Properties

Label 7650.2.a.d.1.1
Level $7650$
Weight $2$
Character 7650.1
Self dual yes
Analytic conductor $61.086$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7650,2,Mod(1,7650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7650.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.0855575463\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2550)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -4.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -4.00000 q^{7} -1.00000 q^{8} +2.00000 q^{11} -6.00000 q^{13} +4.00000 q^{14} +1.00000 q^{16} +1.00000 q^{17} +4.00000 q^{19} -2.00000 q^{22} -5.00000 q^{23} +6.00000 q^{26} -4.00000 q^{28} +10.0000 q^{31} -1.00000 q^{32} -1.00000 q^{34} +9.00000 q^{37} -4.00000 q^{38} -11.0000 q^{41} +10.0000 q^{43} +2.00000 q^{44} +5.00000 q^{46} -8.00000 q^{47} +9.00000 q^{49} -6.00000 q^{52} +11.0000 q^{53} +4.00000 q^{56} +15.0000 q^{59} -1.00000 q^{61} -10.0000 q^{62} +1.00000 q^{64} -14.0000 q^{67} +1.00000 q^{68} -11.0000 q^{71} +8.00000 q^{73} -9.00000 q^{74} +4.00000 q^{76} -8.00000 q^{77} -8.00000 q^{79} +11.0000 q^{82} +5.00000 q^{83} -10.0000 q^{86} -2.00000 q^{88} +6.00000 q^{89} +24.0000 q^{91} -5.00000 q^{92} +8.00000 q^{94} +8.00000 q^{97} -9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 4.00000 1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 0 0
\(37\) 9.00000 1.47959 0.739795 0.672832i \(-0.234922\pi\)
0.739795 + 0.672832i \(0.234922\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 0 0
\(41\) −11.0000 −1.71791 −0.858956 0.512050i \(-0.828886\pi\)
−0.858956 + 0.512050i \(0.828886\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 5.00000 0.737210
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) −6.00000 −0.832050
\(53\) 11.0000 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.00000 0.534522
\(57\) 0 0
\(58\) 0 0
\(59\) 15.0000 1.95283 0.976417 0.215894i \(-0.0692665\pi\)
0.976417 + 0.215894i \(0.0692665\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) −10.0000 −1.27000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −14.0000 −1.71037 −0.855186 0.518321i \(-0.826557\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) −11.0000 −1.30546 −0.652730 0.757591i \(-0.726376\pi\)
−0.652730 + 0.757591i \(0.726376\pi\)
\(72\) 0 0
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) −9.00000 −1.04623
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) −8.00000 −0.911685
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 11.0000 1.21475
\(83\) 5.00000 0.548821 0.274411 0.961613i \(-0.411517\pi\)
0.274411 + 0.961613i \(0.411517\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −10.0000 −1.07833
\(87\) 0 0
\(88\) −2.00000 −0.213201
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 24.0000 2.51588
\(92\) −5.00000 −0.521286
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) −9.00000 −0.909137
\(99\) 0 0
\(100\) 0 0
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) 11.0000 1.08386 0.541931 0.840423i \(-0.317693\pi\)
0.541931 + 0.840423i \(0.317693\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) −11.0000 −1.06841
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) 3.00000 0.282216 0.141108 0.989994i \(-0.454933\pi\)
0.141108 + 0.989994i \(0.454933\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −15.0000 −1.38086
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 1.00000 0.0905357
\(123\) 0 0
\(124\) 10.0000 0.898027
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −16.0000 −1.38738
\(134\) 14.0000 1.20942
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 11.0000 0.933008 0.466504 0.884519i \(-0.345513\pi\)
0.466504 + 0.884519i \(0.345513\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 11.0000 0.923099
\(143\) −12.0000 −1.00349
\(144\) 0 0
\(145\) 0 0
\(146\) −8.00000 −0.662085
\(147\) 0 0
\(148\) 9.00000 0.739795
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) 0 0
\(151\) −7.00000 −0.569652 −0.284826 0.958579i \(-0.591936\pi\)
−0.284826 + 0.958579i \(0.591936\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 8.00000 0.644658
\(155\) 0 0
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 8.00000 0.636446
\(159\) 0 0
\(160\) 0 0
\(161\) 20.0000 1.57622
\(162\) 0 0
\(163\) −5.00000 −0.391630 −0.195815 0.980641i \(-0.562735\pi\)
−0.195815 + 0.980641i \(0.562735\pi\)
\(164\) −11.0000 −0.858956
\(165\) 0 0
\(166\) −5.00000 −0.388075
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 10.0000 0.762493
\(173\) −4.00000 −0.304114 −0.152057 0.988372i \(-0.548590\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.00000 0.150756
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) −23.0000 −1.71910 −0.859550 0.511051i \(-0.829256\pi\)
−0.859550 + 0.511051i \(0.829256\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) −24.0000 −1.77900
\(183\) 0 0
\(184\) 5.00000 0.368605
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) 0 0
\(191\) 14.0000 1.01300 0.506502 0.862239i \(-0.330938\pi\)
0.506502 + 0.862239i \(0.330938\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) −8.00000 −0.574367
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 18.0000 1.26648
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −11.0000 −0.766406
\(207\) 0 0
\(208\) −6.00000 −0.416025
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 11.0000 0.755483
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) 0 0
\(216\) 0 0
\(217\) −40.0000 −2.71538
\(218\) 14.0000 0.948200
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −7.00000 −0.468755 −0.234377 0.972146i \(-0.575305\pi\)
−0.234377 + 0.972146i \(0.575305\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) −3.00000 −0.199557
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.00000 0.0655122 0.0327561 0.999463i \(-0.489572\pi\)
0.0327561 + 0.999463i \(0.489572\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 15.0000 0.976417
\(237\) 0 0
\(238\) 4.00000 0.259281
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −1.00000 −0.0640184
\(245\) 0 0
\(246\) 0 0
\(247\) −24.0000 −1.52708
\(248\) −10.0000 −0.635001
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) −10.0000 −0.628695
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −36.0000 −2.23693
\(260\) 0 0
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 16.0000 0.981023
\(267\) 0 0
\(268\) −14.0000 −0.855186
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 19.0000 1.15417 0.577084 0.816685i \(-0.304191\pi\)
0.577084 + 0.816685i \(0.304191\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −12.0000 −0.724947
\(275\) 0 0
\(276\) 0 0
\(277\) −3.00000 −0.180253 −0.0901263 0.995930i \(-0.528727\pi\)
−0.0901263 + 0.995930i \(0.528727\pi\)
\(278\) −11.0000 −0.659736
\(279\) 0 0
\(280\) 0 0
\(281\) −14.0000 −0.835170 −0.417585 0.908638i \(-0.637123\pi\)
−0.417585 + 0.908638i \(0.637123\pi\)
\(282\) 0 0
\(283\) 3.00000 0.178331 0.0891657 0.996017i \(-0.471580\pi\)
0.0891657 + 0.996017i \(0.471580\pi\)
\(284\) −11.0000 −0.652730
\(285\) 0 0
\(286\) 12.0000 0.709575
\(287\) 44.0000 2.59724
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 8.00000 0.468165
\(293\) −15.0000 −0.876309 −0.438155 0.898900i \(-0.644368\pi\)
−0.438155 + 0.898900i \(0.644368\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −9.00000 −0.523114
\(297\) 0 0
\(298\) −1.00000 −0.0579284
\(299\) 30.0000 1.73494
\(300\) 0 0
\(301\) −40.0000 −2.30556
\(302\) 7.00000 0.402805
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) −8.00000 −0.455842
\(309\) 0 0
\(310\) 0 0
\(311\) −1.00000 −0.0567048 −0.0283524 0.999598i \(-0.509026\pi\)
−0.0283524 + 0.999598i \(0.509026\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) −20.0000 −1.11456
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) 0 0
\(326\) 5.00000 0.276924
\(327\) 0 0
\(328\) 11.0000 0.607373
\(329\) 32.0000 1.76422
\(330\) 0 0
\(331\) 6.00000 0.329790 0.164895 0.986311i \(-0.447272\pi\)
0.164895 + 0.986311i \(0.447272\pi\)
\(332\) 5.00000 0.274411
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) 0 0
\(336\) 0 0
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) −23.0000 −1.25104
\(339\) 0 0
\(340\) 0 0
\(341\) 20.0000 1.08306
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) −10.0000 −0.539164
\(345\) 0 0
\(346\) 4.00000 0.215041
\(347\) −8.00000 −0.429463 −0.214731 0.976673i \(-0.568888\pi\)
−0.214731 + 0.976673i \(0.568888\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 −0.106600
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 23.0000 1.21559
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 7.00000 0.367912
\(363\) 0 0
\(364\) 24.0000 1.25794
\(365\) 0 0
\(366\) 0 0
\(367\) −34.0000 −1.77479 −0.887393 0.461014i \(-0.847486\pi\)
−0.887393 + 0.461014i \(0.847486\pi\)
\(368\) −5.00000 −0.260643
\(369\) 0 0
\(370\) 0 0
\(371\) −44.0000 −2.28437
\(372\) 0 0
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) −2.00000 −0.103418
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 0 0
\(378\) 0 0
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −14.0000 −0.716302
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) 0 0
\(388\) 8.00000 0.406138
\(389\) 33.0000 1.67317 0.836583 0.547840i \(-0.184550\pi\)
0.836583 + 0.547840i \(0.184550\pi\)
\(390\) 0 0
\(391\) −5.00000 −0.252861
\(392\) −9.00000 −0.454569
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) 0 0
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) −10.0000 −0.501255
\(399\) 0 0
\(400\) 0 0
\(401\) −23.0000 −1.14857 −0.574283 0.818657i \(-0.694719\pi\)
−0.574283 + 0.818657i \(0.694719\pi\)
\(402\) 0 0
\(403\) −60.0000 −2.98881
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) 0 0
\(407\) 18.0000 0.892227
\(408\) 0 0
\(409\) 19.0000 0.939490 0.469745 0.882802i \(-0.344346\pi\)
0.469745 + 0.882802i \(0.344346\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 11.0000 0.541931
\(413\) −60.0000 −2.95241
\(414\) 0 0
\(415\) 0 0
\(416\) 6.00000 0.294174
\(417\) 0 0
\(418\) −8.00000 −0.391293
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) −4.00000 −0.194717
\(423\) 0 0
\(424\) −11.0000 −0.534207
\(425\) 0 0
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 0 0
\(431\) 20.0000 0.963366 0.481683 0.876346i \(-0.340026\pi\)
0.481683 + 0.876346i \(0.340026\pi\)
\(432\) 0 0
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 40.0000 1.92006
\(435\) 0 0
\(436\) −14.0000 −0.670478
\(437\) −20.0000 −0.956730
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 6.00000 0.285391
\(443\) 9.00000 0.427603 0.213801 0.976877i \(-0.431415\pi\)
0.213801 + 0.976877i \(0.431415\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 7.00000 0.331460
\(447\) 0 0
\(448\) −4.00000 −0.188982
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −22.0000 −1.03594
\(452\) 3.00000 0.141108
\(453\) 0 0
\(454\) 18.0000 0.844782
\(455\) 0 0
\(456\) 0 0
\(457\) −15.0000 −0.701670 −0.350835 0.936437i \(-0.614102\pi\)
−0.350835 + 0.936437i \(0.614102\pi\)
\(458\) 2.00000 0.0934539
\(459\) 0 0
\(460\) 0 0
\(461\) 15.0000 0.698620 0.349310 0.937007i \(-0.386416\pi\)
0.349310 + 0.937007i \(0.386416\pi\)
\(462\) 0 0
\(463\) 19.0000 0.883005 0.441502 0.897260i \(-0.354446\pi\)
0.441502 + 0.897260i \(0.354446\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −1.00000 −0.0463241
\(467\) −37.0000 −1.71216 −0.856078 0.516847i \(-0.827106\pi\)
−0.856078 + 0.516847i \(0.827106\pi\)
\(468\) 0 0
\(469\) 56.0000 2.58584
\(470\) 0 0
\(471\) 0 0
\(472\) −15.0000 −0.690431
\(473\) 20.0000 0.919601
\(474\) 0 0
\(475\) 0 0
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −54.0000 −2.46219
\(482\) 14.0000 0.637683
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) 6.00000 0.271886 0.135943 0.990717i \(-0.456594\pi\)
0.135943 + 0.990717i \(0.456594\pi\)
\(488\) 1.00000 0.0452679
\(489\) 0 0
\(490\) 0 0
\(491\) −33.0000 −1.48927 −0.744635 0.667472i \(-0.767376\pi\)
−0.744635 + 0.667472i \(0.767376\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) 44.0000 1.97367
\(498\) 0 0
\(499\) −27.0000 −1.20869 −0.604343 0.796724i \(-0.706564\pi\)
−0.604343 + 0.796724i \(0.706564\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 28.0000 1.24970
\(503\) 5.00000 0.222939 0.111469 0.993768i \(-0.464444\pi\)
0.111469 + 0.993768i \(0.464444\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 10.0000 0.444554
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) −32.0000 −1.41560
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) 36.0000 1.58175
\(519\) 0 0
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) 10.0000 0.435607
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) 0 0
\(532\) −16.0000 −0.693688
\(533\) 66.0000 2.85878
\(534\) 0 0
\(535\) 0 0
\(536\) 14.0000 0.604708
\(537\) 0 0
\(538\) 10.0000 0.431131
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) 21.0000 0.902861 0.451430 0.892306i \(-0.350914\pi\)
0.451430 + 0.892306i \(0.350914\pi\)
\(542\) −19.0000 −0.816120
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) 0 0
\(547\) 15.0000 0.641354 0.320677 0.947189i \(-0.396090\pi\)
0.320677 + 0.947189i \(0.396090\pi\)
\(548\) 12.0000 0.512615
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 32.0000 1.36078
\(554\) 3.00000 0.127458
\(555\) 0 0
\(556\) 11.0000 0.466504
\(557\) −15.0000 −0.635570 −0.317785 0.948163i \(-0.602939\pi\)
−0.317785 + 0.948163i \(0.602939\pi\)
\(558\) 0 0
\(559\) −60.0000 −2.53773
\(560\) 0 0
\(561\) 0 0
\(562\) 14.0000 0.590554
\(563\) −41.0000 −1.72794 −0.863972 0.503540i \(-0.832031\pi\)
−0.863972 + 0.503540i \(0.832031\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −3.00000 −0.126099
\(567\) 0 0
\(568\) 11.0000 0.461550
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −19.0000 −0.795125 −0.397563 0.917575i \(-0.630144\pi\)
−0.397563 + 0.917575i \(0.630144\pi\)
\(572\) −12.0000 −0.501745
\(573\) 0 0
\(574\) −44.0000 −1.83652
\(575\) 0 0
\(576\) 0 0
\(577\) 31.0000 1.29055 0.645273 0.763952i \(-0.276743\pi\)
0.645273 + 0.763952i \(0.276743\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) −20.0000 −0.829740
\(582\) 0 0
\(583\) 22.0000 0.911147
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) 15.0000 0.619644
\(587\) −23.0000 −0.949312 −0.474656 0.880172i \(-0.657427\pi\)
−0.474656 + 0.880172i \(0.657427\pi\)
\(588\) 0 0
\(589\) 40.0000 1.64817
\(590\) 0 0
\(591\) 0 0
\(592\) 9.00000 0.369898
\(593\) 16.0000 0.657041 0.328521 0.944497i \(-0.393450\pi\)
0.328521 + 0.944497i \(0.393450\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.00000 0.0409616
\(597\) 0 0
\(598\) −30.0000 −1.22679
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 40.0000 1.63028
\(603\) 0 0
\(604\) −7.00000 −0.284826
\(605\) 0 0
\(606\) 0 0
\(607\) −10.0000 −0.405887 −0.202944 0.979190i \(-0.565051\pi\)
−0.202944 + 0.979190i \(0.565051\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) −42.0000 −1.69636 −0.848182 0.529705i \(-0.822303\pi\)
−0.848182 + 0.529705i \(0.822303\pi\)
\(614\) −22.0000 −0.887848
\(615\) 0 0
\(616\) 8.00000 0.322329
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) −36.0000 −1.44696 −0.723481 0.690344i \(-0.757459\pi\)
−0.723481 + 0.690344i \(0.757459\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1.00000 0.0400963
\(623\) −24.0000 −0.961540
\(624\) 0 0
\(625\) 0 0
\(626\) −8.00000 −0.319744
\(627\) 0 0
\(628\) −18.0000 −0.718278
\(629\) 9.00000 0.358854
\(630\) 0 0
\(631\) −15.0000 −0.597141 −0.298570 0.954388i \(-0.596510\pi\)
−0.298570 + 0.954388i \(0.596510\pi\)
\(632\) 8.00000 0.318223
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) 0 0
\(636\) 0 0
\(637\) −54.0000 −2.13956
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.0000 −0.394976 −0.197488 0.980305i \(-0.563278\pi\)
−0.197488 + 0.980305i \(0.563278\pi\)
\(642\) 0 0
\(643\) 23.0000 0.907031 0.453516 0.891248i \(-0.350170\pi\)
0.453516 + 0.891248i \(0.350170\pi\)
\(644\) 20.0000 0.788110
\(645\) 0 0
\(646\) −4.00000 −0.157378
\(647\) −30.0000 −1.17942 −0.589711 0.807614i \(-0.700758\pi\)
−0.589711 + 0.807614i \(0.700758\pi\)
\(648\) 0 0
\(649\) 30.0000 1.17760
\(650\) 0 0
\(651\) 0 0
\(652\) −5.00000 −0.195815
\(653\) −16.0000 −0.626128 −0.313064 0.949732i \(-0.601356\pi\)
−0.313064 + 0.949732i \(0.601356\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −11.0000 −0.429478
\(657\) 0 0
\(658\) −32.0000 −1.24749
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −42.0000 −1.63361 −0.816805 0.576913i \(-0.804257\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) −6.00000 −0.233197
\(663\) 0 0
\(664\) −5.00000 −0.194038
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) 0 0
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) 36.0000 1.38770 0.693849 0.720121i \(-0.255914\pi\)
0.693849 + 0.720121i \(0.255914\pi\)
\(674\) −10.0000 −0.385186
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 48.0000 1.84479 0.922395 0.386248i \(-0.126229\pi\)
0.922395 + 0.386248i \(0.126229\pi\)
\(678\) 0 0
\(679\) −32.0000 −1.22805
\(680\) 0 0
\(681\) 0 0
\(682\) −20.0000 −0.765840
\(683\) −34.0000 −1.30097 −0.650487 0.759517i \(-0.725435\pi\)
−0.650487 + 0.759517i \(0.725435\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 8.00000 0.305441
\(687\) 0 0
\(688\) 10.0000 0.381246
\(689\) −66.0000 −2.51440
\(690\) 0 0
\(691\) −35.0000 −1.33146 −0.665731 0.746191i \(-0.731880\pi\)
−0.665731 + 0.746191i \(0.731880\pi\)
\(692\) −4.00000 −0.152057
\(693\) 0 0
\(694\) 8.00000 0.303676
\(695\) 0 0
\(696\) 0 0
\(697\) −11.0000 −0.416655
\(698\) 14.0000 0.529908
\(699\) 0 0
\(700\) 0 0
\(701\) 5.00000 0.188847 0.0944237 0.995532i \(-0.469899\pi\)
0.0944237 + 0.995532i \(0.469899\pi\)
\(702\) 0 0
\(703\) 36.0000 1.35777
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 0 0
\(707\) 72.0000 2.70784
\(708\) 0 0
\(709\) 2.00000 0.0751116 0.0375558 0.999295i \(-0.488043\pi\)
0.0375558 + 0.999295i \(0.488043\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) −50.0000 −1.87251
\(714\) 0 0
\(715\) 0 0
\(716\) −23.0000 −0.859550
\(717\) 0 0
\(718\) 8.00000 0.298557
\(719\) 40.0000 1.49175 0.745874 0.666087i \(-0.232032\pi\)
0.745874 + 0.666087i \(0.232032\pi\)
\(720\) 0 0
\(721\) −44.0000 −1.63865
\(722\) 3.00000 0.111648
\(723\) 0 0
\(724\) −7.00000 −0.260153
\(725\) 0 0
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) −24.0000 −0.889499
\(729\) 0 0
\(730\) 0 0
\(731\) 10.0000 0.369863
\(732\) 0 0
\(733\) 26.0000 0.960332 0.480166 0.877178i \(-0.340576\pi\)
0.480166 + 0.877178i \(0.340576\pi\)
\(734\) 34.0000 1.25496
\(735\) 0 0
\(736\) 5.00000 0.184302
\(737\) −28.0000 −1.03139
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 44.0000 1.61529
\(743\) −37.0000 −1.35740 −0.678699 0.734416i \(-0.737456\pi\)
−0.678699 + 0.734416i \(0.737456\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 24.0000 0.878702
\(747\) 0 0
\(748\) 2.00000 0.0731272
\(749\) 16.0000 0.584627
\(750\) 0 0
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 40.0000 1.45382 0.726912 0.686730i \(-0.240955\pi\)
0.726912 + 0.686730i \(0.240955\pi\)
\(758\) −29.0000 −1.05333
\(759\) 0 0
\(760\) 0 0
\(761\) −8.00000 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(762\) 0 0
\(763\) 56.0000 2.02734
\(764\) 14.0000 0.506502
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) −90.0000 −3.24971
\(768\) 0 0
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.00000 −0.143963
\(773\) 17.0000 0.611448 0.305724 0.952120i \(-0.401102\pi\)
0.305724 + 0.952120i \(0.401102\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −8.00000 −0.287183
\(777\) 0 0
\(778\) −33.0000 −1.18311
\(779\) −44.0000 −1.57646
\(780\) 0 0
\(781\) −22.0000 −0.787222
\(782\) 5.00000 0.178800
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) 1.00000 0.0356462 0.0178231 0.999841i \(-0.494326\pi\)
0.0178231 + 0.999841i \(0.494326\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) 7.00000 0.248421
\(795\) 0 0
\(796\) 10.0000 0.354441
\(797\) −15.0000 −0.531327 −0.265664 0.964066i \(-0.585591\pi\)
−0.265664 + 0.964066i \(0.585591\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) 0 0
\(802\) 23.0000 0.812158
\(803\) 16.0000 0.564628
\(804\) 0 0
\(805\) 0 0
\(806\) 60.0000 2.11341
\(807\) 0 0
\(808\) 18.0000 0.633238
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −18.0000 −0.630900
\(815\) 0 0
\(816\) 0 0
\(817\) 40.0000 1.39942
\(818\) −19.0000 −0.664319
\(819\) 0 0
\(820\) 0 0
\(821\) 24.0000 0.837606 0.418803 0.908077i \(-0.362450\pi\)
0.418803 + 0.908077i \(0.362450\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) −11.0000 −0.383203
\(825\) 0 0
\(826\) 60.0000 2.08767
\(827\) −18.0000 −0.625921 −0.312961 0.949766i \(-0.601321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(828\) 0 0
\(829\) 4.00000 0.138926 0.0694629 0.997585i \(-0.477871\pi\)
0.0694629 + 0.997585i \(0.477871\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −6.00000 −0.208013
\(833\) 9.00000 0.311832
\(834\) 0 0
\(835\) 0 0
\(836\) 8.00000 0.276686
\(837\) 0 0
\(838\) −4.00000 −0.138178
\(839\) −15.0000 −0.517858 −0.258929 0.965896i \(-0.583369\pi\)
−0.258929 + 0.965896i \(0.583369\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −8.00000 −0.275698
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) 28.0000 0.962091
\(848\) 11.0000 0.377742
\(849\) 0 0
\(850\) 0 0
\(851\) −45.0000 −1.54258
\(852\) 0 0
\(853\) −30.0000 −1.02718 −0.513590 0.858036i \(-0.671685\pi\)
−0.513590 + 0.858036i \(0.671685\pi\)
\(854\) −4.00000 −0.136877
\(855\) 0 0
\(856\) 4.00000 0.136717
\(857\) −19.0000 −0.649028 −0.324514 0.945881i \(-0.605201\pi\)
−0.324514 + 0.945881i \(0.605201\pi\)
\(858\) 0 0
\(859\) 28.0000 0.955348 0.477674 0.878537i \(-0.341480\pi\)
0.477674 + 0.878537i \(0.341480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −20.0000 −0.681203
\(863\) −28.0000 −0.953131 −0.476566 0.879139i \(-0.658119\pi\)
−0.476566 + 0.879139i \(0.658119\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −30.0000 −1.01944
\(867\) 0 0
\(868\) −40.0000 −1.35769
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) 84.0000 2.84623
\(872\) 14.0000 0.474100
\(873\) 0 0
\(874\) 20.0000 0.676510
\(875\) 0 0
\(876\) 0 0
\(877\) −18.0000 −0.607817 −0.303908 0.952701i \(-0.598292\pi\)
−0.303908 + 0.952701i \(0.598292\pi\)
\(878\) 28.0000 0.944954
\(879\) 0 0
\(880\) 0 0
\(881\) 19.0000 0.640126 0.320063 0.947396i \(-0.396296\pi\)
0.320063 + 0.947396i \(0.396296\pi\)
\(882\) 0 0
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) −6.00000 −0.201802
\(885\) 0 0
\(886\) −9.00000 −0.302361
\(887\) −27.0000 −0.906571 −0.453286 0.891365i \(-0.649748\pi\)
−0.453286 + 0.891365i \(0.649748\pi\)
\(888\) 0 0
\(889\) −32.0000 −1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) −7.00000 −0.234377
\(893\) −32.0000 −1.07084
\(894\) 0 0
\(895\) 0 0
\(896\) 4.00000 0.133631
\(897\) 0 0
\(898\) 6.00000 0.200223
\(899\) 0 0
\(900\) 0 0
\(901\) 11.0000 0.366463
\(902\) 22.0000 0.732520
\(903\) 0 0
\(904\) −3.00000 −0.0997785
\(905\) 0 0
\(906\) 0 0
\(907\) 13.0000 0.431658 0.215829 0.976431i \(-0.430755\pi\)
0.215829 + 0.976431i \(0.430755\pi\)
\(908\) −18.0000 −0.597351
\(909\) 0 0
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) 10.0000 0.330952
\(914\) 15.0000 0.496156
\(915\) 0 0
\(916\) −2.00000 −0.0660819
\(917\) 48.0000 1.58510
\(918\) 0 0
\(919\) 1.00000 0.0329870 0.0164935 0.999864i \(-0.494750\pi\)
0.0164935 + 0.999864i \(0.494750\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −15.0000 −0.493999
\(923\) 66.0000 2.17242
\(924\) 0 0
\(925\) 0 0
\(926\) −19.0000 −0.624379
\(927\) 0 0
\(928\) 0 0
\(929\) −37.0000 −1.21393 −0.606965 0.794728i \(-0.707613\pi\)
−0.606965 + 0.794728i \(0.707613\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) 1.00000 0.0327561
\(933\) 0 0
\(934\) 37.0000 1.21068
\(935\) 0 0
\(936\) 0 0
\(937\) 23.0000 0.751377 0.375689 0.926746i \(-0.377406\pi\)
0.375689 + 0.926746i \(0.377406\pi\)
\(938\) −56.0000 −1.82846
\(939\) 0 0
\(940\) 0 0
\(941\) −42.0000 −1.36916 −0.684580 0.728937i \(-0.740015\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) 0 0
\(943\) 55.0000 1.79105
\(944\) 15.0000 0.488208
\(945\) 0 0
\(946\) −20.0000 −0.650256
\(947\) 24.0000 0.779895 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(948\) 0 0
\(949\) −48.0000 −1.55815
\(950\) 0 0
\(951\) 0 0
\(952\) 4.00000 0.129641
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −6.00000 −0.194054
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) −48.0000 −1.55000
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 54.0000 1.74103
\(963\) 0 0
\(964\) −14.0000 −0.450910
\(965\) 0 0
\(966\) 0 0
\(967\) −31.0000 −0.996893 −0.498446 0.866921i \(-0.666096\pi\)
−0.498446 + 0.866921i \(0.666096\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) 49.0000 1.57248 0.786242 0.617918i \(-0.212024\pi\)
0.786242 + 0.617918i \(0.212024\pi\)
\(972\) 0 0
\(973\) −44.0000 −1.41058
\(974\) −6.00000 −0.192252
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) 0 0
\(982\) 33.0000 1.05307
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −24.0000 −0.763542
\(989\) −50.0000 −1.58991
\(990\) 0 0
\(991\) −60.0000 −1.90596 −0.952981 0.303029i \(-0.902002\pi\)
−0.952981 + 0.303029i \(0.902002\pi\)
\(992\) −10.0000 −0.317500
\(993\) 0 0
\(994\) −44.0000 −1.39560
\(995\) 0 0
\(996\) 0 0
\(997\) −10.0000 −0.316703 −0.158352 0.987383i \(-0.550618\pi\)
−0.158352 + 0.987383i \(0.550618\pi\)
\(998\) 27.0000 0.854670
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7650.2.a.d.1.1 1
3.2 odd 2 2550.2.a.r.1.1 yes 1
5.4 even 2 7650.2.a.cm.1.1 1
15.2 even 4 2550.2.d.e.2449.2 2
15.8 even 4 2550.2.d.e.2449.1 2
15.14 odd 2 2550.2.a.p.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2550.2.a.p.1.1 1 15.14 odd 2
2550.2.a.r.1.1 yes 1 3.2 odd 2
2550.2.d.e.2449.1 2 15.8 even 4
2550.2.d.e.2449.2 2 15.2 even 4
7650.2.a.d.1.1 1 1.1 even 1 trivial
7650.2.a.cm.1.1 1 5.4 even 2