Properties

Label 768.2.d
Level $768$
Weight $2$
Character orbit 768.d
Rep. character $\chi_{768}(385,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $8$
Sturm bound $256$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(256\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(5\), \(7\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(768, [\chi])\).

Total New Old
Modular forms 152 16 136
Cusp forms 104 16 88
Eisenstein series 48 0 48

Trace form

\( 16 q - 16 q^{9} + O(q^{10}) \) \( 16 q - 16 q^{9} - 16 q^{25} - 16 q^{49} + 32 q^{57} - 32 q^{65} + 64 q^{73} + 16 q^{81} + 32 q^{89} - 32 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(768, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
768.2.d.a 768.d 8.b $2$ $6.133$ \(\Q(\sqrt{-1}) \) None 96.2.a.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 i q^{5}-4 q^{7}-q^{9}-4 i q^{11}+\cdots\)
768.2.d.b 768.d 8.b $2$ $6.133$ \(\Q(\sqrt{-1}) \) None 384.2.a.b \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-2 q^{7}-q^{9}-4 i q^{11}-6 i q^{13}+\cdots\)
768.2.d.c 768.d 8.b $2$ $6.133$ \(\Q(\sqrt{-1}) \) None 384.2.a.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+4 i q^{5}-2 q^{7}-q^{9}-4 i q^{11}+\cdots\)
768.2.d.d 768.d 8.b $2$ $6.133$ \(\Q(\sqrt{-1}) \) None 24.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 i q^{5}-q^{9}+4 i q^{11}+\cdots\)
768.2.d.e 768.d 8.b $2$ $6.133$ \(\Q(\sqrt{-1}) \) None 24.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+2 i q^{5}-q^{9}-4 i q^{11}+\cdots\)
768.2.d.f 768.d 8.b $2$ $6.133$ \(\Q(\sqrt{-1}) \) None 384.2.a.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+4 i q^{5}+2 q^{7}-q^{9}+4 i q^{11}+\cdots\)
768.2.d.g 768.d 8.b $2$ $6.133$ \(\Q(\sqrt{-1}) \) None 384.2.a.b \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+2 q^{7}-q^{9}+4 i q^{11}-6 i q^{13}+\cdots\)
768.2.d.h 768.d 8.b $2$ $6.133$ \(\Q(\sqrt{-1}) \) None 96.2.a.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{3}+2 i q^{5}+4 q^{7}-q^{9}+4 i q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(768, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(768, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)