Properties

 Label 7650.2.a.v Level $7650$ Weight $2$ Character orbit 7650.a Self dual yes Analytic conductor $61.086$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [7650,2,Mod(1,7650)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(7650, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("7650.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$7650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 17$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7650.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$61.0855575463$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 2550) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{4} + q^{7} - q^{8}+O(q^{10})$$ q - q^2 + q^4 + q^7 - q^8 $$q - q^{2} + q^{4} + q^{7} - q^{8} + 3 q^{11} - 2 q^{13} - q^{14} + q^{16} - q^{17} - 7 q^{19} - 3 q^{22} + 6 q^{23} + 2 q^{26} + q^{28} - 6 q^{29} - 7 q^{31} - q^{32} + q^{34} + 7 q^{37} + 7 q^{38} + 6 q^{41} + q^{43} + 3 q^{44} - 6 q^{46} + 9 q^{47} - 6 q^{49} - 2 q^{52} - 3 q^{53} - q^{56} + 6 q^{58} - 10 q^{61} + 7 q^{62} + q^{64} - 5 q^{67} - q^{68} + 6 q^{71} + 16 q^{73} - 7 q^{74} - 7 q^{76} + 3 q^{77} + 17 q^{79} - 6 q^{82} - 6 q^{83} - q^{86} - 3 q^{88} + 12 q^{89} - 2 q^{91} + 6 q^{92} - 9 q^{94} + 10 q^{97} + 6 q^{98}+O(q^{100})$$ q - q^2 + q^4 + q^7 - q^8 + 3 * q^11 - 2 * q^13 - q^14 + q^16 - q^17 - 7 * q^19 - 3 * q^22 + 6 * q^23 + 2 * q^26 + q^28 - 6 * q^29 - 7 * q^31 - q^32 + q^34 + 7 * q^37 + 7 * q^38 + 6 * q^41 + q^43 + 3 * q^44 - 6 * q^46 + 9 * q^47 - 6 * q^49 - 2 * q^52 - 3 * q^53 - q^56 + 6 * q^58 - 10 * q^61 + 7 * q^62 + q^64 - 5 * q^67 - q^68 + 6 * q^71 + 16 * q^73 - 7 * q^74 - 7 * q^76 + 3 * q^77 + 17 * q^79 - 6 * q^82 - 6 * q^83 - q^86 - 3 * q^88 + 12 * q^89 - 2 * q^91 + 6 * q^92 - 9 * q^94 + 10 * q^97 + 6 * q^98

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 0 1.00000 0 0 1.00000 −1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$5$$ $$1$$
$$17$$ $$1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7650.2.a.v 1
3.b odd 2 1 2550.2.a.w yes 1
5.b even 2 1 7650.2.a.bt 1
15.d odd 2 1 2550.2.a.j 1
15.e even 4 2 2550.2.d.c 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2550.2.a.j 1 15.d odd 2 1
2550.2.a.w yes 1 3.b odd 2 1
2550.2.d.c 2 15.e even 4 2
7650.2.a.v 1 1.a even 1 1 trivial
7650.2.a.bt 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7650))$$:

 $$T_{7} - 1$$ T7 - 1 $$T_{11} - 3$$ T11 - 3 $$T_{13} + 2$$ T13 + 2 $$T_{19} + 7$$ T19 + 7 $$T_{23} - 6$$ T23 - 6 $$T_{29} + 6$$ T29 + 6

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T$$
$5$ $$T$$
$7$ $$T - 1$$
$11$ $$T - 3$$
$13$ $$T + 2$$
$17$ $$T + 1$$
$19$ $$T + 7$$
$23$ $$T - 6$$
$29$ $$T + 6$$
$31$ $$T + 7$$
$37$ $$T - 7$$
$41$ $$T - 6$$
$43$ $$T - 1$$
$47$ $$T - 9$$
$53$ $$T + 3$$
$59$ $$T$$
$61$ $$T + 10$$
$67$ $$T + 5$$
$71$ $$T - 6$$
$73$ $$T - 16$$
$79$ $$T - 17$$
$83$ $$T + 6$$
$89$ $$T - 12$$
$97$ $$T - 10$$