Defining parameters
| Level: | \( N \) | \(=\) | \( 768 = 2^{8} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 768.f (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(256\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(768, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 152 | 36 | 116 |
| Cusp forms | 104 | 28 | 76 |
| Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(768, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(768, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(768, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)