Properties

Label 768.2.ba
Level $768$
Weight $2$
Character orbit 768.ba
Rep. character $\chi_{768}(11,\cdot)$
Character field $\Q(\zeta_{64})$
Dimension $4032$
Newform subspaces $1$
Sturm bound $256$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.ba (of order \(64\) and degree \(32\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 768 \)
Character field: \(\Q(\zeta_{64})\)
Newform subspaces: \( 1 \)
Sturm bound: \(256\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(768, [\chi])\).

Total New Old
Modular forms 4160 4160 0
Cusp forms 4032 4032 0
Eisenstein series 128 128 0

Trace form

\( 4032 q - 32 q^{3} - 64 q^{4} - 32 q^{6} - 64 q^{7} - 32 q^{9} - 64 q^{10} - 32 q^{12} - 64 q^{13} - 32 q^{15} - 64 q^{16} - 32 q^{18} - 64 q^{19} - 32 q^{21} - 64 q^{22} - 32 q^{24} - 64 q^{25} - 32 q^{27}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(768, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
768.2.ba.a 768.ba 768.aa $4032$ $6.133$ None 768.2.ba.a \(0\) \(-32\) \(0\) \(-64\) $\mathrm{SU}(2)[C_{64}]$