Defining parameters
Level: | \( N \) | \(=\) | \( 7650 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7650.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 94 \) | ||
Sturm bound: | \(3240\) | ||
Trace bound: | \(29\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(19\), \(23\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7650))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1668 | 128 | 1540 |
Cusp forms | 1573 | 128 | 1445 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(17\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(7\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(9\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(5\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(8\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(10\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(10\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(10\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(7\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(11\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(12\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(8\) |
Plus space | \(+\) | \(55\) | |||
Minus space | \(-\) | \(73\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7650))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7650))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7650)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(306))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(510))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(765))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(850))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1275))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1530))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2550))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3825))\)\(^{\oplus 2}\)