# Properties

 Label 7650.2.a.o Level $7650$ Weight $2$ Character orbit 7650.a Self dual yes Analytic conductor $61.086$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [7650,2,Mod(1,7650)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(7650, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("7650.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$7650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 17$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7650.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$61.0855575463$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 2550) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{4} - q^{7} - q^{8}+O(q^{10})$$ q - q^2 + q^4 - q^7 - q^8 $$q - q^{2} + q^{4} - q^{7} - q^{8} + 3 q^{11} + 4 q^{13} + q^{14} + q^{16} + q^{17} - 5 q^{19} - 3 q^{22} + 8 q^{23} - 4 q^{26} - q^{28} + 4 q^{29} - 3 q^{31} - q^{32} - q^{34} + 7 q^{37} + 5 q^{38} - 2 q^{41} + q^{43} + 3 q^{44} - 8 q^{46} - 7 q^{47} - 6 q^{49} + 4 q^{52} + 7 q^{53} + q^{56} - 4 q^{58} + 8 q^{59} - 2 q^{61} + 3 q^{62} + q^{64} + 11 q^{67} + q^{68} + 6 q^{71} + 2 q^{73} - 7 q^{74} - 5 q^{76} - 3 q^{77} - 15 q^{79} + 2 q^{82} + 16 q^{83} - q^{86} - 3 q^{88} - 2 q^{89} - 4 q^{91} + 8 q^{92} + 7 q^{94} - 10 q^{97} + 6 q^{98}+O(q^{100})$$ q - q^2 + q^4 - q^7 - q^8 + 3 * q^11 + 4 * q^13 + q^14 + q^16 + q^17 - 5 * q^19 - 3 * q^22 + 8 * q^23 - 4 * q^26 - q^28 + 4 * q^29 - 3 * q^31 - q^32 - q^34 + 7 * q^37 + 5 * q^38 - 2 * q^41 + q^43 + 3 * q^44 - 8 * q^46 - 7 * q^47 - 6 * q^49 + 4 * q^52 + 7 * q^53 + q^56 - 4 * q^58 + 8 * q^59 - 2 * q^61 + 3 * q^62 + q^64 + 11 * q^67 + q^68 + 6 * q^71 + 2 * q^73 - 7 * q^74 - 5 * q^76 - 3 * q^77 - 15 * q^79 + 2 * q^82 + 16 * q^83 - q^86 - 3 * q^88 - 2 * q^89 - 4 * q^91 + 8 * q^92 + 7 * q^94 - 10 * q^97 + 6 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 0 1.00000 0 0 −1.00000 −1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$17$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7650.2.a.o 1
3.b odd 2 1 2550.2.a.v yes 1
5.b even 2 1 7650.2.a.cc 1
15.d odd 2 1 2550.2.a.m 1
15.e even 4 2 2550.2.d.d 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2550.2.a.m 1 15.d odd 2 1
2550.2.a.v yes 1 3.b odd 2 1
2550.2.d.d 2 15.e even 4 2
7650.2.a.o 1 1.a even 1 1 trivial
7650.2.a.cc 1 5.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7650))$$:

 $$T_{7} + 1$$ T7 + 1 $$T_{11} - 3$$ T11 - 3 $$T_{13} - 4$$ T13 - 4 $$T_{19} + 5$$ T19 + 5 $$T_{23} - 8$$ T23 - 8 $$T_{29} - 4$$ T29 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T$$
$5$ $$T$$
$7$ $$T + 1$$
$11$ $$T - 3$$
$13$ $$T - 4$$
$17$ $$T - 1$$
$19$ $$T + 5$$
$23$ $$T - 8$$
$29$ $$T - 4$$
$31$ $$T + 3$$
$37$ $$T - 7$$
$41$ $$T + 2$$
$43$ $$T - 1$$
$47$ $$T + 7$$
$53$ $$T - 7$$
$59$ $$T - 8$$
$61$ $$T + 2$$
$67$ $$T - 11$$
$71$ $$T - 6$$
$73$ $$T - 2$$
$79$ $$T + 15$$
$83$ $$T - 16$$
$89$ $$T + 2$$
$97$ $$T + 10$$