Properties

Label 768.1.e
Level $768$
Weight $1$
Character orbit 768.e
Rep. character $\chi_{768}(257,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $3$
Sturm bound $128$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 768.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(128\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(768, [\chi])\).

Total New Old
Modular forms 28 8 20
Cusp forms 4 4 0
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q + O(q^{10}) \) \( 4 q + 4 q^{25} - 4 q^{33} - 4 q^{49} - 4 q^{57} + 4 q^{81} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(768, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
768.1.e.a 768.e 3.b $1$ $0.383$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{6}) \) 192.1.h.a \(0\) \(-1\) \(0\) \(0\) \(q-q^{3}+q^{9}+2q^{19}+q^{25}-q^{27}+\cdots\)
768.1.e.b 768.e 3.b $1$ $0.383$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{6}) \) 192.1.h.a \(0\) \(1\) \(0\) \(0\) \(q+q^{3}+q^{9}-2q^{19}+q^{25}+q^{27}+\cdots\)
768.1.e.c 768.e 3.b $2$ $0.383$ \(\Q(\sqrt{-1}) \) $D_{2}$ \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-6}) \) \(\Q(\sqrt{3}) \) 384.1.h.a \(0\) \(0\) \(0\) \(0\) \(q-i q^{3}-q^{9}-2 i q^{11}+q^{25}+i q^{27}+\cdots\)