\(284\) 0 0
\(285\) 1.42913 + 3.45022i 0.0846543 + 0.204374i
\(286\) 0 0
\(287\) 24.2174 1.42951
\(288\) 0 0
\(289\) −14.1339 −0.831407
\(290\) 0 0
\(291\) 0.669698 + 1.61679i 0.0392584 + 0.0947782i
\(292\) 0 0
\(293\) −13.5656 5.61904i −0.792509 0.328268i −0.0505573 0.998721i \(-0.516100\pi\)
−0.741952 + 0.670453i \(0.766100\pi\)
\(294\) 0 0
\(295\) −1.88582 1.88582i −0.109796 0.109796i
\(296\) 0 0
\(297\) 4.43319 4.43319i 0.257240 0.257240i
\(298\) 0 0
\(299\) 0.0204935 0.0494756i 0.00118517 0.00286125i
\(300\) 0 0
\(301\) 9.89322 4.09791i 0.570236 0.236199i
\(302\) 0 0
\(303\) 8.34741i 0.479546i
\(304\) 0 0
\(305\) 42.1923i 2.41593i
\(306\) 0 0
\(307\) 15.6321 6.47504i 0.892173 0.369550i 0.110968 0.993824i \(-0.464605\pi\)
0.781206 + 0.624274i \(0.214605\pi\)
\(308\) 0 0
\(309\) 2.11225 5.09942i 0.120162 0.290096i
\(310\) 0 0
\(311\) −22.8167 + 22.8167i −1.29381 + 1.29381i −0.361407 + 0.932408i \(0.617703\pi\)
−0.932408 + 0.361407i \(0.882297\pi\)
\(312\) 0 0
\(313\) 7.52178 + 7.52178i 0.425156 + 0.425156i 0.886974 0.461819i \(-0.152803\pi\)
−0.461819 + 0.886974i \(0.652803\pi\)
\(314\) 0 0
\(315\) −7.58973 3.14377i −0.427633 0.177131i
\(316\) 0 0
\(317\) 9.98241 + 24.0997i 0.560668 + 1.35357i 0.909233 + 0.416288i \(0.136669\pi\)
−0.348565 + 0.937285i \(0.613331\pi\)
\(318\) 0 0
\(319\) 11.5677 0.647665
\(320\) 0 0
\(321\) 14.5224 0.810560
\(322\) 0 0
\(323\) −2.38176 5.75008i −0.132525 0.319943i
\(324\) 0 0
\(325\) −0.107611 0.0445739i −0.00596918 0.00247251i
\(326\) 0 0
\(327\) 11.3648 + 11.3648i 0.628472 + 0.628472i
\(328\) 0 0
\(329\) −2.01251 + 2.01251i −0.110953 + 0.110953i
\(330\) 0 0
\(331\) −12.9034 + 31.1516i −0.709235 + 1.71225i −0.00733222 + 0.999973i \(0.502334\pi\)
−0.701903 + 0.712272i \(0.747666\pi\)
\(332\) 0 0
\(333\) −2.87315 + 1.19010i −0.157447 + 0.0652169i
\(334\) 0 0
\(335\) 18.0138i 0.984200i
\(336\) 0 0
\(337\) 0.925243i 0.0504012i 0.999682 + 0.0252006i \(0.00802245\pi\)
−0.999682 + 0.0252006i \(0.991978\pi\)
\(338\) 0 0
\(339\) −2.52149 + 1.04443i −0.136948 + 0.0567259i
\(340\) 0 0
\(341\) −3.31208 + 7.99607i −0.179359 + 0.433012i
\(342\) 0 0
\(343\) 13.8444 13.8444i 0.747528 0.747528i
\(344\) 0 0
\(345\) 6.75861 + 6.75861i 0.363871 + 0.363871i
\(346\) 0 0
\(347\) 8.68292 + 3.59658i 0.466123 + 0.193075i 0.603369 0.797462i \(-0.293825\pi\)
−0.137245 + 0.990537i \(0.543825\pi\)
\(348\) 0 0
\(349\) −0.586633 1.41626i −0.0314017 0.0758105i 0.907401 0.420266i \(-0.138063\pi\)
−0.938802 + 0.344456i \(0.888063\pi\)
\(350\) 0 0
\(351\) −0.0187583 −0.00100125
\(352\) 0 0
\(353\) 10.8550 0.577751 0.288876 0.957367i \(-0.406719\pi\)
0.288876 + 0.957367i \(0.406719\pi\)
\(354\) 0 0
\(355\) 3.23066 + 7.79949i 0.171465 + 0.413954i
\(356\) 0 0
\(357\) 12.6489 + 5.23935i 0.669451 + 0.277296i
\(358\) 0 0
\(359\) −21.6767 21.6767i −1.14406 1.14406i −0.987701 0.156354i \(-0.950026\pi\)
−0.156354 0.987701i \(-0.549974\pi\)
\(360\) 0 0
\(361\) −12.5553 + 12.5553i −0.660803 + 0.660803i
\(362\) 0 0
\(363\) −10.8324 + 26.1517i −0.568553 + 1.37261i
\(364\) 0 0
\(365\) 7.32717 3.03501i 0.383521 0.158860i
\(366\) 0 0
\(367\) 0.154514i 0.00806555i −0.999992 0.00403277i \(-0.998716\pi\)
0.999992 0.00403277i \(-0.00128367\pi\)
\(368\) 0 0
\(369\) 9.86975i 0.513799i
\(370\) 0 0
\(371\) −15.2051 + 6.29815i −0.789408 + 0.326984i
\(372\) 0 0
\(373\) −5.40842 + 13.0571i −0.280037 + 0.676070i −0.999836 0.0181131i \(-0.994234\pi\)
0.719799 + 0.694183i \(0.244234\pi\)
\(374\) 0 0
\(375\) 2.86307 2.86307i 0.147848 0.147848i
\(376\) 0 0
\(377\) −0.0244733 0.0244733i −0.00126044 0.00126044i
\(378\) 0 0
\(379\) 17.4888 + 7.24410i 0.898340 + 0.372105i 0.783582 0.621289i \(-0.213391\pi\)
0.114758 + 0.993393i \(0.463391\pi\)
\(380\) 0 0
\(381\) 5.86792 + 14.1664i 0.300623 + 0.725767i
\(382\) 0 0
\(383\) 30.0898 1.53752 0.768759 0.639538i \(-0.220874\pi\)
0.768759 + 0.639538i \(0.220874\pi\)
\(384\) 0 0
\(385\) 51.5042 2.62490
\(386\) 0 0
\(387\) 1.67010 + 4.03197i 0.0848957 + 0.204956i
\(388\) 0 0
\(389\) −11.7666 4.87387i −0.596589 0.247115i 0.0638936 0.997957i \(-0.479648\pi\)
−0.660482 + 0.750842i \(0.729648\pi\)
\(390\) 0 0
\(391\) −11.2638 11.2638i −0.569633 0.569633i
\(392\) 0 0
\(393\) 10.5432 10.5432i 0.531835 0.531835i
\(394\) 0 0
\(395\) 3.42394 8.26611i 0.172277 0.415913i
\(396\) 0 0
\(397\) −15.2331 + 6.30976i −0.764527 + 0.316678i −0.730653 0.682749i \(-0.760784\pi\)
−0.0338739 + 0.999426i \(0.510784\pi\)
\(398\) 0 0
\(399\) 2.73692i 0.137017i
\(400\) 0 0
\(401\) 35.7766i 1.78660i 0.449463 + 0.893299i \(0.351615\pi\)
−0.449463 + 0.893299i \(0.648385\pi\)
\(402\) 0 0
\(403\) 0.0239243 0.00990976i 0.00119175 0.000493641i
\(404\) 0 0
\(405\) 1.28124 3.09318i 0.0636653 0.153702i
\(406\) 0 0
\(407\) 13.7867 13.7867i 0.683380 0.683380i
\(408\) 0 0
\(409\) −4.31657 4.31657i −0.213440 0.213440i 0.592287 0.805727i \(-0.298225\pi\)
−0.805727 + 0.592287i \(0.798225\pi\)
\(410\) 0 0
\(411\) 4.00011 + 1.65690i 0.197311 + 0.0817289i
\(412\) 0 0
\(413\) −0.747970 1.80576i −0.0368052 0.0888557i
\(414\) 0 0
\(415\) −25.0729 −1.23078
\(416\) 0 0
\(417\) −1.62380 −0.0795178
\(418\) 0 0
\(419\) −7.37576 17.8067i −0.360330 0.869913i −0.995252 0.0973364i \(-0.968968\pi\)
0.634922 0.772576i \(-0.281032\pi\)
\(420\) 0 0
\(421\) 5.03356 + 2.08497i 0.245321 + 0.101615i 0.501956 0.864893i \(-0.332614\pi\)
−0.256635 + 0.966508i \(0.582614\pi\)
\(422\) 0 0
\(423\) −0.820194 0.820194i −0.0398792 0.0398792i
\(424\) 0 0
\(425\) −24.4990 + 24.4990i −1.18838 + 1.18838i
\(426\) 0 0
\(427\) 11.8332 28.5680i 0.572651 1.38250i
\(428\) 0 0
\(429\) 0.108653 0.0450055i 0.00524581 0.00217288i
\(430\) 0 0
\(431\) 18.4128i 0.886914i −0.896296 0.443457i \(-0.853752\pi\)
0.896296 0.443457i \(-0.146248\pi\)
\(432\) 0 0
\(433\) 0.227663i 0.0109408i −0.999985 0.00547038i \(-0.998259\pi\)
0.999985 0.00547038i \(-0.00174129\pi\)
\(434\) 0 0
\(435\) 5.70715 2.36398i 0.273637 0.113344i
\(436\) 0 0
\(437\) 1.21860 2.94197i 0.0582938 0.140734i
\(438\) 0 0
\(439\) 19.0619 19.0619i 0.909774 0.909774i −0.0864799 0.996254i \(-0.527562\pi\)
0.996254 + 0.0864799i \(0.0275618\pi\)
\(440\) 0 0
\(441\) 0.692523 + 0.692523i 0.0329773 + 0.0329773i
\(442\) 0 0
\(443\) 28.0493 + 11.6184i 1.33266 + 0.552008i 0.931414 0.363961i \(-0.118576\pi\)
0.401250 + 0.915968i \(0.368576\pi\)
\(444\) 0 0
\(445\) 12.2101 + 29.4779i 0.578816 + 1.39739i
\(446\) 0 0
\(447\) −22.3150 −1.05546
\(448\) 0 0
\(449\) 33.0005 1.55739 0.778696 0.627401i \(-0.215881\pi\)
0.778696 + 0.627401i \(0.215881\pi\)
\(450\) 0 0
\(451\) −23.6798 57.1681i −1.11504 2.69194i
\(452\) 0 0
\(453\) 12.3124 + 5.09995i 0.578486 + 0.239617i
\(454\) 0 0
\(455\) −0.108966 0.108966i −0.00510839 0.00510839i
\(456\) 0 0
\(457\) 19.3344 19.3344i 0.904423 0.904423i −0.0913920 0.995815i \(-0.529132\pi\)
0.995815 + 0.0913920i \(0.0291316\pi\)
\(458\) 0 0
\(459\) −2.13529 + 5.15504i −0.0996667 + 0.240617i
\(460\) 0 0
\(461\) 19.0532 7.89211i 0.887398 0.367572i 0.108037 0.994147i \(-0.465544\pi\)
0.779361 + 0.626575i \(0.215544\pi\)
\(462\) 0 0
\(463\) 18.6664i 0.867499i −0.901034 0.433749i \(-0.857190\pi\)
0.901034 0.433749i \(-0.142810\pi\)
\(464\) 0 0
\(465\) 4.62190i 0.214335i
\(466\) 0 0
\(467\) −1.38748 + 0.574712i −0.0642048 + 0.0265945i −0.414555 0.910024i \(-0.636063\pi\)
0.350350 + 0.936619i \(0.386063\pi\)
\(468\) 0 0
\(469\) 5.05214 12.1970i 0.233286 0.563203i
\(470\) 0 0
\(471\) −13.9315 + 13.9315i −0.641927 + 0.641927i
\(472\) 0 0
\(473\) −19.3472 19.3472i −0.889586 0.889586i
\(474\) 0 0
\(475\) −6.39888 2.65050i −0.293601 0.121613i
\(476\) 0 0
\(477\) −2.56680 6.19681i −0.117526 0.283732i
\(478\) 0 0
\(479\) 20.1621 0.921229 0.460615 0.887600i \(-0.347629\pi\)
0.460615 + 0.887600i \(0.347629\pi\)
\(480\) 0 0
\(481\) −0.0583360 −0.00265989
\(482\) 0 0
\(483\) 2.68066 + 6.47169i 0.121974 + 0.294472i
\(484\) 0 0
\(485\) −5.41309 2.24218i −0.245796 0.101812i
\(486\) 0 0
\(487\) 14.3589 + 14.3589i 0.650665 + 0.650665i 0.953153 0.302488i \(-0.0978173\pi\)
−0.302488 + 0.953153i \(0.597817\pi\)
\(488\) 0 0
\(489\) −11.1133 + 11.1133i −0.502561 + 0.502561i
\(490\) 0 0
\(491\) 7.84066 18.9290i 0.353844 0.854255i −0.642294 0.766458i \(-0.722017\pi\)
0.996138 0.0877968i \(-0.0279826\pi\)
\(492\) 0 0
\(493\) −9.51144 + 3.93977i −0.428374 + 0.177438i
\(494\) 0 0
\(495\) 20.9905i 0.943452i
\(496\) 0 0
\(497\) 6.18702i 0.277526i
\(498\) 0 0
\(499\) 11.1249 4.60809i 0.498020 0.206286i −0.119512 0.992833i \(-0.538133\pi\)
0.617531 + 0.786546i \(0.288133\pi\)
\(500\) 0 0
\(501\) 6.40731 15.4686i 0.286258 0.691087i
\(502\) 0 0
\(503\) 10.7388 10.7388i 0.478820 0.478820i −0.425934 0.904754i \(-0.640054\pi\)
0.904754 + 0.425934i \(0.140054\pi\)
\(504\) 0 0
\(505\) 19.7618 + 19.7618i 0.879390 + 0.879390i
\(506\) 0 0
\(507\) 12.0101 + 4.97475i 0.533388 + 0.220936i
\(508\) 0 0
\(509\) 7.73386 + 18.6712i 0.342797 + 0.827586i 0.997431 + 0.0716392i \(0.0228230\pi\)
−0.654633 + 0.755947i \(0.727177\pi\)
\(510\) 0 0
\(511\) 5.81234 0.257123
\(512\) 0 0
\(513\) −1.11543 −0.0492473
\(514\) 0 0
\(515\) 7.07189 + 17.0731i 0.311625 + 0.752329i
\(516\) 0 0
\(517\) 6.71860 + 2.78294i 0.295484 + 0.122393i
\(518\) 0 0
\(519\) 16.1198 + 16.1198i 0.707581 + 0.707581i
\(520\) 0 0
\(521\) 13.6485 13.6485i 0.597953 0.597953i −0.341815 0.939767i \(-0.611042\pi\)
0.939767 + 0.341815i \(0.111042\pi\)
\(522\) 0 0
\(523\) −6.91544 + 16.6954i −0.302391 + 0.730037i 0.697518 + 0.716567i \(0.254288\pi\)
−0.999909 + 0.0134697i \(0.995712\pi\)
\(524\) 0 0
\(525\) 14.0761 5.83052i 0.614332 0.254465i
\(526\) 0 0
\(527\) 7.70276i 0.335538i
\(528\) 0 0
\(529\) 14.8499i 0.645647i
\(530\) 0 0
\(531\) 0.735935 0.304834i 0.0319369 0.0132287i
\(532\) 0 0
\(533\) −0.0708500 + 0.171047i −0.00306885 + 0.00740887i
\(534\) 0 0
\(535\) −34.3806 + 34.3806i −1.48640 + 1.48640i
\(536\) 0 0
\(537\) 3.64182 + 3.64182i 0.157156 + 0.157156i
\(538\) 0 0
\(539\) −5.67279 2.34974i −0.244344 0.101211i
\(540\) 0 0
\(541\) −9.51555 22.9726i −0.409106 0.987668i −0.985374 0.170407i \(-0.945492\pi\)
0.576268 0.817261i \(-0.304508\pi\)
\(542\) 0 0
\(543\) −9.69731 −0.416151
\(544\) 0 0
\(545\) −53.8103 −2.30498
\(546\) 0 0
\(547\) 11.3958 + 27.5119i 0.487250 + 1.17633i 0.956098 + 0.293046i \(0.0946690\pi\)
−0.468848 + 0.883279i \(0.655331\pi\)
\(548\) 0 0
\(549\) 11.6428 + 4.82262i 0.496904 + 0.205824i
\(550\) 0 0
\(551\) −1.45526 1.45526i −0.0619961 0.0619961i
\(552\) 0 0
\(553\) 4.63662 4.63662i 0.197169 0.197169i
\(554\) 0 0
\(555\) 3.98449 9.61941i 0.169132 0.408321i
\(556\) 0 0
\(557\) −1.70939 + 0.708053i −0.0724292 + 0.0300012i −0.418604 0.908169i \(-0.637480\pi\)
0.346175 + 0.938170i \(0.387480\pi\)
\(558\) 0 0
\(559\) 0.0818645i 0.00346250i
\(560\) 0 0
\(561\) 34.9823i 1.47695i
\(562\) 0 0
\(563\) 19.1605 7.93652i 0.807517 0.334485i 0.0595542 0.998225i \(-0.481032\pi\)
0.747963 + 0.663741i \(0.231032\pi\)
\(564\) 0 0
\(565\) 3.49681 8.44204i 0.147112 0.355159i
\(566\) 0 0
\(567\) 1.73503 1.73503i 0.0728642 0.0728642i
\(568\) 0 0
\(569\) −15.1289 15.1289i −0.634235 0.634235i 0.314892 0.949127i \(-0.398032\pi\)
−0.949127 + 0.314892i \(0.898032\pi\)
\(570\) 0 0
\(571\) −12.1094 5.01587i −0.506761 0.209907i 0.114629 0.993408i \(-0.463432\pi\)
−0.621391 + 0.783501i \(0.713432\pi\)
\(572\) 0 0
\(573\) 4.39488 + 10.6102i 0.183599 + 0.443246i
\(574\) 0 0
\(575\) −17.7267 −0.739256
\(576\) 0 0
\(577\) −35.7790 −1.48950 −0.744749 0.667344i \(-0.767431\pi\)
−0.744749 + 0.667344i \(0.767431\pi\)
\(578\) 0 0
\(579\) −7.37358 17.8014i −0.306435 0.739801i
\(580\) 0 0
\(581\) −16.9766 7.03192i −0.704306 0.291733i
\(582\) 0 0
\(583\) 29.7351 + 29.7351i 1.23150 + 1.23150i
\(584\) 0 0
\(585\) 0.0444088 0.0444088i 0.00183608 0.00183608i
\(586\) 0 0
\(587\) 10.9958 26.5462i 0.453845 1.09568i −0.517003 0.855984i \(-0.672952\pi\)
0.970848 0.239696i \(-0.0770477\pi\)
\(588\) 0 0
\(589\) 1.42261 0.589265i 0.0586177 0.0242803i
\(590\) 0 0
\(591\) 7.02104i 0.288807i
\(592\) 0 0
\(593\) 13.4778i 0.553469i 0.960946 + 0.276734i \(0.0892522\pi\)
−0.960946 + 0.276734i \(0.910748\pi\)
\(594\) 0 0
\(595\) −42.3490 + 17.5415i −1.73614 + 0.719133i
\(596\) 0 0
\(597\) −7.92985 + 19.1444i −0.324547 + 0.783526i
\(598\) 0 0
\(599\) 11.7247 11.7247i 0.479059 0.479059i −0.425771 0.904831i \(-0.639997\pi\)
0.904831 + 0.425771i \(0.139997\pi\)
\(600\) 0 0
\(601\) −14.2752 14.2752i −0.582299 0.582299i 0.353235 0.935535i \(-0.385082\pi\)
−0.935535 + 0.353235i \(0.885082\pi\)
\(602\) 0 0
\(603\) 4.97085 + 2.05899i 0.202429 + 0.0838487i
\(604\) 0 0
\(605\) −36.2673 87.5570i −1.47447 3.55970i
\(606\) 0 0
\(607\) 30.9234 1.25514 0.627571 0.778559i \(-0.284049\pi\)
0.627571 + 0.778559i \(0.284049\pi\)
\(608\) 0 0
\(609\) 4.52725 0.183453
\(610\) 0 0
\(611\) −0.00832655 0.0201021i −0.000336856 0.000813243i
\(612\) 0 0
\(613\) −34.3535 14.2297i −1.38753 0.574732i −0.441043 0.897486i \(-0.645391\pi\)
−0.946483 + 0.322754i \(0.895391\pi\)
\(614\) 0 0
\(615\) −23.3659 23.3659i −0.942202 0.942202i
\(616\) 0 0
\(617\) −10.2583 + 10.2583i −0.412985 + 0.412985i −0.882777 0.469792i \(-0.844329\pi\)
0.469792 + 0.882777i \(0.344329\pi\)
\(618\) 0 0
\(619\) −8.23548 + 19.8822i −0.331012 + 0.799133i 0.667501 + 0.744609i \(0.267364\pi\)
−0.998512 + 0.0545238i \(0.982636\pi\)
\(620\) 0 0
\(621\) −2.63753 + 1.09250i −0.105840 + 0.0438405i
\(622\) 0 0
\(623\) 23.3836i 0.936844i
\(624\) 0 0
\(625\) 17.4906i 0.699626i
\(626\) 0 0
\(627\) 6.46083 2.67617i 0.258021 0.106876i
\(628\) 0 0
\(629\) −6.64047 + 16.0315i −0.264773 + 0.639219i
\(630\) 0 0
\(631\) −10.2772 + 10.2772i −0.409128 + 0.409128i −0.881434 0.472307i \(-0.843421\pi\)
0.472307 + 0.881434i \(0.343421\pi\)
\(632\) 0 0
\(633\) 2.14593 + 2.14593i 0.0852930 + 0.0852930i
\(634\) 0 0
\(635\) −47.4297 19.6460i −1.88219 0.779629i
\(636\) 0 0
\(637\) 0.00703045 + 0.0169730i 0.000278556 + 0.000672495i
\(638\) 0 0
\(639\) −2.52151 −0.0997494
\(640\) 0 0
\(641\) −14.5702 −0.575489 −0.287745 0.957707i \(-0.592905\pi\)
−0.287745 + 0.957707i \(0.592905\pi\)
\(642\) 0 0
\(643\) 7.72635 + 18.6531i 0.304698 + 0.735605i 0.999860 + 0.0167519i \(0.00533255\pi\)
−0.695162 + 0.718853i \(0.744667\pi\)
\(644\) 0 0
\(645\) −13.4992 5.59154i −0.531530 0.220167i
\(646\) 0 0
\(647\) −5.45944 5.45944i −0.214633 0.214633i 0.591599 0.806232i \(-0.298497\pi\)
−0.806232 + 0.591599i \(0.798497\pi\)
\(648\) 0 0
\(649\) −3.53135 + 3.53135i −0.138618 + 0.138618i
\(650\) 0 0
\(651\) −1.29625 + 3.12943i −0.0508042 + 0.122652i
\(652\) 0 0
\(653\) 8.05307 3.33569i 0.315141 0.130536i −0.219506 0.975611i \(-0.570445\pi\)
0.534647 + 0.845075i \(0.320445\pi\)
\(654\) 0 0
\(655\) 49.9204i 1.95055i
\(656\) 0 0
\(657\) 2.36881i 0.0924161i
\(658\) 0 0
\(659\) 11.5755 4.79474i 0.450919 0.186777i −0.145654 0.989336i \(-0.546529\pi\)
0.596573 + 0.802559i \(0.296529\pi\)
\(660\) 0 0
\(661\) 4.73190 11.4238i 0.184049 0.444335i −0.804745 0.593621i \(-0.797698\pi\)
0.988794 + 0.149287i \(0.0476977\pi\)
\(662\) 0 0
\(663\) −0.0740109 + 0.0740109i −0.00287435 + 0.00287435i
\(664\) 0 0
\(665\) −6.47944 6.47944i −0.251262 0.251262i
\(666\) 0 0
\(667\) −4.86643 2.01574i −0.188429 0.0780499i
\(668\) 0 0
\(669\) −2.34242 5.65509i −0.0905631 0.218639i
\(670\) 0 0
\(671\) −79.0087 −3.05010
\(672\) 0 0
\(673\) 11.7838 0.454233 0.227117 0.973868i \(-0.427070\pi\)
0.227117 + 0.973868i \(0.427070\pi\)
\(674\) 0 0
\(675\) 2.37622 + 5.73670i 0.0914607 + 0.220806i
\(676\) 0 0
\(677\) 31.1449 + 12.9006i 1.19700 + 0.495812i 0.890027 0.455907i \(-0.150685\pi\)
0.306969 + 0.951719i \(0.400685\pi\)
\(678\) 0 0
\(679\) −3.03630 3.03630i −0.116523 0.116523i
\(680\) 0 0
\(681\) −12.0560 + 12.0560i −0.461989 + 0.461989i
\(682\) 0 0
\(683\) −2.44866 + 5.91159i −0.0936954 + 0.226201i −0.963778 0.266705i \(-0.914065\pi\)
0.870083 + 0.492905i \(0.164065\pi\)
\(684\) 0 0
\(685\) −13.3925 + 5.54737i −0.511702 + 0.211954i
\(686\) 0 0
\(687\) 9.31826i 0.355514i
\(688\) 0 0
\(689\) 0.125819i 0.00479333i
\(690\) 0 0
\(691\) 6.81893 2.82449i 0.259404 0.107449i −0.249191 0.968454i \(-0.580165\pi\)
0.508596 + 0.861005i \(0.330165\pi\)
\(692\) 0 0
\(693\) −5.88697 + 14.2124i −0.223628 + 0.539885i
\(694\) 0 0
\(695\) 3.84422 3.84422i 0.145819 0.145819i
\(696\) 0 0
\(697\) 38.9411 + 38.9411i 1.47500 + 1.47500i
\(698\) 0 0
\(699\) −10.4488 4.32805i −0.395212 0.163702i
\(700\) 0 0
\(701\) −2.75369 6.64799i −0.104005 0.251091i 0.863307 0.504679i \(-0.168389\pi\)
−0.967312 + 0.253588i \(0.918389\pi\)
\(702\) 0 0
\(703\) −3.46884 −0.130830
\(704\) 0 0
\(705\) 3.88349 0.146261
\(706\) 0 0
\(707\) 7.83813 + 18.9229i 0.294783 + 0.711669i
\(708\) 0 0
\(709\) 46.0951 + 19.0932i 1.73114 + 0.717061i 0.999369 + 0.0355098i \(0.0113055\pi\)
0.731770 + 0.681552i \(0.238695\pi\)
\(710\) 0 0
\(711\) 1.88965 + 1.88965i 0.0708673 + 0.0708673i
\(712\) 0 0
\(713\) 2.78674 2.78674i 0.104364 0.104364i
\(714\) 0 0
\(715\) −0.150680 + 0.363774i −0.00563512 + 0.0136044i
\(716\) 0 0
\(717\) 5.79002 2.39830i 0.216232 0.0895663i
\(718\) 0 0
\(719\) 22.0801i 0.823447i 0.911309 + 0.411724i \(0.135073\pi\)
−0.911309 + 0.411724i \(0.864927\pi\)
\(720\) 0 0
\(721\) 13.5434i 0.504381i
\(722\) 0 0
\(723\) −14.5605 + 6.03116i −0.541511 + 0.224301i
\(724\) 0 0
\(725\) −4.38430 + 10.5846i −0.162829 + 0.393104i
\(726\) 0 0
\(727\) −12.2216 + 12.2216i −0.453274 + 0.453274i −0.896440 0.443166i \(-0.853855\pi\)
0.443166 + 0.896440i \(0.353855\pi\)
\(728\) 0 0
\(729\) 0.707107 + 0.707107i 0.0261891 + 0.0261891i
\(730\) 0 0
\(731\) 22.4975 + 9.31876i 0.832100 + 0.344667i
\(732\) 0 0
\(733\) −10.2112 24.6520i −0.377159 0.910541i −0.992496 0.122278i \(-0.960980\pi\)
0.615337 0.788264i \(-0.289020\pi\)
\(734\) 0 0
\(735\) −3.27899 −0.120947
\(736\) 0 0
\(737\) −33.7324 −1.24255
\(738\) 0 0
\(739\) 12.9929 + 31.3677i 0.477953 + 1.15388i 0.960567 + 0.278048i \(0.0896874\pi\)
−0.482614 + 0.875833i \(0.660313\pi\)
\(740\) 0 0
\(741\) −0.0193308 0.00800710i −0.000710136 0.000294148i
\(742\) 0 0
\(743\) 14.2568 + 14.2568i 0.523030 + 0.523030i 0.918485 0.395455i \(-0.129413\pi\)
−0.395455 + 0.918485i \(0.629413\pi\)
\(744\) 0 0
\(745\) 52.8291 52.8291i 1.93551 1.93551i
\(746\) 0 0
\(747\) 2.86585 6.91877i 0.104856 0.253144i
\(748\) 0 0
\(749\) −32.9211 + 13.6364i −1.20291 + 0.498262i
\(750\) 0 0
\(751\) 37.4275i 1.36575i −0.730536 0.682874i \(-0.760730\pi\)
0.730536 0.682874i \(-0.239270\pi\)
\(752\) 0 0
\(753\) 20.5866i 0.750218i
\(754\) 0 0
\(755\) −41.2223 + 17.0748i −1.50023 + 0.621417i
\(756\) 0 0
\(757\) −14.2534 + 34.4107i −0.518048 + 1.25068i 0.421052 + 0.907036i \(0.361661\pi\)
−0.939100 + 0.343643i \(0.888339\pi\)
\(758\) 0 0
\(759\) 12.6561 12.6561i 0.459386 0.459386i
\(760\) 0 0
\(761\) 4.71958 + 4.71958i 0.171085 + 0.171085i 0.787456 0.616371i \(-0.211398\pi\)
−0.616371 + 0.787456i \(0.711398\pi\)
\(762\) 0 0
\(763\) −36.4344 15.0916i −1.31901 0.546353i
\(764\) 0 0
\(765\) −7.14903 17.2593i −0.258474 0.624011i
\(766\) 0 0
\(767\) 0.0149423 0.000539536
\(768\) 0 0
\(769\) −0.848264 −0.0305892 −0.0152946 0.999883i \(-0.504869\pi\)
−0.0152946 + 0.999883i \(0.504869\pi\)
\(770\) 0 0
\(771\) 2.00056 + 4.82977i 0.0720483 + 0.173940i
\(772\) 0 0
\(773\) 7.34212 + 3.04121i 0.264078 + 0.109385i 0.510794 0.859703i \(-0.329352\pi\)
−0.246716 + 0.969088i \(0.579352\pi\)
\(774\) 0 0
\(775\) −6.06124 6.06124i −0.217726 0.217726i
\(776\) 0 0
\(777\) 5.39571 5.39571i 0.193570 0.193570i
\(778\) 0 0
\(779\) −4.21296 + 10.1710i −0.150945 + 0.364413i
\(780\) 0 0
\(781\) 14.6052 6.04967i 0.522615 0.216474i
\(782\) 0 0
\(783\) 1.84507i 0.0659376i
\(784\) 0 0
\(785\) 65.9632i 2.35433i
\(786\) 0 0
\(787\) −19.1514 + 7.93278i −0.682674 + 0.282773i −0.696944 0.717125i \(-0.745458\pi\)
0.0142701 + 0.999898i \(0.495458\pi\)
\(788\) 0 0
\(789\) −3.02564 + 7.30453i −0.107716 + 0.260048i
\(790\) 0 0
\(791\) 4.73530 4.73530i 0.168368 0.168368i
\(792\) 0 0
\(793\) 0.167156 + 0.167156i 0.00593589 + 0.00593589i
\(794\) 0 0
\(795\) 20.7471 + 8.59375i 0.735825 + 0.304789i
\(796\) 0 0
\(797\) 8.34929 + 20.1570i 0.295747 + 0.713997i 0.999992 + 0.00403944i \(0.00128580\pi\)
−0.704245 + 0.709957i \(0.748714\pi\)
\(798\) 0 0
\(799\) −6.47215 −0.228968
\(800\) 0 0
\(801\) −9.52995 −0.336724
\(802\) 0 0
\(803\) −5.68331 13.7207i −0.200560 0.484194i
\(804\) 0 0
\(805\) −21.6675 8.97496i −0.763678 0.316326i
\(806\) 0 0
\(807\) 7.59716 + 7.59716i 0.267433 + 0.267433i
\(808\) 0 0
\(809\) 2.49506 2.49506i 0.0877217 0.0877217i −0.661884 0.749606i \(-0.730243\pi\)
0.749606 + 0.661884i \(0.230243\pi\)
\(810\) 0 0
\(811\) 11.3640 27.4351i 0.399044 0.963378i −0.588849 0.808243i \(-0.700419\pi\)
0.987893 0.155135i \(-0.0495812\pi\)
\(812\) 0 0
\(813\) 14.2617 5.90740i 0.500180 0.207181i
\(814\) 0 0
\(815\) 52.6197i 1.84319i
\(816\) 0 0
\(817\) 4.86792i 0.170307i
\(818\) 0 0
\(819\) 0.0425236 0.0176139i 0.00148590 0.000615478i
\(820\) 0 0
\(821\) 11.7466 28.3588i 0.409959 0.989728i −0.575189 0.818020i \(-0.695072\pi\)
0.985148 0.171708i \(-0.0549285\pi\)
\(822\) 0 0
\(823\) 13.6697 13.6697i 0.476496 0.476496i −0.427513 0.904009i \(-0.640610\pi\)
0.904009 + 0.427513i \(0.140610\pi\)
\(824\) 0 0
\(825\) −27.5273 27.5273i −0.958378 0.958378i
\(826\) 0 0
\(827\) 35.2612 + 14.6057i 1.22615 + 0.507889i 0.899361 0.437207i \(-0.144032\pi\)
0.326792 + 0.945096i \(0.394032\pi\)
\(828\) 0 0
\(829\) 16.0030 + 38.6346i 0.555806 + 1.34184i 0.913059 + 0.407828i \(0.133714\pi\)
−0.357253 + 0.934008i \(0.616286\pi\)
\(830\) 0 0
\(831\) 4.68106 0.162384
\(832\) 0 0
\(833\) 5.46470 0.189341
\(834\) 0 0
\(835\) 21.4519 + 51.7895i 0.742375 + 1.79225i
\(836\) 0 0
\(837\) −1.27540 0.528286i −0.0440841 0.0182602i
\(838\) 0 0
\(839\) −14.1294 14.1294i −0.487800 0.487800i 0.419811 0.907611i \(-0.362096\pi\)
−0.907611 + 0.419811i \(0.862096\pi\)
\(840\) 0 0
\(841\) 18.0989 18.0989i 0.624100 0.624100i
\(842\) 0 0
\(843\) −2.00430 + 4.83882i −0.0690319 + 0.166658i
\(844\) 0 0
\(845\) −40.2103 + 16.6557i −1.38328 + 0.572972i
\(846\) 0 0
\(847\) 69.4554i 2.38651i
\(848\) 0 0
\(849\) 17.4920i 0.600323i
\(850\) 0 0
\(851\) −8.20237 + 3.39753i −0.281174 + 0.116466i
\(852\) 0 0
\(853\) 19.9078 48.0618i 0.681631 1.64560i −0.0793634 0.996846i \(-0.525289\pi\)
0.760995 0.648758i \(-0.224711\pi\)
\(854\) 0 0
\(855\) 2.64069 2.64069i 0.0903096 0.0903096i
\(856\) 0 0
\(857\) 34.0981 + 34.0981i 1.16477 + 1.16477i 0.983419 + 0.181349i \(0.0580463\pi\)
0.181349 + 0.983419i \(0.441954\pi\)
\(858\) 0 0
\(859\) 3.10766 + 1.28723i 0.106032 + 0.0439199i 0.435069 0.900397i \(-0.356724\pi\)
−0.329037 + 0.944317i \(0.606724\pi\)
\(860\) 0 0
\(861\) −9.26759 22.3739i −0.315839 0.762502i
\(862\) 0 0
\(863\) 10.0110 0.340777 0.170389 0.985377i \(-0.445498\pi\)
0.170389 + 0.985377i \(0.445498\pi\)
\(864\) 0 0
\(865\) −76.3247 −2.59512
\(866\) 0 0
\(867\) 5.40882 + 13.0580i 0.183693 + 0.443474i
\(868\) 0 0
\(869\) −15.4790 6.41161i −0.525089 0.217499i
\(870\) 0 0
\(871\) 0.0713665 + 0.0713665i 0.00241816 + 0.00241816i
\(872\) 0 0
\(873\) 1.23744 1.23744i 0.0418810 0.0418810i
\(874\) 0 0
\(875\) −3.80195 + 9.17873i −0.128529 + 0.310298i
\(876\) 0 0
\(877\) −22.1720 + 9.18393i −0.748694 + 0.310119i −0.724209 0.689581i \(-0.757795\pi\)
−0.0244855 + 0.999700i \(0.507795\pi\)
\(878\) 0 0
\(879\) 14.6833i 0.495254i
\(880\) 0 0
\(881\) 16.0746i 0.541568i −0.962640 0.270784i \(-0.912717\pi\)
0.962640 0.270784i \(-0.0872829\pi\)
\(882\) 0 0
\(883\) −12.8293 + 5.31406i −0.431740 + 0.178832i −0.587960 0.808890i \(-0.700069\pi\)
0.156221 + 0.987722i \(0.450069\pi\)
\(884\) 0 0
\(885\) −1.02060 + 2.46394i −0.0343070 + 0.0828244i
\(886\) 0 0
\(887\) −29.2489 + 29.2489i −0.982081 + 0.982081i −0.999842 0.0177612i \(-0.994346\pi\)
0.0177612 + 0.999842i \(0.494346\pi\)
\(888\) 0 0
\(889\) −26.6042 26.6042i −0.892276 0.892276i
\(890\) 0 0
\(891\) −5.79225 2.39923i −0.194048 0.0803771i
\(892\) 0 0
\(893\) −0.495123 1.19533i −0.0165687 0.0400003i
\(894\) 0 0
\(895\) −17.2434 −0.576384
\(896\) 0 0
\(897\) −0.0535520 −0.00178805
\(898\) 0 0
\(899\) −0.974727 2.35320i −0.0325090 0.0784836i
\(900\) 0 0
\(901\) −34.5768 14.3222i −1.15192 0.477141i
\(902\) 0 0
\(903\) −7.57195 7.57195i −0.251979 0.251979i
\(904\) 0 0
\(905\) 22.9576 22.9576i 0.763137 0.763137i
\(906\) 0 0
\(907\) 21.8942 52.8573i 0.726986 1.75510i 0.0745987 0.997214i \(-0.476232\pi\)
0.652387 0.757886i \(-0.273768\pi\)
\(908\) 0 0
\(909\) −7.71200 + 3.19442i −0.255791 + 0.105952i
\(910\) 0 0
\(911\) 59.8222i 1.98200i 0.133873 + 0.990999i \(0.457259\pi\)
−0.133873 + 0.990999i \(0.542741\pi\)
\(912\) 0 0
\(913\) 46.9510i 1.55385i
\(914\) 0 0
\(915\) −38.9806 + 16.1463i −1.28866 + 0.533781i
\(916\) 0 0
\(917\) −14.0007 + 33.8006i −0.462342 + 1.11619i
\(918\) 0 0
\(919\) −17.5355 + 17.5355i −0.578444 + 0.578444i −0.934474 0.356030i \(-0.884130\pi\)
0.356030 + 0.934474i \(0.384130\pi\)
\(920\) 0 0
\(921\) −11.9643 11.9643i −0.394238 0.394238i
\(922\) 0 0
\(923\) −0.0436988 0.0181006i −0.00143836 0.000595790i
\(924\) 0 0
\(925\) 7.38974 + 17.8404i 0.242973 + 0.586589i
\(926\) 0 0
\(927\) −5.51957 −0.181287
\(928\) 0 0
\(929\) 47.3964 1.55502 0.777512 0.628868i \(-0.216481\pi\)
0.777512 + 0.628868i \(0.216481\pi\)
\(930\) 0 0
\(931\) 0.418052 + 1.00927i 0.0137011 + 0.0330774i
\(932\) 0 0
\(933\) 29.8114 + 12.3483i 0.975982 + 0.404265i
\(934\) 0 0
\(935\) 82.8179 + 82.8179i 2.70843 + 2.70843i
\(936\) 0 0
\(937\) −3.12631 + 3.12631i −0.102132 + 0.102132i −0.756326 0.654194i \(-0.773008\pi\)
0.654194 + 0.756326i \(0.273008\pi\)
\(938\) 0 0
\(939\) 4.07076 9.82767i 0.132844 0.320714i
\(940\) 0 0
\(941\) −6.78357 + 2.80985i −0.221138 + 0.0915984i −0.490502 0.871440i \(-0.663187\pi\)
0.269364 + 0.963038i \(0.413187\pi\)
\(942\) 0 0
\(943\) 28.1766i 0.917555i
\(944\) 0 0
\(945\) 8.21507i 0.267236i
\(946\) 0 0
\(947\) −48.2859 + 20.0007i −1.56908 + 0.649935i −0.986637 0.162936i \(-0.947904\pi\)
−0.582444 + 0.812871i \(0.697904\pi\)
\(948\) 0 0
\(949\) −0.0170045 + 0.0410525i −0.000551990 + 0.00133262i
\(950\) 0 0
\(951\) 18.4451 18.4451i 0.598123 0.598123i
\(952\) 0 0
\(953\) −12.2493 12.2493i −0.396794 0.396794i 0.480307 0.877101i \(-0.340525\pi\)
−0.877101 + 0.480307i \(0.840525\pi\)
\(954\) 0 0
\(955\) −35.5233 14.7142i −1.14951 0.476141i
\(956\) 0 0
\(957\) −4.42675 10.6871i −0.143097 0.345466i
\(958\) 0 0
\(959\) −10.6237 −0.343059
\(960\) 0 0
\(961\) −29.0943 −0.938525
\(962\) 0 0
\(963\) −5.55747 13.4169i −0.179087 0.432355i
\(964\) 0 0
\(965\) 59.5997 + 24.6870i 1.91858 + 0.794703i
\(966\) 0 0
\(967\) 11.6821 + 11.6821i 0.375671 + 0.375671i 0.869538 0.493867i \(-0.164417\pi\)
−0.493867 + 0.869538i \(0.664417\pi\)
\(968\) 0 0
\(969\) −4.40092 + 4.40092i −0.141378 + 0.141378i
\(970\) 0 0
\(971\) −12.0421 + 29.0723i −0.386451 + 0.932975i 0.604235 + 0.796806i \(0.293479\pi\)
−0.990686 + 0.136168i \(0.956521\pi\)
\(972\) 0 0
\(973\) 3.68102 1.52473i 0.118008 0.0488806i
\(974\) 0 0
\(975\) 0.116477i 0.00373026i
\(976\) 0 0
\(977\) 46.2289i 1.47899i 0.673159 + 0.739497i \(0.264937\pi\)
−0.673159 + 0.739497i \(0.735063\pi\)
\(978\) 0 0
\(979\) 55.1998 22.8645i 1.76419 0.730753i
\(980\) 0 0
\(981\) 6.15056 14.8488i 0.196372 0.474085i
\(982\) 0 0
\(983\) 36.8328 36.8328i 1.17478 1.17478i 0.193729 0.981055i \(-0.437942\pi\)
0.981055 0.193729i \(-0.0620583\pi\)
\(984\) 0 0
\(985\) −16.6217 16.6217i −0.529613 0.529613i
\(986\) 0 0
\(987\) 2.62947 + 1.08916i 0.0836969 + 0.0346684i
\(988\) 0 0
\(989\) 4.76786 + 11.5106i 0.151609 + 0.366016i
\(990\) 0 0
\(991\) 0.0778010 0.00247143 0.00123571 0.999999i \(-0.499607\pi\)
0.00123571 + 0.999999i \(0.499607\pi\)
\(992\) 0 0
\(993\) 33.7182 1.07002
\(994\) 0 0
\(995\) −26.5494 64.0960i −0.841674 2.03198i
\(996\) 0 0
\(997\) 14.8961 + 6.17018i 0.471765 + 0.195412i 0.605883 0.795554i \(-0.292820\pi\)
−0.134118 + 0.990965i \(0.542820\pi\)
\(998\) 0 0
\(999\) 2.19901 + 2.19901i 0.0695736 + 0.0695736i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.2.n.b.481.4 32
4.3 odd 2 768.2.n.a.481.8 32
8.3 odd 2 96.2.n.a.37.2 yes 32
8.5 even 2 384.2.n.a.241.5 32
24.5 odd 2 1152.2.v.c.1009.8 32
24.11 even 2 288.2.v.d.37.7 32
32.3 odd 8 96.2.n.a.13.2 32
32.13 even 8 inner 768.2.n.b.289.4 32
32.19 odd 8 768.2.n.a.289.8 32
32.29 even 8 384.2.n.a.145.5 32
96.29 odd 8 1152.2.v.c.145.8 32
96.35 even 8 288.2.v.d.109.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.2.n.a.13.2 32 32.3 odd 8
96.2.n.a.37.2 yes 32 8.3 odd 2
288.2.v.d.37.7 32 24.11 even 2
288.2.v.d.109.7 32 96.35 even 8
384.2.n.a.145.5 32 32.29 even 8
384.2.n.a.241.5 32 8.5 even 2
768.2.n.a.289.8 32 32.19 odd 8
768.2.n.a.481.8 32 4.3 odd 2
768.2.n.b.289.4 32 32.13 even 8 inner
768.2.n.b.481.4 32 1.1 even 1 trivial
1152.2.v.c.145.8 32 96.29 odd 8
1152.2.v.c.1009.8 32 24.5 odd 2