Defining parameters
Level: | \( N \) | \(=\) | \( 768 = 2^{8} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 768.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(15\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(768, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 16 | 136 |
Cusp forms | 104 | 16 | 88 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(768, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(768, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(768, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)