Properties

Label 768.2.c.a.767.2
Level $768$
Weight $2$
Character 768.767
Analytic conductor $6.133$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,2,Mod(767,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.767");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 384)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 767.2
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 768.767
Dual form 768.2.c.a.767.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.41421i) q^{3} +2.82843i q^{5} -2.82843i q^{7} +(-1.00000 - 2.82843i) q^{9} +O(q^{10})\) \(q+(-1.00000 + 1.41421i) q^{3} +2.82843i q^{5} -2.82843i q^{7} +(-1.00000 - 2.82843i) q^{9} -2.00000 q^{11} -4.00000 q^{13} +(-4.00000 - 2.82843i) q^{15} +5.65685i q^{17} -2.82843i q^{19} +(4.00000 + 2.82843i) q^{21} -8.00000 q^{23} -3.00000 q^{25} +(5.00000 + 1.41421i) q^{27} -2.82843i q^{29} -8.48528i q^{31} +(2.00000 - 2.82843i) q^{33} +8.00000 q^{35} -4.00000 q^{37} +(4.00000 - 5.65685i) q^{39} -2.82843i q^{43} +(8.00000 - 2.82843i) q^{45} -1.00000 q^{49} +(-8.00000 - 5.65685i) q^{51} -8.48528i q^{53} -5.65685i q^{55} +(4.00000 + 2.82843i) q^{57} -6.00000 q^{59} -4.00000 q^{61} +(-8.00000 + 2.82843i) q^{63} -11.3137i q^{65} +14.1421i q^{67} +(8.00000 - 11.3137i) q^{69} -8.00000 q^{71} +10.0000 q^{73} +(3.00000 - 4.24264i) q^{75} +5.65685i q^{77} +2.82843i q^{79} +(-7.00000 + 5.65685i) q^{81} -6.00000 q^{83} -16.0000 q^{85} +(4.00000 + 2.82843i) q^{87} +5.65685i q^{89} +11.3137i q^{91} +(12.0000 + 8.48528i) q^{93} +8.00000 q^{95} -6.00000 q^{97} +(2.00000 + 5.65685i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 2 q^{9} - 4 q^{11} - 8 q^{13} - 8 q^{15} + 8 q^{21} - 16 q^{23} - 6 q^{25} + 10 q^{27} + 4 q^{33} + 16 q^{35} - 8 q^{37} + 8 q^{39} + 16 q^{45} - 2 q^{49} - 16 q^{51} + 8 q^{57} - 12 q^{59} - 8 q^{61} - 16 q^{63} + 16 q^{69} - 16 q^{71} + 20 q^{73} + 6 q^{75} - 14 q^{81} - 12 q^{83} - 32 q^{85} + 8 q^{87} + 24 q^{93} + 16 q^{95} - 12 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.41421i −0.577350 + 0.816497i
\(4\) 0 0
\(5\) 2.82843i 1.26491i 0.774597 + 0.632456i \(0.217953\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(6\) 0 0
\(7\) 2.82843i 1.06904i −0.845154 0.534522i \(-0.820491\pi\)
0.845154 0.534522i \(-0.179509\pi\)
\(8\) 0 0
\(9\) −1.00000 2.82843i −0.333333 0.942809i
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −4.00000 2.82843i −1.03280 0.730297i
\(16\) 0 0
\(17\) 5.65685i 1.37199i 0.727607 + 0.685994i \(0.240633\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 2.82843i 0.648886i −0.945905 0.324443i \(-0.894823\pi\)
0.945905 0.324443i \(-0.105177\pi\)
\(20\) 0 0
\(21\) 4.00000 + 2.82843i 0.872872 + 0.617213i
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) 5.00000 + 1.41421i 0.962250 + 0.272166i
\(28\) 0 0
\(29\) 2.82843i 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) 0 0
\(31\) 8.48528i 1.52400i −0.647576 0.762001i \(-0.724217\pi\)
0.647576 0.762001i \(-0.275783\pi\)
\(32\) 0 0
\(33\) 2.00000 2.82843i 0.348155 0.492366i
\(34\) 0 0
\(35\) 8.00000 1.35225
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 4.00000 5.65685i 0.640513 0.905822i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 2.82843i 0.431331i −0.976467 0.215666i \(-0.930808\pi\)
0.976467 0.215666i \(-0.0691921\pi\)
\(44\) 0 0
\(45\) 8.00000 2.82843i 1.19257 0.421637i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −8.00000 5.65685i −1.12022 0.792118i
\(52\) 0 0
\(53\) 8.48528i 1.16554i −0.812636 0.582772i \(-0.801968\pi\)
0.812636 0.582772i \(-0.198032\pi\)
\(54\) 0 0
\(55\) 5.65685i 0.762770i
\(56\) 0 0
\(57\) 4.00000 + 2.82843i 0.529813 + 0.374634i
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) −8.00000 + 2.82843i −1.00791 + 0.356348i
\(64\) 0 0
\(65\) 11.3137i 1.40329i
\(66\) 0 0
\(67\) 14.1421i 1.72774i 0.503718 + 0.863868i \(0.331965\pi\)
−0.503718 + 0.863868i \(0.668035\pi\)
\(68\) 0 0
\(69\) 8.00000 11.3137i 0.963087 1.36201i
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 3.00000 4.24264i 0.346410 0.489898i
\(76\) 0 0
\(77\) 5.65685i 0.644658i
\(78\) 0 0
\(79\) 2.82843i 0.318223i 0.987261 + 0.159111i \(0.0508629\pi\)
−0.987261 + 0.159111i \(0.949137\pi\)
\(80\) 0 0
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) −16.0000 −1.73544
\(86\) 0 0
\(87\) 4.00000 + 2.82843i 0.428845 + 0.303239i
\(88\) 0 0
\(89\) 5.65685i 0.599625i 0.953998 + 0.299813i \(0.0969242\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 11.3137i 1.18600i
\(92\) 0 0
\(93\) 12.0000 + 8.48528i 1.24434 + 0.879883i
\(94\) 0 0
\(95\) 8.00000 0.820783
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) 2.00000 + 5.65685i 0.201008 + 0.568535i
\(100\) 0 0
\(101\) 2.82843i 0.281439i 0.990050 + 0.140720i \(0.0449416\pi\)
−0.990050 + 0.140720i \(0.955058\pi\)
\(102\) 0 0
\(103\) 8.48528i 0.836080i 0.908429 + 0.418040i \(0.137283\pi\)
−0.908429 + 0.418040i \(0.862717\pi\)
\(104\) 0 0
\(105\) −8.00000 + 11.3137i −0.780720 + 1.10410i
\(106\) 0 0
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 4.00000 5.65685i 0.379663 0.536925i
\(112\) 0 0
\(113\) 11.3137i 1.06430i −0.846649 0.532152i \(-0.821383\pi\)
0.846649 0.532152i \(-0.178617\pi\)
\(114\) 0 0
\(115\) 22.6274i 2.11002i
\(116\) 0 0
\(117\) 4.00000 + 11.3137i 0.369800 + 1.04595i
\(118\) 0 0
\(119\) 16.0000 1.46672
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.65685i 0.505964i
\(126\) 0 0
\(127\) 14.1421i 1.25491i 0.778652 + 0.627456i \(0.215904\pi\)
−0.778652 + 0.627456i \(0.784096\pi\)
\(128\) 0 0
\(129\) 4.00000 + 2.82843i 0.352180 + 0.249029i
\(130\) 0 0
\(131\) 14.0000 1.22319 0.611593 0.791173i \(-0.290529\pi\)
0.611593 + 0.791173i \(0.290529\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 0 0
\(135\) −4.00000 + 14.1421i −0.344265 + 1.21716i
\(136\) 0 0
\(137\) 11.3137i 0.966595i −0.875456 0.483298i \(-0.839439\pi\)
0.875456 0.483298i \(-0.160561\pi\)
\(138\) 0 0
\(139\) 8.48528i 0.719712i −0.933008 0.359856i \(-0.882826\pi\)
0.933008 0.359856i \(-0.117174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.00000 0.668994
\(144\) 0 0
\(145\) 8.00000 0.664364
\(146\) 0 0
\(147\) 1.00000 1.41421i 0.0824786 0.116642i
\(148\) 0 0
\(149\) 2.82843i 0.231714i 0.993266 + 0.115857i \(0.0369614\pi\)
−0.993266 + 0.115857i \(0.963039\pi\)
\(150\) 0 0
\(151\) 8.48528i 0.690522i 0.938507 + 0.345261i \(0.112210\pi\)
−0.938507 + 0.345261i \(0.887790\pi\)
\(152\) 0 0
\(153\) 16.0000 5.65685i 1.29352 0.457330i
\(154\) 0 0
\(155\) 24.0000 1.92773
\(156\) 0 0
\(157\) −20.0000 −1.59617 −0.798087 0.602542i \(-0.794154\pi\)
−0.798087 + 0.602542i \(0.794154\pi\)
\(158\) 0 0
\(159\) 12.0000 + 8.48528i 0.951662 + 0.672927i
\(160\) 0 0
\(161\) 22.6274i 1.78329i
\(162\) 0 0
\(163\) 8.48528i 0.664619i 0.943170 + 0.332309i \(0.107828\pi\)
−0.943170 + 0.332309i \(0.892172\pi\)
\(164\) 0 0
\(165\) 8.00000 + 5.65685i 0.622799 + 0.440386i
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −8.00000 + 2.82843i −0.611775 + 0.216295i
\(172\) 0 0
\(173\) 2.82843i 0.215041i −0.994203 0.107521i \(-0.965709\pi\)
0.994203 0.107521i \(-0.0342912\pi\)
\(174\) 0 0
\(175\) 8.48528i 0.641427i
\(176\) 0 0
\(177\) 6.00000 8.48528i 0.450988 0.637793i
\(178\) 0 0
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) 0 0
\(183\) 4.00000 5.65685i 0.295689 0.418167i
\(184\) 0 0
\(185\) 11.3137i 0.831800i
\(186\) 0 0
\(187\) 11.3137i 0.827340i
\(188\) 0 0
\(189\) 4.00000 14.1421i 0.290957 1.02869i
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 16.0000 + 11.3137i 1.14578 + 0.810191i
\(196\) 0 0
\(197\) 14.1421i 1.00759i 0.863825 + 0.503793i \(0.168062\pi\)
−0.863825 + 0.503793i \(0.831938\pi\)
\(198\) 0 0
\(199\) 8.48528i 0.601506i 0.953702 + 0.300753i \(0.0972379\pi\)
−0.953702 + 0.300753i \(0.902762\pi\)
\(200\) 0 0
\(201\) −20.0000 14.1421i −1.41069 0.997509i
\(202\) 0 0
\(203\) −8.00000 −0.561490
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.00000 + 22.6274i 0.556038 + 1.57271i
\(208\) 0 0
\(209\) 5.65685i 0.391293i
\(210\) 0 0
\(211\) 2.82843i 0.194717i 0.995249 + 0.0973585i \(0.0310393\pi\)
−0.995249 + 0.0973585i \(0.968961\pi\)
\(212\) 0 0
\(213\) 8.00000 11.3137i 0.548151 0.775203i
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) −24.0000 −1.62923
\(218\) 0 0
\(219\) −10.0000 + 14.1421i −0.675737 + 0.955637i
\(220\) 0 0
\(221\) 22.6274i 1.52208i
\(222\) 0 0
\(223\) 2.82843i 0.189405i 0.995506 + 0.0947027i \(0.0301901\pi\)
−0.995506 + 0.0947027i \(0.969810\pi\)
\(224\) 0 0
\(225\) 3.00000 + 8.48528i 0.200000 + 0.565685i
\(226\) 0 0
\(227\) −22.0000 −1.46019 −0.730096 0.683345i \(-0.760525\pi\)
−0.730096 + 0.683345i \(0.760525\pi\)
\(228\) 0 0
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) 0 0
\(231\) −8.00000 5.65685i −0.526361 0.372194i
\(232\) 0 0
\(233\) 28.2843i 1.85296i 0.376339 + 0.926482i \(0.377183\pi\)
−0.376339 + 0.926482i \(0.622817\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.00000 2.82843i −0.259828 0.183726i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) −1.00000 15.5563i −0.0641500 0.997940i
\(244\) 0 0
\(245\) 2.82843i 0.180702i
\(246\) 0 0
\(247\) 11.3137i 0.719874i
\(248\) 0 0
\(249\) 6.00000 8.48528i 0.380235 0.537733i
\(250\) 0 0
\(251\) −2.00000 −0.126239 −0.0631194 0.998006i \(-0.520105\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 0 0
\(255\) 16.0000 22.6274i 1.00196 1.41698i
\(256\) 0 0
\(257\) 11.3137i 0.705730i 0.935674 + 0.352865i \(0.114792\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) 11.3137i 0.703000i
\(260\) 0 0
\(261\) −8.00000 + 2.82843i −0.495188 + 0.175075i
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 24.0000 1.47431
\(266\) 0 0
\(267\) −8.00000 5.65685i −0.489592 0.346194i
\(268\) 0 0
\(269\) 14.1421i 0.862261i −0.902290 0.431131i \(-0.858115\pi\)
0.902290 0.431131i \(-0.141885\pi\)
\(270\) 0 0
\(271\) 19.7990i 1.20270i −0.798985 0.601351i \(-0.794629\pi\)
0.798985 0.601351i \(-0.205371\pi\)
\(272\) 0 0
\(273\) −16.0000 11.3137i −0.968364 0.684737i
\(274\) 0 0
\(275\) 6.00000 0.361814
\(276\) 0 0
\(277\) 12.0000 0.721010 0.360505 0.932757i \(-0.382604\pi\)
0.360505 + 0.932757i \(0.382604\pi\)
\(278\) 0 0
\(279\) −24.0000 + 8.48528i −1.43684 + 0.508001i
\(280\) 0 0
\(281\) 5.65685i 0.337460i −0.985662 0.168730i \(-0.946033\pi\)
0.985662 0.168730i \(-0.0539665\pi\)
\(282\) 0 0
\(283\) 25.4558i 1.51319i 0.653882 + 0.756596i \(0.273139\pi\)
−0.653882 + 0.756596i \(0.726861\pi\)
\(284\) 0 0
\(285\) −8.00000 + 11.3137i −0.473879 + 0.670166i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 6.00000 8.48528i 0.351726 0.497416i
\(292\) 0 0
\(293\) 31.1127i 1.81762i −0.417207 0.908812i \(-0.636991\pi\)
0.417207 0.908812i \(-0.363009\pi\)
\(294\) 0 0
\(295\) 16.9706i 0.988064i
\(296\) 0 0
\(297\) −10.0000 2.82843i −0.580259 0.164122i
\(298\) 0 0
\(299\) 32.0000 1.85061
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 0 0
\(303\) −4.00000 2.82843i −0.229794 0.162489i
\(304\) 0 0
\(305\) 11.3137i 0.647821i
\(306\) 0 0
\(307\) 8.48528i 0.484281i −0.970241 0.242140i \(-0.922151\pi\)
0.970241 0.242140i \(-0.0778494\pi\)
\(308\) 0 0
\(309\) −12.0000 8.48528i −0.682656 0.482711i
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 0 0
\(315\) −8.00000 22.6274i −0.450749 1.27491i
\(316\) 0 0
\(317\) 31.1127i 1.74746i 0.486408 + 0.873732i \(0.338307\pi\)
−0.486408 + 0.873732i \(0.661693\pi\)
\(318\) 0 0
\(319\) 5.65685i 0.316723i
\(320\) 0 0
\(321\) 6.00000 8.48528i 0.334887 0.473602i
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) 12.0000 0.665640
\(326\) 0 0
\(327\) 4.00000 5.65685i 0.221201 0.312825i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.82843i 0.155464i 0.996974 + 0.0777322i \(0.0247679\pi\)
−0.996974 + 0.0777322i \(0.975232\pi\)
\(332\) 0 0
\(333\) 4.00000 + 11.3137i 0.219199 + 0.619987i
\(334\) 0 0
\(335\) −40.0000 −2.18543
\(336\) 0 0
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 0 0
\(339\) 16.0000 + 11.3137i 0.869001 + 0.614476i
\(340\) 0 0
\(341\) 16.9706i 0.919007i
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 0 0
\(345\) 32.0000 + 22.6274i 1.72282 + 1.21822i
\(346\) 0 0
\(347\) −2.00000 −0.107366 −0.0536828 0.998558i \(-0.517096\pi\)
−0.0536828 + 0.998558i \(0.517096\pi\)
\(348\) 0 0
\(349\) 28.0000 1.49881 0.749403 0.662114i \(-0.230341\pi\)
0.749403 + 0.662114i \(0.230341\pi\)
\(350\) 0 0
\(351\) −20.0000 5.65685i −1.06752 0.301941i
\(352\) 0 0
\(353\) 22.6274i 1.20434i −0.798369 0.602168i \(-0.794304\pi\)
0.798369 0.602168i \(-0.205696\pi\)
\(354\) 0 0
\(355\) 22.6274i 1.20094i
\(356\) 0 0
\(357\) −16.0000 + 22.6274i −0.846810 + 1.19757i
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 11.0000 0.578947
\(362\) 0 0
\(363\) 7.00000 9.89949i 0.367405 0.519589i
\(364\) 0 0
\(365\) 28.2843i 1.48047i
\(366\) 0 0
\(367\) 8.48528i 0.442928i −0.975169 0.221464i \(-0.928916\pi\)
0.975169 0.221464i \(-0.0710835\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) −36.0000 −1.86401 −0.932005 0.362446i \(-0.881942\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 0 0
\(375\) −8.00000 5.65685i −0.413118 0.292119i
\(376\) 0 0
\(377\) 11.3137i 0.582686i
\(378\) 0 0
\(379\) 25.4558i 1.30758i −0.756677 0.653789i \(-0.773178\pi\)
0.756677 0.653789i \(-0.226822\pi\)
\(380\) 0 0
\(381\) −20.0000 14.1421i −1.02463 0.724524i
\(382\) 0 0
\(383\) 16.0000 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(384\) 0 0
\(385\) −16.0000 −0.815436
\(386\) 0 0
\(387\) −8.00000 + 2.82843i −0.406663 + 0.143777i
\(388\) 0 0
\(389\) 8.48528i 0.430221i −0.976590 0.215110i \(-0.930989\pi\)
0.976590 0.215110i \(-0.0690111\pi\)
\(390\) 0 0
\(391\) 45.2548i 2.28864i
\(392\) 0 0
\(393\) −14.0000 + 19.7990i −0.706207 + 0.998727i
\(394\) 0 0
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) 28.0000 1.40528 0.702640 0.711546i \(-0.252005\pi\)
0.702640 + 0.711546i \(0.252005\pi\)
\(398\) 0 0
\(399\) 8.00000 11.3137i 0.400501 0.566394i
\(400\) 0 0
\(401\) 5.65685i 0.282490i −0.989975 0.141245i \(-0.954889\pi\)
0.989975 0.141245i \(-0.0451105\pi\)
\(402\) 0 0
\(403\) 33.9411i 1.69073i
\(404\) 0 0
\(405\) −16.0000 19.7990i −0.795046 0.983820i
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 16.0000 + 11.3137i 0.789222 + 0.558064i
\(412\) 0 0
\(413\) 16.9706i 0.835067i
\(414\) 0 0
\(415\) 16.9706i 0.833052i
\(416\) 0 0
\(417\) 12.0000 + 8.48528i 0.587643 + 0.415526i
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) 28.0000 1.36464 0.682318 0.731055i \(-0.260972\pi\)
0.682318 + 0.731055i \(0.260972\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 16.9706i 0.823193i
\(426\) 0 0
\(427\) 11.3137i 0.547509i
\(428\) 0 0
\(429\) −8.00000 + 11.3137i −0.386244 + 0.546231i
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 0 0
\(435\) −8.00000 + 11.3137i −0.383571 + 0.542451i
\(436\) 0 0
\(437\) 22.6274i 1.08242i
\(438\) 0 0
\(439\) 8.48528i 0.404980i 0.979284 + 0.202490i \(0.0649034\pi\)
−0.979284 + 0.202490i \(0.935097\pi\)
\(440\) 0 0
\(441\) 1.00000 + 2.82843i 0.0476190 + 0.134687i
\(442\) 0 0
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 0 0
\(445\) −16.0000 −0.758473
\(446\) 0 0
\(447\) −4.00000 2.82843i −0.189194 0.133780i
\(448\) 0 0
\(449\) 16.9706i 0.800890i −0.916321 0.400445i \(-0.868855\pi\)
0.916321 0.400445i \(-0.131145\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −12.0000 8.48528i −0.563809 0.398673i
\(454\) 0 0
\(455\) −32.0000 −1.50018
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 0 0
\(459\) −8.00000 + 28.2843i −0.373408 + 1.32020i
\(460\) 0 0
\(461\) 25.4558i 1.18560i −0.805351 0.592798i \(-0.798023\pi\)
0.805351 0.592798i \(-0.201977\pi\)
\(462\) 0 0
\(463\) 8.48528i 0.394344i −0.980369 0.197172i \(-0.936824\pi\)
0.980369 0.197172i \(-0.0631758\pi\)
\(464\) 0 0
\(465\) −24.0000 + 33.9411i −1.11297 + 1.57398i
\(466\) 0 0
\(467\) 42.0000 1.94353 0.971764 0.235954i \(-0.0758216\pi\)
0.971764 + 0.235954i \(0.0758216\pi\)
\(468\) 0 0
\(469\) 40.0000 1.84703
\(470\) 0 0
\(471\) 20.0000 28.2843i 0.921551 1.30327i
\(472\) 0 0
\(473\) 5.65685i 0.260102i
\(474\) 0 0
\(475\) 8.48528i 0.389331i
\(476\) 0 0
\(477\) −24.0000 + 8.48528i −1.09888 + 0.388514i
\(478\) 0 0
\(479\) −32.0000 −1.46212 −0.731059 0.682315i \(-0.760973\pi\)
−0.731059 + 0.682315i \(0.760973\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 0 0
\(483\) −32.0000 22.6274i −1.45605 1.02958i
\(484\) 0 0
\(485\) 16.9706i 0.770594i
\(486\) 0 0
\(487\) 42.4264i 1.92252i 0.275636 + 0.961262i \(0.411111\pi\)
−0.275636 + 0.961262i \(0.588889\pi\)
\(488\) 0 0
\(489\) −12.0000 8.48528i −0.542659 0.383718i
\(490\) 0 0
\(491\) −22.0000 −0.992846 −0.496423 0.868081i \(-0.665354\pi\)
−0.496423 + 0.868081i \(0.665354\pi\)
\(492\) 0 0
\(493\) 16.0000 0.720604
\(494\) 0 0
\(495\) −16.0000 + 5.65685i −0.719147 + 0.254257i
\(496\) 0 0
\(497\) 22.6274i 1.01498i
\(498\) 0 0
\(499\) 19.7990i 0.886325i −0.896441 0.443162i \(-0.853857\pi\)
0.896441 0.443162i \(-0.146143\pi\)
\(500\) 0 0
\(501\) −8.00000 + 11.3137i −0.357414 + 0.505459i
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) −3.00000 + 4.24264i −0.133235 + 0.188422i
\(508\) 0 0
\(509\) 25.4558i 1.12831i −0.825669 0.564155i \(-0.809202\pi\)
0.825669 0.564155i \(-0.190798\pi\)
\(510\) 0 0
\(511\) 28.2843i 1.25122i
\(512\) 0 0
\(513\) 4.00000 14.1421i 0.176604 0.624391i
\(514\) 0 0
\(515\) −24.0000 −1.05757
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 4.00000 + 2.82843i 0.175581 + 0.124154i
\(520\) 0 0
\(521\) 33.9411i 1.48699i −0.668743 0.743494i \(-0.733167\pi\)
0.668743 0.743494i \(-0.266833\pi\)
\(522\) 0 0
\(523\) 14.1421i 0.618392i −0.950998 0.309196i \(-0.899940\pi\)
0.950998 0.309196i \(-0.100060\pi\)
\(524\) 0 0
\(525\) −12.0000 8.48528i −0.523723 0.370328i
\(526\) 0 0
\(527\) 48.0000 2.09091
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 6.00000 + 16.9706i 0.260378 + 0.736460i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 16.9706i 0.733701i
\(536\) 0 0
\(537\) 18.0000 25.4558i 0.776757 1.09850i
\(538\) 0 0
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) 28.0000 1.20381 0.601907 0.798566i \(-0.294408\pi\)
0.601907 + 0.798566i \(0.294408\pi\)
\(542\) 0 0
\(543\) −12.0000 + 16.9706i −0.514969 + 0.728277i
\(544\) 0 0
\(545\) 11.3137i 0.484626i
\(546\) 0 0
\(547\) 25.4558i 1.08841i −0.838951 0.544207i \(-0.816831\pi\)
0.838951 0.544207i \(-0.183169\pi\)
\(548\) 0 0
\(549\) 4.00000 + 11.3137i 0.170716 + 0.482857i
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) 0 0
\(555\) 16.0000 + 11.3137i 0.679162 + 0.480240i
\(556\) 0 0
\(557\) 36.7696i 1.55798i −0.627039 0.778988i \(-0.715733\pi\)
0.627039 0.778988i \(-0.284267\pi\)
\(558\) 0 0
\(559\) 11.3137i 0.478519i
\(560\) 0 0
\(561\) 16.0000 + 11.3137i 0.675521 + 0.477665i
\(562\) 0 0
\(563\) 42.0000 1.77009 0.885044 0.465506i \(-0.154128\pi\)
0.885044 + 0.465506i \(0.154128\pi\)
\(564\) 0 0
\(565\) 32.0000 1.34625
\(566\) 0 0
\(567\) 16.0000 + 19.7990i 0.671937 + 0.831479i
\(568\) 0 0
\(569\) 11.3137i 0.474295i 0.971474 + 0.237148i \(0.0762125\pi\)
−0.971474 + 0.237148i \(0.923787\pi\)
\(570\) 0 0
\(571\) 42.4264i 1.77549i −0.460336 0.887745i \(-0.652271\pi\)
0.460336 0.887745i \(-0.347729\pi\)
\(572\) 0 0
\(573\) 16.0000 22.6274i 0.668410 0.945274i
\(574\) 0 0
\(575\) 24.0000 1.00087
\(576\) 0 0
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 0 0
\(579\) 2.00000 2.82843i 0.0831172 0.117545i
\(580\) 0 0
\(581\) 16.9706i 0.704058i
\(582\) 0 0
\(583\) 16.9706i 0.702849i
\(584\) 0 0
\(585\) −32.0000 + 11.3137i −1.32304 + 0.467764i
\(586\) 0 0
\(587\) 26.0000 1.07313 0.536567 0.843857i \(-0.319721\pi\)
0.536567 + 0.843857i \(0.319721\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) 0 0
\(591\) −20.0000 14.1421i −0.822690 0.581730i
\(592\) 0 0
\(593\) 22.6274i 0.929197i 0.885522 + 0.464598i \(0.153801\pi\)
−0.885522 + 0.464598i \(0.846199\pi\)
\(594\) 0 0
\(595\) 45.2548i 1.85527i
\(596\) 0 0
\(597\) −12.0000 8.48528i −0.491127 0.347279i
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) 40.0000 14.1421i 1.62893 0.575912i
\(604\) 0 0
\(605\) 19.7990i 0.804943i
\(606\) 0 0
\(607\) 36.7696i 1.49243i 0.665705 + 0.746215i \(0.268131\pi\)
−0.665705 + 0.746215i \(0.731869\pi\)
\(608\) 0 0
\(609\) 8.00000 11.3137i 0.324176 0.458455i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 12.0000 0.484675 0.242338 0.970192i \(-0.422086\pi\)
0.242338 + 0.970192i \(0.422086\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.65685i 0.227736i −0.993496 0.113868i \(-0.963676\pi\)
0.993496 0.113868i \(-0.0363242\pi\)
\(618\) 0 0
\(619\) 25.4558i 1.02316i 0.859237 + 0.511578i \(0.170939\pi\)
−0.859237 + 0.511578i \(0.829061\pi\)
\(620\) 0 0
\(621\) −40.0000 11.3137i −1.60514 0.454003i
\(622\) 0 0
\(623\) 16.0000 0.641026
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) −8.00000 5.65685i −0.319489 0.225913i
\(628\) 0 0
\(629\) 22.6274i 0.902214i
\(630\) 0 0
\(631\) 25.4558i 1.01338i −0.862128 0.506691i \(-0.830869\pi\)
0.862128 0.506691i \(-0.169131\pi\)
\(632\) 0 0
\(633\) −4.00000 2.82843i −0.158986 0.112420i
\(634\) 0 0
\(635\) −40.0000 −1.58735
\(636\) 0 0
\(637\) 4.00000 0.158486
\(638\) 0 0
\(639\) 8.00000 + 22.6274i 0.316475 + 0.895127i
\(640\) 0 0
\(641\) 39.5980i 1.56403i 0.623262 + 0.782013i \(0.285807\pi\)
−0.623262 + 0.782013i \(0.714193\pi\)
\(642\) 0 0
\(643\) 25.4558i 1.00388i −0.864902 0.501940i \(-0.832620\pi\)
0.864902 0.501940i \(-0.167380\pi\)
\(644\) 0 0
\(645\) −8.00000 + 11.3137i −0.315000 + 0.445477i
\(646\) 0 0
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 24.0000 33.9411i 0.940634 1.33026i
\(652\) 0 0
\(653\) 42.4264i 1.66027i 0.557560 + 0.830137i \(0.311738\pi\)
−0.557560 + 0.830137i \(0.688262\pi\)
\(654\) 0 0
\(655\) 39.5980i 1.54722i
\(656\) 0 0
\(657\) −10.0000 28.2843i −0.390137 1.10347i
\(658\) 0 0
\(659\) 14.0000 0.545363 0.272681 0.962104i \(-0.412090\pi\)
0.272681 + 0.962104i \(0.412090\pi\)
\(660\) 0 0
\(661\) −4.00000 −0.155582 −0.0777910 0.996970i \(-0.524787\pi\)
−0.0777910 + 0.996970i \(0.524787\pi\)
\(662\) 0 0
\(663\) 32.0000 + 22.6274i 1.24278 + 0.878776i
\(664\) 0 0
\(665\) 22.6274i 0.877454i
\(666\) 0 0
\(667\) 22.6274i 0.876137i
\(668\) 0 0
\(669\) −4.00000 2.82843i −0.154649 0.109353i
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) −38.0000 −1.46479 −0.732396 0.680879i \(-0.761598\pi\)
−0.732396 + 0.680879i \(0.761598\pi\)
\(674\) 0 0
\(675\) −15.0000 4.24264i −0.577350 0.163299i
\(676\) 0 0
\(677\) 25.4558i 0.978348i 0.872186 + 0.489174i \(0.162702\pi\)
−0.872186 + 0.489174i \(0.837298\pi\)
\(678\) 0 0
\(679\) 16.9706i 0.651270i
\(680\) 0 0
\(681\) 22.0000 31.1127i 0.843042 1.19224i
\(682\) 0 0
\(683\) −18.0000 −0.688751 −0.344375 0.938832i \(-0.611909\pi\)
−0.344375 + 0.938832i \(0.611909\pi\)
\(684\) 0 0
\(685\) 32.0000 1.22266
\(686\) 0 0
\(687\) 4.00000 5.65685i 0.152610 0.215822i
\(688\) 0 0
\(689\) 33.9411i 1.29305i
\(690\) 0 0
\(691\) 31.1127i 1.18358i 0.806091 + 0.591791i \(0.201579\pi\)
−0.806091 + 0.591791i \(0.798421\pi\)
\(692\) 0 0
\(693\) 16.0000 5.65685i 0.607790 0.214886i
\(694\) 0 0
\(695\) 24.0000 0.910372
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −40.0000 28.2843i −1.51294 1.06981i
\(700\) 0 0
\(701\) 31.1127i 1.17511i 0.809184 + 0.587555i \(0.199909\pi\)
−0.809184 + 0.587555i \(0.800091\pi\)
\(702\) 0 0
\(703\) 11.3137i 0.426705i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.00000 0.300871
\(708\) 0 0
\(709\) −4.00000 −0.150223 −0.0751116 0.997175i \(-0.523931\pi\)
−0.0751116 + 0.997175i \(0.523931\pi\)
\(710\) 0 0
\(711\) 8.00000 2.82843i 0.300023 0.106074i
\(712\) 0 0
\(713\) 67.8823i 2.54221i
\(714\) 0 0
\(715\) 22.6274i 0.846217i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 24.0000 0.893807
\(722\) 0 0
\(723\) −14.0000 + 19.7990i −0.520666 + 0.736332i
\(724\) 0 0
\(725\) 8.48528i 0.315135i
\(726\) 0 0
\(727\) 31.1127i 1.15391i 0.816777 + 0.576953i \(0.195758\pi\)
−0.816777 + 0.576953i \(0.804242\pi\)
\(728\) 0 0
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) 0 0
\(731\) 16.0000 0.591781
\(732\) 0 0
\(733\) −36.0000 −1.32969 −0.664845 0.746981i \(-0.731502\pi\)
−0.664845 + 0.746981i \(0.731502\pi\)
\(734\) 0 0
\(735\) 4.00000 + 2.82843i 0.147542 + 0.104328i
\(736\) 0 0
\(737\) 28.2843i 1.04186i
\(738\) 0 0
\(739\) 42.4264i 1.56068i −0.625355 0.780340i \(-0.715046\pi\)
0.625355 0.780340i \(-0.284954\pi\)
\(740\) 0 0
\(741\) −16.0000 11.3137i −0.587775 0.415619i
\(742\) 0 0
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) −8.00000 −0.293097
\(746\) 0 0
\(747\) 6.00000 + 16.9706i 0.219529 + 0.620920i
\(748\) 0 0
\(749\) 16.9706i 0.620091i
\(750\) 0 0
\(751\) 2.82843i 0.103211i 0.998668 + 0.0516054i \(0.0164338\pi\)
−0.998668 + 0.0516054i \(0.983566\pi\)
\(752\) 0 0
\(753\) 2.00000 2.82843i 0.0728841 0.103074i
\(754\) 0 0
\(755\) −24.0000 −0.873449
\(756\) 0 0
\(757\) 12.0000 0.436147 0.218074 0.975932i \(-0.430023\pi\)
0.218074 + 0.975932i \(0.430023\pi\)
\(758\) 0 0
\(759\) −16.0000 + 22.6274i −0.580763 + 0.821323i
\(760\) 0 0
\(761\) 22.6274i 0.820243i 0.912031 + 0.410122i \(0.134514\pi\)
−0.912031 + 0.410122i \(0.865486\pi\)
\(762\) 0 0
\(763\) 11.3137i 0.409584i
\(764\) 0 0
\(765\) 16.0000 + 45.2548i 0.578481 + 1.63619i
\(766\) 0 0
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) −16.0000 11.3137i −0.576226 0.407453i
\(772\) 0 0
\(773\) 2.82843i 0.101731i 0.998706 + 0.0508657i \(0.0161981\pi\)
−0.998706 + 0.0508657i \(0.983802\pi\)
\(774\) 0 0
\(775\) 25.4558i 0.914401i
\(776\) 0 0
\(777\) −16.0000 11.3137i −0.573997 0.405877i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 0 0
\(783\) 4.00000 14.1421i 0.142948 0.505399i
\(784\) 0 0
\(785\) 56.5685i 2.01902i
\(786\) 0 0
\(787\) 31.1127i 1.10905i 0.832168 + 0.554524i \(0.187100\pi\)
−0.832168 + 0.554524i \(0.812900\pi\)
\(788\) 0 0
\(789\) −24.0000 + 33.9411i −0.854423 + 1.20834i
\(790\) 0 0
\(791\) −32.0000 −1.13779
\(792\) 0 0
\(793\) 16.0000 0.568177
\(794\) 0 0
\(795\) −24.0000 + 33.9411i −0.851192 +