Properties

Label 765.2.t.e.64.1
Level $765$
Weight $2$
Character 765.64
Analytic conductor $6.109$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [765,2,Mod(64,765)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("765.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 64.1
Root \(1.38621i\) of defining polynomial
Character \(\chi\) \(=\) 765.64
Dual form 765.2.t.e.514.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.38621 q^{2} +3.69399 q^{4} +(0.518989 + 2.17501i) q^{5} +(-0.155559 - 0.155559i) q^{7} -4.04223 q^{8} +(-1.23842 - 5.19002i) q^{10} +(-0.371196 + 0.371196i) q^{11} +1.96713i q^{13} +(0.371196 + 0.371196i) q^{14} +2.25761 q^{16} +(3.46759 + 2.23065i) q^{17} +4.00000i q^{19} +(1.91714 + 8.03446i) q^{20} +(0.885751 - 0.885751i) q^{22} +(-0.263516 - 0.263516i) q^{23} +(-4.46130 + 2.25761i) q^{25} -4.69399i q^{26} +(-0.574634 - 0.574634i) q^{28} +(-4.95160 - 4.95160i) q^{29} +(2.06519 + 2.06519i) q^{31} +2.69733 q^{32} +(-8.27440 - 5.32280i) q^{34} +(0.257608 - 0.419075i) q^{35} +(4.04223 - 4.04223i) q^{37} -9.54484i q^{38} +(-2.09787 - 8.79187i) q^{40} +(-0.563613 + 0.563613i) q^{41} -2.49417 q^{43} +(-1.37120 + 1.37120i) q^{44} +(0.628804 + 0.628804i) q^{46} +6.73955i q^{47} -6.95160i q^{49} +(10.6456 - 5.38713i) q^{50} +7.26658i q^{52} -5.92169 q^{53} +(-1.00000 - 0.614707i) q^{55} +(0.628804 + 0.628804i) q^{56} +(11.8156 + 11.8156i) q^{58} +6.00000i q^{59} +(-4.00000 + 4.00000i) q^{61} +(-4.92798 - 4.92798i) q^{62} -10.9516 q^{64} +(-4.27853 + 1.02092i) q^{65} +11.5120i q^{67} +(12.8093 + 8.24001i) q^{68} +(-0.614707 + 1.00000i) q^{70} +(5.06519 + 5.06519i) q^{71} +(0.838149 - 0.838149i) q^{73} +(-9.64560 + 9.64560i) q^{74} +14.7760i q^{76} +0.115486 q^{77} +(-4.75919 + 4.75919i) q^{79} +(1.17167 + 4.91031i) q^{80} +(1.34490 - 1.34490i) q^{82} -6.11732 q^{83} +(-3.05204 + 8.69972i) q^{85} +5.95160 q^{86} +(1.50046 - 1.50046i) q^{88} -15.9852 q^{89} +(0.306005 - 0.306005i) q^{91} +(-0.973426 - 0.973426i) q^{92} -16.0820i q^{94} +(-8.70002 + 2.07596i) q^{95} +(6.51611 - 6.51611i) q^{97} +16.5880i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} - 4 q^{10} - 16 q^{11} + 16 q^{14} + 4 q^{16} + 32 q^{20} - 4 q^{29} + 4 q^{31} - 20 q^{35} + 24 q^{40} - 16 q^{41} - 28 q^{44} - 4 q^{46} + 40 q^{50} - 12 q^{55} - 4 q^{56} - 48 q^{61}+ \cdots + 36 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.38621 −1.68730 −0.843652 0.536890i \(-0.819599\pi\)
−0.843652 + 0.536890i \(0.819599\pi\)
\(3\) 0 0
\(4\) 3.69399 1.84700
\(5\) 0.518989 + 2.17501i 0.232099 + 0.972692i
\(6\) 0 0
\(7\) −0.155559 0.155559i −0.0587957 0.0587957i 0.677098 0.735893i \(-0.263238\pi\)
−0.735893 + 0.677098i \(0.763238\pi\)
\(8\) −4.04223 −1.42914
\(9\) 0 0
\(10\) −1.23842 5.19002i −0.391622 1.64123i
\(11\) −0.371196 + 0.371196i −0.111920 + 0.111920i −0.760849 0.648929i \(-0.775217\pi\)
0.648929 + 0.760849i \(0.275217\pi\)
\(12\) 0 0
\(13\) 1.96713i 0.545585i 0.962073 + 0.272792i \(0.0879472\pi\)
−0.962073 + 0.272792i \(0.912053\pi\)
\(14\) 0.371196 + 0.371196i 0.0992063 + 0.0992063i
\(15\) 0 0
\(16\) 2.25761 0.564402
\(17\) 3.46759 + 2.23065i 0.841015 + 0.541012i
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 1.91714 + 8.03446i 0.428686 + 1.79656i
\(21\) 0 0
\(22\) 0.885751 0.885751i 0.188843 0.188843i
\(23\) −0.263516 0.263516i −0.0549469 0.0549469i 0.679099 0.734046i \(-0.262371\pi\)
−0.734046 + 0.679099i \(0.762371\pi\)
\(24\) 0 0
\(25\) −4.46130 + 2.25761i −0.892260 + 0.451522i
\(26\) 4.69399i 0.920568i
\(27\) 0 0
\(28\) −0.574634 0.574634i −0.108596 0.108596i
\(29\) −4.95160 4.95160i −0.919490 0.919490i 0.0775026 0.996992i \(-0.475305\pi\)
−0.996992 + 0.0775026i \(0.975305\pi\)
\(30\) 0 0
\(31\) 2.06519 + 2.06519i 0.370919 + 0.370919i 0.867812 0.496893i \(-0.165526\pi\)
−0.496893 + 0.867812i \(0.665526\pi\)
\(32\) 2.69733 0.476825
\(33\) 0 0
\(34\) −8.27440 5.32280i −1.41905 0.912852i
\(35\) 0.257608 0.419075i 0.0435437 0.0708366i
\(36\) 0 0
\(37\) 4.04223 4.04223i 0.664538 0.664538i −0.291908 0.956446i \(-0.594290\pi\)
0.956446 + 0.291908i \(0.0942902\pi\)
\(38\) 9.54484i 1.54838i
\(39\) 0 0
\(40\) −2.09787 8.79187i −0.331702 1.39012i
\(41\) −0.563613 + 0.563613i −0.0880216 + 0.0880216i −0.749747 0.661725i \(-0.769825\pi\)
0.661725 + 0.749747i \(0.269825\pi\)
\(42\) 0 0
\(43\) −2.49417 −0.380357 −0.190178 0.981750i \(-0.560907\pi\)
−0.190178 + 0.981750i \(0.560907\pi\)
\(44\) −1.37120 + 1.37120i −0.206716 + 0.206716i
\(45\) 0 0
\(46\) 0.628804 + 0.628804i 0.0927121 + 0.0927121i
\(47\) 6.73955i 0.983065i 0.870859 + 0.491532i \(0.163563\pi\)
−0.870859 + 0.491532i \(0.836437\pi\)
\(48\) 0 0
\(49\) 6.95160i 0.993086i
\(50\) 10.6456 5.38713i 1.50551 0.761855i
\(51\) 0 0
\(52\) 7.26658i 1.00769i
\(53\) −5.92169 −0.813406 −0.406703 0.913560i \(-0.633322\pi\)
−0.406703 + 0.913560i \(0.633322\pi\)
\(54\) 0 0
\(55\) −1.00000 0.614707i −0.134840 0.0828870i
\(56\) 0.628804 + 0.628804i 0.0840275 + 0.0840275i
\(57\) 0 0
\(58\) 11.8156 + 11.8156i 1.55146 + 1.55146i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) −4.00000 + 4.00000i −0.512148 + 0.512148i −0.915184 0.403036i \(-0.867955\pi\)
0.403036 + 0.915184i \(0.367955\pi\)
\(62\) −4.92798 4.92798i −0.625854 0.625854i
\(63\) 0 0
\(64\) −10.9516 −1.36895
\(65\) −4.27853 + 1.02092i −0.530686 + 0.126630i
\(66\) 0 0
\(67\) 11.5120i 1.40641i 0.710987 + 0.703206i \(0.248249\pi\)
−0.710987 + 0.703206i \(0.751751\pi\)
\(68\) 12.8093 + 8.24001i 1.55335 + 0.999248i
\(69\) 0 0
\(70\) −0.614707 + 1.00000i −0.0734715 + 0.119523i
\(71\) 5.06519 + 5.06519i 0.601128 + 0.601128i 0.940612 0.339484i \(-0.110253\pi\)
−0.339484 + 0.940612i \(0.610253\pi\)
\(72\) 0 0
\(73\) 0.838149 0.838149i 0.0980980 0.0980980i −0.656355 0.754453i \(-0.727902\pi\)
0.754453 + 0.656355i \(0.227902\pi\)
\(74\) −9.64560 + 9.64560i −1.12128 + 1.12128i
\(75\) 0 0
\(76\) 14.7760i 1.69492i
\(77\) 0.115486 0.0131608
\(78\) 0 0
\(79\) −4.75919 + 4.75919i −0.535450 + 0.535450i −0.922189 0.386739i \(-0.873601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(80\) 1.17167 + 4.91031i 0.130997 + 0.548989i
\(81\) 0 0
\(82\) 1.34490 1.34490i 0.148519 0.148519i
\(83\) −6.11732 −0.671463 −0.335731 0.941958i \(-0.608983\pi\)
−0.335731 + 0.941958i \(0.608983\pi\)
\(84\) 0 0
\(85\) −3.05204 + 8.69972i −0.331040 + 0.943617i
\(86\) 5.95160 0.641778
\(87\) 0 0
\(88\) 1.50046 1.50046i 0.159949 0.159949i
\(89\) −15.9852 −1.69443 −0.847213 0.531253i \(-0.821721\pi\)
−0.847213 + 0.531253i \(0.821721\pi\)
\(90\) 0 0
\(91\) 0.306005 0.306005i 0.0320781 0.0320781i
\(92\) −0.973426 0.973426i −0.101487 0.101487i
\(93\) 0 0
\(94\) 16.0820i 1.65873i
\(95\) −8.70002 + 2.07596i −0.892604 + 0.212989i
\(96\) 0 0
\(97\) 6.51611 6.51611i 0.661611 0.661611i −0.294149 0.955760i \(-0.595036\pi\)
0.955760 + 0.294149i \(0.0950361\pi\)
\(98\) 16.5880i 1.67564i
\(99\) 0 0
\(100\) −16.4800 + 8.33959i −1.64800 + 0.833959i
\(101\) 7.20921 0.717343 0.358672 0.933464i \(-0.383230\pi\)
0.358672 + 0.933464i \(0.383230\pi\)
\(102\) 0 0
\(103\) 9.52456i 0.938482i 0.883070 + 0.469241i \(0.155472\pi\)
−0.883070 + 0.469241i \(0.844528\pi\)
\(104\) 7.95160i 0.779719i
\(105\) 0 0
\(106\) 14.1304 1.37246
\(107\) −7.62530 + 7.62530i −0.737166 + 0.737166i −0.972029 0.234863i \(-0.924536\pi\)
0.234863 + 0.972029i \(0.424536\pi\)
\(108\) 0 0
\(109\) −9.95160 + 9.95160i −0.953191 + 0.953191i −0.998952 0.0457617i \(-0.985429\pi\)
0.0457617 + 0.998952i \(0.485429\pi\)
\(110\) 2.38621 + 1.46682i 0.227516 + 0.139856i
\(111\) 0 0
\(112\) −0.351191 0.351191i −0.0331844 0.0331844i
\(113\) 5.08354 + 5.08354i 0.478219 + 0.478219i 0.904562 0.426343i \(-0.140198\pi\)
−0.426343 + 0.904562i \(0.640198\pi\)
\(114\) 0 0
\(115\) 0.436387 0.709910i 0.0406933 0.0661995i
\(116\) −18.2912 18.2912i −1.69829 1.69829i
\(117\) 0 0
\(118\) 14.3173i 1.31801i
\(119\) −0.192417 0.886412i −0.0176389 0.0812573i
\(120\) 0 0
\(121\) 10.7244i 0.974948i
\(122\) 9.54484 9.54484i 0.864149 0.864149i
\(123\) 0 0
\(124\) 7.62880 + 7.62880i 0.685087 + 0.685087i
\(125\) −7.22568 8.53168i −0.646284 0.763097i
\(126\) 0 0
\(127\) −9.74047 −0.864327 −0.432163 0.901795i \(-0.642250\pi\)
−0.432163 + 0.901795i \(0.642250\pi\)
\(128\) 20.7382 1.83301
\(129\) 0 0
\(130\) 10.2095 2.43613i 0.895429 0.213663i
\(131\) 13.9200 + 13.9200i 1.21620 + 1.21620i 0.968954 + 0.247242i \(0.0795244\pi\)
0.247242 + 0.968954i \(0.420476\pi\)
\(132\) 0 0
\(133\) 0.622235 0.622235i 0.0539547 0.0539547i
\(134\) 27.4700i 2.37304i
\(135\) 0 0
\(136\) −14.0168 9.01679i −1.20193 0.773184i
\(137\) 4.65693i 0.397869i 0.980013 + 0.198934i \(0.0637480\pi\)
−0.980013 + 0.198934i \(0.936252\pi\)
\(138\) 0 0
\(139\) −3.71079 3.71079i −0.314745 0.314745i 0.532000 0.846745i \(-0.321441\pi\)
−0.846745 + 0.532000i \(0.821441\pi\)
\(140\) 0.951603 1.54806i 0.0804251 0.130835i
\(141\) 0 0
\(142\) −12.0866 12.0866i −1.01429 1.01429i
\(143\) −0.730192 0.730192i −0.0610618 0.0610618i
\(144\) 0 0
\(145\) 8.19994 13.3396i 0.680968 1.10779i
\(146\) −2.00000 + 2.00000i −0.165521 + 0.165521i
\(147\) 0 0
\(148\) 14.9320 14.9320i 1.22740 1.22740i
\(149\) −8.74239 −0.716205 −0.358102 0.933682i \(-0.616576\pi\)
−0.358102 + 0.933682i \(0.616576\pi\)
\(150\) 0 0
\(151\) 15.9032i 1.29418i −0.762412 0.647092i \(-0.775985\pi\)
0.762412 0.647092i \(-0.224015\pi\)
\(152\) 16.1689i 1.31147i
\(153\) 0 0
\(154\) −0.275573 −0.0222063
\(155\) −3.41999 + 5.56361i −0.274700 + 0.446880i
\(156\) 0 0
\(157\) 10.0719i 0.803823i −0.915679 0.401911i \(-0.868346\pi\)
0.915679 0.401911i \(-0.131654\pi\)
\(158\) 11.3564 11.3564i 0.903468 0.903468i
\(159\) 0 0
\(160\) 1.39988 + 5.86670i 0.110670 + 0.463804i
\(161\) 0.0819845i 0.00646128i
\(162\) 0 0
\(163\) 6.77963 + 6.77963i 0.531021 + 0.531021i 0.920876 0.389855i \(-0.127475\pi\)
−0.389855 + 0.920876i \(0.627475\pi\)
\(164\) −2.08198 + 2.08198i −0.162576 + 0.162576i
\(165\) 0 0
\(166\) 14.5972 1.13296
\(167\) 3.77871 3.77871i 0.292405 0.292405i −0.545624 0.838030i \(-0.683707\pi\)
0.838030 + 0.545624i \(0.183707\pi\)
\(168\) 0 0
\(169\) 9.13038 0.702337
\(170\) 7.28280 20.7593i 0.558565 1.59217i
\(171\) 0 0
\(172\) −9.21344 −0.702518
\(173\) 12.3426 12.3426i 0.938390 0.938390i −0.0598193 0.998209i \(-0.519052\pi\)
0.998209 + 0.0598193i \(0.0190524\pi\)
\(174\) 0 0
\(175\) 1.04519 + 0.342804i 0.0790086 + 0.0259135i
\(176\) −0.838015 + 0.838015i −0.0631678 + 0.0631678i
\(177\) 0 0
\(178\) 38.1440 2.85901
\(179\) 21.3248i 1.59389i −0.604052 0.796945i \(-0.706448\pi\)
0.604052 0.796945i \(-0.293552\pi\)
\(180\) 0 0
\(181\) 10.2092 10.2092i 0.758845 0.758845i −0.217267 0.976112i \(-0.569714\pi\)
0.976112 + 0.217267i \(0.0697144\pi\)
\(182\) −0.730192 + 0.730192i −0.0541255 + 0.0541255i
\(183\) 0 0
\(184\) 1.06519 + 1.06519i 0.0785269 + 0.0785269i
\(185\) 10.8897 + 6.69399i 0.800629 + 0.492152i
\(186\) 0 0
\(187\) −2.11516 + 0.459148i −0.154676 + 0.0335762i
\(188\) 24.8959i 1.81572i
\(189\) 0 0
\(190\) 20.7601 4.95367i 1.50609 0.359377i
\(191\) 6.74239 0.487862 0.243931 0.969793i \(-0.421563\pi\)
0.243931 + 0.969793i \(0.421563\pi\)
\(192\) 0 0
\(193\) −10.3627 10.3627i −0.745924 0.745924i 0.227787 0.973711i \(-0.426851\pi\)
−0.973711 + 0.227787i \(0.926851\pi\)
\(194\) −15.5488 + 15.5488i −1.11634 + 1.11634i
\(195\) 0 0
\(196\) 25.6792i 1.83423i
\(197\) 0.614707 + 0.614707i 0.0437960 + 0.0437960i 0.728666 0.684870i \(-0.240141\pi\)
−0.684870 + 0.728666i \(0.740141\pi\)
\(198\) 0 0
\(199\) 9.40478 + 9.40478i 0.666687 + 0.666687i 0.956948 0.290260i \(-0.0937419\pi\)
−0.290260 + 0.956948i \(0.593742\pi\)
\(200\) 18.0336 9.12576i 1.27517 0.645289i
\(201\) 0 0
\(202\) −17.2027 −1.21038
\(203\) 1.54053i 0.108124i
\(204\) 0 0
\(205\) −1.51837 0.933353i −0.106048 0.0651882i
\(206\) 22.7276i 1.58351i
\(207\) 0 0
\(208\) 4.44102i 0.307929i
\(209\) −1.48478 1.48478i −0.102705 0.102705i
\(210\) 0 0
\(211\) −12.5804 + 12.5804i −0.866071 + 0.866071i −0.992035 0.125964i \(-0.959798\pi\)
0.125964 + 0.992035i \(0.459798\pi\)
\(212\) −21.8747 −1.50236
\(213\) 0 0
\(214\) 18.1956 18.1956i 1.24382 1.24382i
\(215\) −1.29444 5.42483i −0.0882804 0.369970i
\(216\) 0 0
\(217\) 0.642517i 0.0436169i
\(218\) 23.7466 23.7466i 1.60832 1.60832i
\(219\) 0 0
\(220\) −3.69399 2.27072i −0.249049 0.153092i
\(221\) −4.38799 + 6.82122i −0.295168 + 0.458845i
\(222\) 0 0
\(223\) −1.96713 −0.131729 −0.0658645 0.997829i \(-0.520981\pi\)
−0.0658645 + 0.997829i \(0.520981\pi\)
\(224\) −0.419593 0.419593i −0.0280352 0.0280352i
\(225\) 0 0
\(226\) −12.1304 12.1304i −0.806901 0.806901i
\(227\) −8.45593 8.45593i −0.561239 0.561239i 0.368420 0.929659i \(-0.379899\pi\)
−0.929659 + 0.368420i \(0.879899\pi\)
\(228\) 0 0
\(229\) 9.30601i 0.614958i −0.951555 0.307479i \(-0.900515\pi\)
0.951555 0.307479i \(-0.0994854\pi\)
\(230\) −1.04131 + 1.69399i −0.0686620 + 0.111699i
\(231\) 0 0
\(232\) 20.0155 + 20.0155i 1.31408 + 1.31408i
\(233\) −18.2440 + 18.2440i −1.19520 + 1.19520i −0.219618 + 0.975586i \(0.570481\pi\)
−0.975586 + 0.219618i \(0.929519\pi\)
\(234\) 0 0
\(235\) −14.6586 + 3.49775i −0.956220 + 0.228168i
\(236\) 22.1640i 1.44275i
\(237\) 0 0
\(238\) 0.459148 + 2.11516i 0.0297621 + 0.137106i
\(239\) 29.2912 1.89469 0.947345 0.320215i \(-0.103755\pi\)
0.947345 + 0.320215i \(0.103755\pi\)
\(240\) 0 0
\(241\) 6.00000 + 6.00000i 0.386494 + 0.386494i 0.873435 0.486941i \(-0.161887\pi\)
−0.486941 + 0.873435i \(0.661887\pi\)
\(242\) 25.5907i 1.64503i
\(243\) 0 0
\(244\) −14.7760 + 14.7760i −0.945935 + 0.945935i
\(245\) 15.1198 3.60781i 0.965967 0.230494i
\(246\) 0 0
\(247\) −7.86854 −0.500663
\(248\) −8.34797 8.34797i −0.530097 0.530097i
\(249\) 0 0
\(250\) 17.2420 + 20.3584i 1.09048 + 1.28758i
\(251\) 1.77282 0.111900 0.0559498 0.998434i \(-0.482181\pi\)
0.0559498 + 0.998434i \(0.482181\pi\)
\(252\) 0 0
\(253\) 0.195632 0.0122993
\(254\) 23.2428 1.45838
\(255\) 0 0
\(256\) −27.5824 −1.72390
\(257\) 7.40235 0.461746 0.230873 0.972984i \(-0.425842\pi\)
0.230873 + 0.972984i \(0.425842\pi\)
\(258\) 0 0
\(259\) −1.25761 −0.0781440
\(260\) −15.8049 + 3.77128i −0.980176 + 0.233885i
\(261\) 0 0
\(262\) −33.2160 33.2160i −2.05209 2.05209i
\(263\) −7.67291 −0.473132 −0.236566 0.971615i \(-0.576022\pi\)
−0.236566 + 0.971615i \(0.576022\pi\)
\(264\) 0 0
\(265\) −3.07329 12.8797i −0.188791 0.791194i
\(266\) −1.48478 + 1.48478i −0.0910379 + 0.0910379i
\(267\) 0 0
\(268\) 42.5252i 2.59764i
\(269\) 5.56677 + 5.56677i 0.339412 + 0.339412i 0.856146 0.516734i \(-0.172852\pi\)
−0.516734 + 0.856146i \(0.672852\pi\)
\(270\) 0 0
\(271\) 18.0672 1.09750 0.548751 0.835986i \(-0.315103\pi\)
0.548751 + 0.835986i \(0.315103\pi\)
\(272\) 7.82847 + 5.03593i 0.474670 + 0.305348i
\(273\) 0 0
\(274\) 11.1124i 0.671326i
\(275\) 0.818002 2.49403i 0.0493274 0.150396i
\(276\) 0 0
\(277\) −18.7786 + 18.7786i −1.12829 + 1.12829i −0.137840 + 0.990455i \(0.544016\pi\)
−0.990455 + 0.137840i \(0.955984\pi\)
\(278\) 8.85472 + 8.85472i 0.531071 + 0.531071i
\(279\) 0 0
\(280\) −1.04131 + 1.69399i −0.0622302 + 0.101236i
\(281\) 13.7728i 0.821618i −0.911721 0.410809i \(-0.865246\pi\)
0.911721 0.410809i \(-0.134754\pi\)
\(282\) 0 0
\(283\) −9.72068 9.72068i −0.577834 0.577834i 0.356472 0.934306i \(-0.383980\pi\)
−0.934306 + 0.356472i \(0.883980\pi\)
\(284\) 18.7108 + 18.7108i 1.11028 + 1.11028i
\(285\) 0 0
\(286\) 1.74239 + 1.74239i 0.103030 + 0.103030i
\(287\) 0.175350 0.0103506
\(288\) 0 0
\(289\) 7.04840 + 15.4700i 0.414612 + 0.909998i
\(290\) −19.5668 + 31.8311i −1.14900 + 1.86918i
\(291\) 0 0
\(292\) 3.09612 3.09612i 0.181187 0.181187i
\(293\) 19.8873i 1.16183i −0.813966 0.580913i \(-0.802696\pi\)
0.813966 0.580913i \(-0.197304\pi\)
\(294\) 0 0
\(295\) −13.0500 + 3.11393i −0.759802 + 0.181300i
\(296\) −16.3396 + 16.3396i −0.949720 + 0.949720i
\(297\) 0 0
\(298\) 20.8612 1.20846
\(299\) 0.518371 0.518371i 0.0299782 0.0299782i
\(300\) 0 0
\(301\) 0.387990 + 0.387990i 0.0223634 + 0.0223634i
\(302\) 37.9484i 2.18368i
\(303\) 0 0
\(304\) 9.03043i 0.517931i
\(305\) −10.7760 6.62407i −0.617031 0.379293i
\(306\) 0 0
\(307\) 14.9598i 0.853799i −0.904299 0.426900i \(-0.859606\pi\)
0.904299 0.426900i \(-0.140394\pi\)
\(308\) 0.426603 0.0243080
\(309\) 0 0
\(310\) 8.16081 13.2759i 0.463503 0.754023i
\(311\) 20.9684 + 20.9684i 1.18901 + 1.18901i 0.977342 + 0.211667i \(0.0678892\pi\)
0.211667 + 0.977342i \(0.432111\pi\)
\(312\) 0 0
\(313\) 10.1671 + 10.1671i 0.574677 + 0.574677i 0.933432 0.358755i \(-0.116799\pi\)
−0.358755 + 0.933432i \(0.616799\pi\)
\(314\) 24.0336i 1.35629i
\(315\) 0 0
\(316\) −17.5804 + 17.5804i −0.988975 + 0.988975i
\(317\) 9.74047 + 9.74047i 0.547079 + 0.547079i 0.925595 0.378516i \(-0.123565\pi\)
−0.378516 + 0.925595i \(0.623565\pi\)
\(318\) 0 0
\(319\) 3.67603 0.205818
\(320\) −5.68376 23.8198i −0.317732 1.33157i
\(321\) 0 0
\(322\) 0.195632i 0.0109021i
\(323\) −8.92260 + 13.8704i −0.496467 + 0.771768i
\(324\) 0 0
\(325\) −4.44102 8.77598i −0.246343 0.486804i
\(326\) −16.1776 16.1776i −0.895995 0.895995i
\(327\) 0 0
\(328\) 2.27825 2.27825i 0.125795 0.125795i
\(329\) 1.04840 1.04840i 0.0578000 0.0578000i
\(330\) 0 0
\(331\) 20.1640i 1.10831i −0.832413 0.554156i \(-0.813041\pi\)
0.832413 0.554156i \(-0.186959\pi\)
\(332\) −22.5973 −1.24019
\(333\) 0 0
\(334\) −9.01679 + 9.01679i −0.493377 + 0.493377i
\(335\) −25.0386 + 5.97459i −1.36801 + 0.326427i
\(336\) 0 0
\(337\) 20.2111 20.2111i 1.10097 1.10097i 0.106677 0.994294i \(-0.465979\pi\)
0.994294 0.106677i \(-0.0340210\pi\)
\(338\) −21.7870 −1.18506
\(339\) 0 0
\(340\) −11.2742 + 32.1367i −0.611430 + 1.74286i
\(341\) −1.53318 −0.0830264
\(342\) 0 0
\(343\) −2.17030 + 2.17030i −0.117185 + 0.117185i
\(344\) 10.0820 0.543584
\(345\) 0 0
\(346\) −29.4520 + 29.4520i −1.58335 + 1.58335i
\(347\) −7.73326 7.73326i −0.415143 0.415143i 0.468383 0.883526i \(-0.344837\pi\)
−0.883526 + 0.468383i \(0.844837\pi\)
\(348\) 0 0
\(349\) 0.645598i 0.0345581i −0.999851 0.0172790i \(-0.994500\pi\)
0.999851 0.0172790i \(-0.00550036\pi\)
\(350\) −2.49403 0.818002i −0.133312 0.0437240i
\(351\) 0 0
\(352\) −1.00124 + 1.00124i −0.0533661 + 0.0533661i
\(353\) 14.3022i 0.761229i −0.924734 0.380615i \(-0.875712\pi\)
0.924734 0.380615i \(-0.124288\pi\)
\(354\) 0 0
\(355\) −8.38804 + 13.6456i −0.445191 + 0.724233i
\(356\) −59.0492 −3.12960
\(357\) 0 0
\(358\) 50.8854i 2.68938i
\(359\) 15.6760i 0.827349i 0.910425 + 0.413675i \(0.135755\pi\)
−0.910425 + 0.413675i \(0.864245\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −24.3613 + 24.3613i −1.28040 + 1.28040i
\(363\) 0 0
\(364\) 1.13038 1.13038i 0.0592481 0.0592481i
\(365\) 2.25797 + 1.38799i 0.118188 + 0.0726507i
\(366\) 0 0
\(367\) 15.4863 + 15.4863i 0.808379 + 0.808379i 0.984388 0.176009i \(-0.0563189\pi\)
−0.176009 + 0.984388i \(0.556319\pi\)
\(368\) −0.594916 0.594916i −0.0310121 0.0310121i
\(369\) 0 0
\(370\) −25.9852 15.9733i −1.35091 0.830411i
\(371\) 0.921171 + 0.921171i 0.0478248 + 0.0478248i
\(372\) 0 0
\(373\) 6.50858i 0.337002i −0.985702 0.168501i \(-0.946107\pi\)
0.985702 0.168501i \(-0.0538926\pi\)
\(374\) 5.04723 1.09562i 0.260986 0.0566533i
\(375\) 0 0
\(376\) 27.2428i 1.40494i
\(377\) 9.74047 9.74047i 0.501660 0.501660i
\(378\) 0 0
\(379\) −5.32280 5.32280i −0.273414 0.273414i 0.557059 0.830473i \(-0.311930\pi\)
−0.830473 + 0.557059i \(0.811930\pi\)
\(380\) −32.1378 + 7.66857i −1.64864 + 0.393389i
\(381\) 0 0
\(382\) −16.0888 −0.823172
\(383\) 24.7752 1.26595 0.632976 0.774172i \(-0.281833\pi\)
0.632976 + 0.774172i \(0.281833\pi\)
\(384\) 0 0
\(385\) 0.0599358 + 0.251182i 0.00305461 + 0.0128014i
\(386\) 24.7276 + 24.7276i 1.25860 + 1.25860i
\(387\) 0 0
\(388\) 24.0705 24.0705i 1.22199 1.22199i
\(389\) 23.6971i 1.20149i −0.799440 0.600747i \(-0.794870\pi\)
0.799440 0.600747i \(-0.205130\pi\)
\(390\) 0 0
\(391\) −0.325954 1.50158i −0.0164842 0.0759380i
\(392\) 28.1000i 1.41926i
\(393\) 0 0
\(394\) −1.46682 1.46682i −0.0738973 0.0738973i
\(395\) −12.8212 7.88129i −0.645106 0.396551i
\(396\) 0 0
\(397\) 19.5964 + 19.5964i 0.983516 + 0.983516i 0.999866 0.0163500i \(-0.00520460\pi\)
−0.0163500 + 0.999866i \(0.505205\pi\)
\(398\) −22.4418 22.4418i −1.12490 1.12490i
\(399\) 0 0
\(400\) −10.0719 + 5.09679i −0.503593 + 0.254840i
\(401\) 21.5972 21.5972i 1.07851 1.07851i 0.0818697 0.996643i \(-0.473911\pi\)
0.996643 0.0818697i \(-0.0260891\pi\)
\(402\) 0 0
\(403\) −4.06251 + 4.06251i −0.202368 + 0.202368i
\(404\) 26.6308 1.32493
\(405\) 0 0
\(406\) 3.67603i 0.182438i
\(407\) 3.00092i 0.148750i
\(408\) 0 0
\(409\) 5.90321 0.291895 0.145947 0.989292i \(-0.453377\pi\)
0.145947 + 0.989292i \(0.453377\pi\)
\(410\) 3.62315 + 2.22718i 0.178935 + 0.109992i
\(411\) 0 0
\(412\) 35.1837i 1.73337i
\(413\) 0.933353 0.933353i 0.0459273 0.0459273i
\(414\) 0 0
\(415\) −3.17482 13.3052i −0.155846 0.653127i
\(416\) 5.30601i 0.260148i
\(417\) 0 0
\(418\) 3.54301 + 3.54301i 0.173294 + 0.173294i
\(419\) −22.9716 + 22.9716i −1.12223 + 1.12223i −0.130829 + 0.991405i \(0.541764\pi\)
−0.991405 + 0.130829i \(0.958236\pi\)
\(420\) 0 0
\(421\) 30.1156 1.46774 0.733872 0.679288i \(-0.237711\pi\)
0.733872 + 0.679288i \(0.237711\pi\)
\(422\) 30.0195 30.0195i 1.46133 1.46133i
\(423\) 0 0
\(424\) 23.9368 1.16247
\(425\) −20.5059 2.12314i −0.994683 0.102987i
\(426\) 0 0
\(427\) 1.24447 0.0602242
\(428\) −28.1678 + 28.1678i −1.36154 + 1.36154i
\(429\) 0 0
\(430\) 3.08882 + 12.9448i 0.148956 + 0.624252i
\(431\) 5.88641 5.88641i 0.283538 0.283538i −0.550980 0.834518i \(-0.685746\pi\)
0.834518 + 0.550980i \(0.185746\pi\)
\(432\) 0 0
\(433\) −13.5795 −0.652591 −0.326295 0.945268i \(-0.605800\pi\)
−0.326295 + 0.945268i \(0.605800\pi\)
\(434\) 1.53318i 0.0735950i
\(435\) 0 0
\(436\) −36.7612 + 36.7612i −1.76054 + 1.76054i
\(437\) 1.05406 1.05406i 0.0504227 0.0504227i
\(438\) 0 0
\(439\) 14.4048 + 14.4048i 0.687503 + 0.687503i 0.961679 0.274177i \(-0.0884053\pi\)
−0.274177 + 0.961679i \(0.588405\pi\)
\(440\) 4.04223 + 2.48478i 0.192706 + 0.118457i
\(441\) 0 0
\(442\) 10.4707 16.2769i 0.498039 0.774211i
\(443\) 2.45360i 0.116574i 0.998300 + 0.0582871i \(0.0185639\pi\)
−0.998300 + 0.0582871i \(0.981436\pi\)
\(444\) 0 0
\(445\) −8.29614 34.7679i −0.393275 1.64816i
\(446\) 4.69399 0.222267
\(447\) 0 0
\(448\) 1.70362 + 1.70362i 0.0804884 + 0.0804884i
\(449\) −2.26076 + 2.26076i −0.106692 + 0.106692i −0.758438 0.651746i \(-0.774037\pi\)
0.651746 + 0.758438i \(0.274037\pi\)
\(450\) 0 0
\(451\) 0.418422i 0.0197027i
\(452\) 18.7786 + 18.7786i 0.883269 + 0.883269i
\(453\) 0 0
\(454\) 20.1776 + 20.1776i 0.946982 + 0.946982i
\(455\) 0.824376 + 0.506750i 0.0386474 + 0.0237568i
\(456\) 0 0
\(457\) 30.1803 1.41177 0.705887 0.708325i \(-0.250549\pi\)
0.705887 + 0.708325i \(0.250549\pi\)
\(458\) 22.2061i 1.03762i
\(459\) 0 0
\(460\) 1.61201 2.62241i 0.0751604 0.122270i
\(461\) 5.41527i 0.252214i 0.992017 + 0.126107i \(0.0402483\pi\)
−0.992017 + 0.126107i \(0.959752\pi\)
\(462\) 0 0
\(463\) 15.7574i 0.732307i −0.930555 0.366153i \(-0.880675\pi\)
0.930555 0.366153i \(-0.119325\pi\)
\(464\) −11.1788 11.1788i −0.518962 0.518962i
\(465\) 0 0
\(466\) 43.5340 43.5340i 2.01667 2.01667i
\(467\) 10.7690 0.498331 0.249166 0.968461i \(-0.419844\pi\)
0.249166 + 0.968461i \(0.419844\pi\)
\(468\) 0 0
\(469\) 1.79079 1.79079i 0.0826910 0.0826910i
\(470\) 34.9784 8.34637i 1.61343 0.384989i
\(471\) 0 0
\(472\) 24.2534i 1.11635i
\(473\) 0.925824 0.925824i 0.0425695 0.0425695i
\(474\) 0 0
\(475\) −9.03043 17.8452i −0.414345 0.818794i
\(476\) −0.710788 3.27440i −0.0325789 0.150082i
\(477\) 0 0
\(478\) −69.8949 −3.19692
\(479\) −26.0988 26.0988i −1.19248 1.19248i −0.976368 0.216116i \(-0.930661\pi\)
−0.216116 0.976368i \(-0.569339\pi\)
\(480\) 0 0
\(481\) 7.95160 + 7.95160i 0.362562 + 0.362562i
\(482\) −14.3173 14.3173i −0.652133 0.652133i
\(483\) 0 0
\(484\) 39.6160i 1.80073i
\(485\) 17.5544 + 10.7908i 0.797103 + 0.489984i
\(486\) 0 0
\(487\) 27.0987 + 27.0987i 1.22796 + 1.22796i 0.964734 + 0.263226i \(0.0847864\pi\)
0.263226 + 0.964734i \(0.415214\pi\)
\(488\) 16.1689 16.1689i 0.731932 0.731932i
\(489\) 0 0
\(490\) −36.0790 + 8.60898i −1.62988 + 0.388914i
\(491\) 38.0336i 1.71643i 0.513289 + 0.858216i \(0.328427\pi\)
−0.513289 + 0.858216i \(0.671573\pi\)
\(492\) 0 0
\(493\) −6.12485 28.2154i −0.275849 1.27076i
\(494\) 18.7760 0.844771
\(495\) 0 0
\(496\) 4.66239 + 4.66239i 0.209348 + 0.209348i
\(497\) 1.57587i 0.0706875i
\(498\) 0 0
\(499\) 6.58041 6.58041i 0.294579 0.294579i −0.544307 0.838886i \(-0.683207\pi\)
0.838886 + 0.544307i \(0.183207\pi\)
\(500\) −26.6916 31.5160i −1.19369 1.40944i
\(501\) 0 0
\(502\) −4.23033 −0.188809
\(503\) 1.10919 + 1.10919i 0.0494565 + 0.0494565i 0.731403 0.681946i \(-0.238866\pi\)
−0.681946 + 0.731403i \(0.738866\pi\)
\(504\) 0 0
\(505\) 3.74150 + 15.6801i 0.166495 + 0.697754i
\(506\) −0.466819 −0.0207526
\(507\) 0 0
\(508\) −35.9812 −1.59641
\(509\) 24.4247 1.08261 0.541304 0.840827i \(-0.317931\pi\)
0.541304 + 0.840827i \(0.317931\pi\)
\(510\) 0 0
\(511\) −0.260763 −0.0115355
\(512\) 24.3410 1.07573
\(513\) 0 0
\(514\) −17.6636 −0.779106
\(515\) −20.7160 + 4.94314i −0.912854 + 0.217821i
\(516\) 0 0
\(517\) −2.50169 2.50169i −0.110024 0.110024i
\(518\) 3.00092 0.131853
\(519\) 0 0
\(520\) 17.2948 4.12679i 0.758426 0.180972i
\(521\) 5.30916 5.30916i 0.232599 0.232599i −0.581178 0.813776i \(-0.697408\pi\)
0.813776 + 0.581178i \(0.197408\pi\)
\(522\) 0 0
\(523\) 8.98247i 0.392776i −0.980526 0.196388i \(-0.937079\pi\)
0.980526 0.196388i \(-0.0629212\pi\)
\(524\) 51.4204 + 51.4204i 2.24631 + 2.24631i
\(525\) 0 0
\(526\) 18.3092 0.798317
\(527\) 2.55452 + 11.7680i 0.111277 + 0.512620i
\(528\) 0 0
\(529\) 22.8611i 0.993962i
\(530\) 7.33351 + 30.7337i 0.318547 + 1.33498i
\(531\) 0 0
\(532\) 2.29853 2.29853i 0.0996541 0.0996541i
\(533\) −1.10870 1.10870i −0.0480233 0.0480233i
\(534\) 0 0
\(535\) −20.5425 12.6276i −0.888131 0.545940i
\(536\) 46.5340i 2.00996i
\(537\) 0 0
\(538\) −13.2835 13.2835i −0.572691 0.572691i
\(539\) 2.58041 + 2.58041i 0.111146 + 0.111146i
\(540\) 0 0
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) −43.1121 −1.85182
\(543\) 0 0
\(544\) 9.35323 + 6.01679i 0.401016 + 0.257968i
\(545\) −26.8096 16.4800i −1.14840 0.705927i
\(546\) 0 0
\(547\) 1.81910 1.81910i 0.0777793 0.0777793i −0.667147 0.744926i \(-0.732485\pi\)
0.744926 + 0.667147i \(0.232485\pi\)
\(548\) 17.2027i 0.734862i
\(549\) 0 0
\(550\) −1.95192 + 5.95128i −0.0832303 + 0.253764i
\(551\) 19.8064 19.8064i 0.843782 0.843782i
\(552\) 0 0
\(553\) 1.48067 0.0629644
\(554\) 44.8096 44.8096i 1.90378 1.90378i
\(555\) 0 0
\(556\) −13.7076 13.7076i −0.581333 0.581333i
\(557\) 21.0162i 0.890487i −0.895410 0.445243i \(-0.853117\pi\)
0.895410 0.445243i \(-0.146883\pi\)
\(558\) 0 0
\(559\) 4.90636i 0.207517i
\(560\) 0.581578 0.946106i 0.0245762 0.0399803i
\(561\) 0 0
\(562\) 32.8648i 1.38632i
\(563\) −40.5377 −1.70846 −0.854231 0.519893i \(-0.825972\pi\)
−0.854231 + 0.519893i \(0.825972\pi\)
\(564\) 0 0
\(565\) −8.41842 + 13.6950i −0.354166 + 0.576154i
\(566\) 23.1956 + 23.1956i 0.974983 + 0.974983i
\(567\) 0 0
\(568\) −20.4746 20.4746i −0.859097 0.859097i
\(569\) 0.612010i 0.0256568i −0.999918 0.0128284i \(-0.995916\pi\)
0.999918 0.0128284i \(-0.00408352\pi\)
\(570\) 0 0
\(571\) −10.5320 + 10.5320i −0.440751 + 0.440751i −0.892264 0.451513i \(-0.850884\pi\)
0.451513 + 0.892264i \(0.350884\pi\)
\(572\) −2.69733 2.69733i −0.112781 0.112781i
\(573\) 0 0
\(574\) −0.418422 −0.0174646
\(575\) 1.77054 + 0.580708i 0.0738366 + 0.0242172i
\(576\) 0 0
\(577\) 37.2107i 1.54910i 0.632513 + 0.774550i \(0.282024\pi\)
−0.632513 + 0.774550i \(0.717976\pi\)
\(578\) −16.8190 36.9146i −0.699576 1.53544i
\(579\) 0 0
\(580\) 30.2905 49.2764i 1.25775 2.04609i
\(581\) 0.951603 + 0.951603i 0.0394791 + 0.0394791i
\(582\) 0 0
\(583\) 2.19811 2.19811i 0.0910362 0.0910362i
\(584\) −3.38799 + 3.38799i −0.140196 + 0.140196i
\(585\) 0 0
\(586\) 47.4552i 1.96035i
\(587\) 9.60470 0.396428 0.198214 0.980159i \(-0.436486\pi\)
0.198214 + 0.980159i \(0.436486\pi\)
\(588\) 0 0
\(589\) −8.26076 + 8.26076i −0.340379 + 0.340379i
\(590\) 31.1401 7.43050i 1.28202 0.305909i
\(591\) 0 0
\(592\) 9.12576 9.12576i 0.375067 0.375067i
\(593\) 16.5206 0.678419 0.339210 0.940711i \(-0.389840\pi\)
0.339210 + 0.940711i \(0.389840\pi\)
\(594\) 0 0
\(595\) 1.82809 0.878547i 0.0749443 0.0360169i
\(596\) −32.2944 −1.32283
\(597\) 0 0
\(598\) −1.23694 + 1.23694i −0.0505823 + 0.0505823i
\(599\) −34.8096 −1.42228 −0.711140 0.703050i \(-0.751821\pi\)
−0.711140 + 0.703050i \(0.751821\pi\)
\(600\) 0 0
\(601\) −8.26076 + 8.26076i −0.336964 + 0.336964i −0.855223 0.518260i \(-0.826580\pi\)
0.518260 + 0.855223i \(0.326580\pi\)
\(602\) −0.925824 0.925824i −0.0377338 0.0377338i
\(603\) 0 0
\(604\) 58.7464i 2.39036i
\(605\) −23.3257 + 5.56586i −0.948324 + 0.226284i
\(606\) 0 0
\(607\) 19.0421 19.0421i 0.772894 0.772894i −0.205718 0.978611i \(-0.565953\pi\)
0.978611 + 0.205718i \(0.0659528\pi\)
\(608\) 10.7893i 0.437564i
\(609\) 0 0
\(610\) 25.7137 + 15.8064i 1.04112 + 0.639983i
\(611\) −13.2576 −0.536345
\(612\) 0 0
\(613\) 5.43522i 0.219526i 0.993958 + 0.109763i \(0.0350092\pi\)
−0.993958 + 0.109763i \(0.964991\pi\)
\(614\) 35.6971i 1.44062i
\(615\) 0 0
\(616\) −0.466819 −0.0188087
\(617\) −2.47388 + 2.47388i −0.0995948 + 0.0995948i −0.755149 0.655554i \(-0.772435\pi\)
0.655554 + 0.755149i \(0.272435\pi\)
\(618\) 0 0
\(619\) 8.57725 8.57725i 0.344749 0.344749i −0.513400 0.858149i \(-0.671614\pi\)
0.858149 + 0.513400i \(0.171614\pi\)
\(620\) −12.6334 + 20.5520i −0.507371 + 0.825387i
\(621\) 0 0
\(622\) −50.0350 50.0350i −2.00622 2.00622i
\(623\) 2.48664 + 2.48664i 0.0996250 + 0.0996250i
\(624\) 0 0
\(625\) 14.8064 20.1437i 0.592256 0.805750i
\(626\) −24.2608 24.2608i −0.969655 0.969655i
\(627\) 0 0
\(628\) 37.2054i 1.48466i
\(629\) 23.0336 5.00000i 0.918409 0.199363i
\(630\) 0 0
\(631\) 12.6183i 0.502327i −0.967945 0.251164i \(-0.919187\pi\)
0.967945 0.251164i \(-0.0808132\pi\)
\(632\) 19.2377 19.2377i 0.765235 0.765235i
\(633\) 0 0
\(634\) −23.2428 23.2428i −0.923089 0.923089i
\(635\) −5.05520 21.1856i −0.200609 0.840724i
\(636\) 0 0
\(637\) 13.6747 0.541813
\(638\) −8.77178 −0.347278
\(639\) 0 0
\(640\) 10.7629 + 45.1056i 0.425440 + 1.78296i
\(641\) −21.3544 21.3544i −0.843448 0.843448i 0.145857 0.989306i \(-0.453406\pi\)
−0.989306 + 0.145857i \(0.953406\pi\)
\(642\) 0 0
\(643\) 13.9383 13.9383i 0.549671 0.549671i −0.376675 0.926346i \(-0.622932\pi\)
0.926346 + 0.376675i \(0.122932\pi\)
\(644\) 0.302850i 0.0119340i
\(645\) 0 0
\(646\) 21.2912 33.0976i 0.837691 1.30221i
\(647\) 21.0418i 0.827237i −0.910450 0.413618i \(-0.864265\pi\)
0.910450 0.413618i \(-0.135735\pi\)
\(648\) 0 0
\(649\) −2.22718 2.22718i −0.0874243 0.0874243i
\(650\) 10.5972 + 20.9413i 0.415656 + 0.821386i
\(651\) 0 0
\(652\) 25.0439 + 25.0439i 0.980795 + 0.980795i
\(653\) 27.3773 + 27.3773i 1.07136 + 1.07136i 0.997250 + 0.0741056i \(0.0236102\pi\)
0.0741056 + 0.997250i \(0.476390\pi\)
\(654\) 0 0
\(655\) −23.0518 + 37.5004i −0.900707 + 1.46526i
\(656\) −1.27242 + 1.27242i −0.0496796 + 0.0496796i
\(657\) 0 0
\(658\) −2.50169 + 2.50169i −0.0975262 + 0.0975262i
\(659\) 24.1577 0.941049 0.470524 0.882387i \(-0.344065\pi\)
0.470524 + 0.882387i \(0.344065\pi\)
\(660\) 0 0
\(661\) 25.7432i 1.00129i 0.865651 + 0.500647i \(0.166905\pi\)
−0.865651 + 0.500647i \(0.833095\pi\)
\(662\) 48.1155i 1.87006i
\(663\) 0 0
\(664\) 24.7276 0.959616
\(665\) 1.67630 + 1.03043i 0.0650041 + 0.0399585i
\(666\) 0 0
\(667\) 2.60965i 0.101046i
\(668\) 13.9585 13.9585i 0.540072 0.540072i
\(669\) 0 0
\(670\) 59.7474 14.2566i 2.30824 0.550781i
\(671\) 2.96957i 0.114639i
\(672\) 0 0
\(673\) −7.42165 7.42165i −0.286084 0.286084i 0.549446 0.835529i \(-0.314839\pi\)
−0.835529 + 0.549446i \(0.814839\pi\)
\(674\) −48.2280 + 48.2280i −1.85767 + 1.85767i
\(675\) 0 0
\(676\) 33.7276 1.29721
\(677\) 6.00183 6.00183i 0.230669 0.230669i −0.582303 0.812972i \(-0.697848\pi\)
0.812972 + 0.582303i \(0.197848\pi\)
\(678\) 0 0
\(679\) −2.02728 −0.0777998
\(680\) 12.3370 35.1662i 0.473103 1.34856i
\(681\) 0 0
\(682\) 3.65849 0.140091
\(683\) −10.1044 + 10.1044i −0.386635 + 0.386635i −0.873485 0.486851i \(-0.838146\pi\)
0.486851 + 0.873485i \(0.338146\pi\)
\(684\) 0 0
\(685\) −10.1289 + 2.41690i −0.387004 + 0.0923449i
\(686\) 5.17878 5.17878i 0.197727 0.197727i
\(687\) 0 0
\(688\) −5.63085 −0.214674
\(689\) 11.6488i 0.443782i
\(690\) 0 0
\(691\) −6.24081 + 6.24081i −0.237412 + 0.237412i −0.815778 0.578366i \(-0.803691\pi\)
0.578366 + 0.815778i \(0.303691\pi\)
\(692\) 45.5935 45.5935i 1.73320 1.73320i
\(693\) 0 0
\(694\) 18.4532 + 18.4532i 0.700473 + 0.700473i
\(695\) 6.14513 9.99684i 0.233098 0.379202i
\(696\) 0 0
\(697\) −3.21161 + 0.697157i −0.121648 + 0.0264067i
\(698\) 1.54053i 0.0583100i
\(699\) 0 0
\(700\) 3.86091 + 1.26632i 0.145929 + 0.0478622i
\(701\) −18.5340 −0.700019 −0.350010 0.936746i \(-0.613822\pi\)
−0.350010 + 0.936746i \(0.613822\pi\)
\(702\) 0 0
\(703\) 16.1689 + 16.1689i 0.609822 + 0.609822i
\(704\) 4.06519 4.06519i 0.153213 0.153213i
\(705\) 0 0
\(706\) 34.1280i 1.28443i
\(707\) −1.12146 1.12146i −0.0421767 0.0421767i
\(708\) 0 0
\(709\) −18.0304 18.0304i −0.677147 0.677147i 0.282207 0.959354i \(-0.408934\pi\)
−0.959354 + 0.282207i \(0.908934\pi\)
\(710\) 20.0156 32.5613i 0.751173 1.22200i
\(711\) 0 0
\(712\) 64.6158 2.42158
\(713\) 1.08842i 0.0407617i
\(714\) 0 0
\(715\) 1.20921 1.96713i 0.0452219 0.0735667i
\(716\) 78.7736i 2.94391i
\(717\) 0 0
\(718\) 37.4063i 1.39599i
\(719\) −3.36804 3.36804i −0.125607 0.125607i 0.641509 0.767116i \(-0.278309\pi\)
−0.767116 + 0.641509i \(0.778309\pi\)
\(720\) 0 0
\(721\) 1.48163 1.48163i 0.0551787 0.0551787i
\(722\) −7.15863 −0.266417
\(723\) 0 0
\(724\) 37.7128 37.7128i 1.40158 1.40158i
\(725\) 33.2694 + 10.9118i 1.23559 + 0.405255i
\(726\) 0 0
\(727\) 11.1858i 0.414858i −0.978250 0.207429i \(-0.933490\pi\)
0.978250 0.207429i \(-0.0665096\pi\)
\(728\) −1.23694 + 1.23694i −0.0458441 + 0.0458441i
\(729\) 0 0
\(730\) −5.38799 3.31203i −0.199418 0.122584i
\(731\) −8.64875 5.56361i −0.319886 0.205778i
\(732\) 0 0
\(733\) −26.2804 −0.970687 −0.485344 0.874324i \(-0.661305\pi\)
−0.485344 + 0.874324i \(0.661305\pi\)
\(734\) −36.9536 36.9536i −1.36398 1.36398i
\(735\) 0 0
\(736\) −0.710788 0.710788i −0.0262000 0.0262000i
\(737\) −4.27320 4.27320i −0.157405 0.157405i
\(738\) 0 0
\(739\) 6.00000i 0.220714i −0.993892 0.110357i \(-0.964801\pi\)
0.993892 0.110357i \(-0.0351994\pi\)
\(740\) 40.2266 + 24.7276i 1.47876 + 0.909004i
\(741\) 0 0
\(742\) −2.19811 2.19811i −0.0806950 0.0806950i
\(743\) 24.0700 24.0700i 0.883042 0.883042i −0.110800 0.993843i \(-0.535341\pi\)
0.993843 + 0.110800i \(0.0353415\pi\)
\(744\) 0 0
\(745\) −4.53720 19.0148i −0.166230 0.696647i
\(746\) 15.5308i 0.568624i
\(747\) 0 0
\(748\) −7.81341 + 1.69609i −0.285686 + 0.0620152i
\(749\) 2.37237 0.0866844
\(750\) 0 0
\(751\) −9.22285 9.22285i −0.336547 0.336547i 0.518519 0.855066i \(-0.326483\pi\)
−0.855066 + 0.518519i \(0.826483\pi\)
\(752\) 15.2153i 0.554844i
\(753\) 0 0
\(754\) −23.2428 + 23.2428i −0.846453 + 0.846453i
\(755\) 34.5896 8.25359i 1.25884 0.300379i
\(756\) 0 0
\(757\) 31.8716 1.15839 0.579197 0.815188i \(-0.303366\pi\)
0.579197 + 0.815188i \(0.303366\pi\)
\(758\) 12.7013 + 12.7013i 0.461332 + 0.461332i
\(759\) 0 0
\(760\) 35.1675 8.39148i 1.27566 0.304391i
\(761\) −18.7549 −0.679863 −0.339932 0.940450i \(-0.610404\pi\)
−0.339932 + 0.940450i \(0.610404\pi\)
\(762\) 0 0
\(763\) 3.09612 0.112087
\(764\) 24.9064 0.901081
\(765\) 0 0
\(766\) −59.1187 −2.13605
\(767\) −11.8028 −0.426175
\(768\) 0 0
\(769\) −47.7916 −1.72341 −0.861705 0.507410i \(-0.830603\pi\)
−0.861705 + 0.507410i \(0.830603\pi\)
\(770\) −0.143019 0.599373i −0.00515406 0.0215999i
\(771\) 0 0
\(772\) −38.2798 38.2798i −1.37772 1.37772i
\(773\) 28.3286 1.01891 0.509455 0.860497i \(-0.329847\pi\)
0.509455 + 0.860497i \(0.329847\pi\)
\(774\) 0 0
\(775\) −13.8758 4.55105i −0.498434 0.163478i
\(776\) −26.3396 + 26.3396i −0.945536 + 0.945536i
\(777\) 0 0
\(778\) 56.5464i 2.02729i
\(779\) −2.25445 2.25445i −0.0807742 0.0807742i
\(780\) 0 0
\(781\) −3.76036 −0.134556
\(782\) 0.777794 + 3.58308i 0.0278139 + 0.128131i
\(783\) 0 0
\(784\) 15.6940i 0.560500i
\(785\) 21.9064 5.22719i 0.781872 0.186566i
\(786\) 0 0
\(787\) −29.9191 + 29.9191i −1.06650 + 1.06650i −0.0688738 + 0.997625i \(0.521941\pi\)
−0.997625 + 0.0688738i \(0.978059\pi\)
\(788\) 2.27072 + 2.27072i 0.0808912 + 0.0808912i
\(789\) 0 0
\(790\) 30.5941 + 18.8064i 1.08849 + 0.669102i
\(791\) 1.58158i 0.0562344i
\(792\) 0 0
\(793\) −7.86854 7.86854i −0.279420 0.279420i
\(794\) −46.7612 46.7612i −1.65949 1.65949i
\(795\) 0 0
\(796\) 34.7412 + 34.7412i 1.23137 + 1.23137i
\(797\) 54.1578 1.91837 0.959185 0.282780i \(-0.0912568\pi\)
0.959185 + 0.282780i \(0.0912568\pi\)
\(798\) 0 0
\(799\) −15.0336 + 23.3700i −0.531850 + 0.826772i
\(800\) −12.0336 + 6.08951i −0.425452 + 0.215297i
\(801\) 0 0
\(802\) −51.5354 + 51.5354i −1.81978 + 1.81978i
\(803\) 0.622235i 0.0219582i
\(804\) 0 0
\(805\) −0.178317 + 0.0425490i −0.00628484 + 0.00149966i
\(806\) 9.69399 9.69399i 0.341456 0.341456i
\(807\) 0 0
\(808\) −29.1413 −1.02519
\(809\) −21.9064 + 21.9064i −0.770187 + 0.770187i −0.978139 0.207952i \(-0.933320\pi\)
0.207952 + 0.978139i \(0.433320\pi\)
\(810\) 0 0
\(811\) −2.93481 2.93481i −0.103055 0.103055i 0.653699 0.756754i \(-0.273216\pi\)
−0.756754 + 0.653699i \(0.773216\pi\)
\(812\) 5.69071i 0.199705i
\(813\) 0 0
\(814\) 7.16081i 0.250986i
\(815\) −11.2272 + 18.2643i −0.393271 + 0.639770i
\(816\) 0 0
\(817\) 9.97667i 0.349039i
\(818\) −14.0863 −0.492515
\(819\) 0 0
\(820\) −5.60886 3.44780i −0.195870 0.120402i
\(821\) 0.996845 + 0.996845i 0.0347901 + 0.0347901i 0.724288 0.689498i \(-0.242169\pi\)
−0.689498 + 0.724288i \(0.742169\pi\)
\(822\) 0 0
\(823\) 14.2899 + 14.2899i 0.498116 + 0.498116i 0.910851 0.412735i \(-0.135427\pi\)
−0.412735 + 0.910851i \(0.635427\pi\)
\(824\) 38.5004i 1.34123i
\(825\) 0 0
\(826\) −2.22718 + 2.22718i −0.0774934 + 0.0774934i
\(827\) 8.03163 + 8.03163i 0.279287 + 0.279287i 0.832824 0.553537i \(-0.186722\pi\)
−0.553537 + 0.832824i \(0.686722\pi\)
\(828\) 0 0
\(829\) −10.9336 −0.379741 −0.189870 0.981809i \(-0.560807\pi\)
−0.189870 + 0.981809i \(0.560807\pi\)
\(830\) 7.57579 + 31.7490i 0.262959 + 1.10202i
\(831\) 0 0
\(832\) 21.5433i 0.746879i
\(833\) 15.5066 24.1053i 0.537272 0.835200i
\(834\) 0 0
\(835\) 10.1798 + 6.25761i 0.352287 + 0.216553i
\(836\) −5.48478 5.48478i −0.189695 0.189695i
\(837\) 0 0
\(838\) 54.8149 54.8149i 1.89355 1.89355i
\(839\) −27.4836 + 27.4836i −0.948840 + 0.948840i −0.998754 0.0499138i \(-0.984105\pi\)
0.0499138 + 0.998754i \(0.484105\pi\)
\(840\) 0 0
\(841\) 20.0367i 0.690922i
\(842\) −71.8621 −2.47653
\(843\) 0 0
\(844\) −46.4720 + 46.4720i −1.59963 + 1.59963i
\(845\) 4.73857 + 19.8586i 0.163012 + 0.683158i
\(846\) 0 0
\(847\) 1.66828 1.66828i 0.0573228 0.0573228i
\(848\) −13.3688 −0.459088
\(849\) 0 0
\(850\) 48.9314 + 5.06625i 1.67833 + 0.173771i
\(851\) −2.13038 −0.0730285
\(852\) 0 0
\(853\) −22.6454 + 22.6454i −0.775365 + 0.775365i −0.979039 0.203674i \(-0.934712\pi\)
0.203674 + 0.979039i \(0.434712\pi\)
\(854\) −2.96957 −0.101617
\(855\) 0 0
\(856\) 30.8232 30.8232i 1.05352 1.05352i
\(857\) 18.1563 + 18.1563i 0.620208 + 0.620208i 0.945585 0.325376i \(-0.105491\pi\)
−0.325376 + 0.945585i \(0.605491\pi\)
\(858\) 0 0
\(859\) 38.7065i 1.32065i 0.750981 + 0.660324i \(0.229581\pi\)
−0.750981 + 0.660324i \(0.770419\pi\)
\(860\) −4.78167 20.0393i −0.163054 0.683334i
\(861\) 0 0
\(862\) −14.0462 + 14.0462i −0.478416 + 0.478416i
\(863\) 29.5881i 1.00719i 0.863939 + 0.503596i \(0.167990\pi\)
−0.863939 + 0.503596i \(0.832010\pi\)
\(864\) 0 0
\(865\) 33.2509 + 20.4395i 1.13056 + 0.694965i
\(866\) 32.4036 1.10112
\(867\) 0 0
\(868\) 2.37346i 0.0805603i
\(869\) 3.53318i 0.119855i
\(870\) 0 0
\(871\) −22.6456 −0.767317
\(872\) 40.2266 40.2266i 1.36225 1.36225i
\(873\) 0 0
\(874\) −2.51522 + 2.51522i −0.0850785 + 0.0850785i
\(875\) −0.203161 + 2.45120i −0.00686808 + 0.0828656i
\(876\) 0 0
\(877\) 18.7380 + 18.7380i 0.632737 + 0.632737i 0.948754 0.316017i \(-0.102346\pi\)
−0.316017 + 0.948754i \(0.602346\pi\)
\(878\) −34.3728 34.3728i −1.16003 1.16003i
\(879\) 0 0
\(880\) −2.25761 1.38777i −0.0761040 0.0467816i
\(881\) 7.77282 + 7.77282i 0.261873 + 0.261873i 0.825815 0.563942i \(-0.190716\pi\)
−0.563942 + 0.825815i \(0.690716\pi\)
\(882\) 0 0
\(883\) 56.2202i 1.89196i 0.324225 + 0.945980i \(0.394896\pi\)
−0.324225 + 0.945980i \(0.605104\pi\)
\(884\) −16.2092 + 25.1976i −0.545175 + 0.847486i
\(885\) 0 0
\(886\) 5.85481i 0.196696i
\(887\) −4.87988 + 4.87988i −0.163850 + 0.163850i −0.784270 0.620420i \(-0.786962\pi\)
0.620420 + 0.784270i \(0.286962\pi\)
\(888\) 0 0
\(889\) 1.51522 + 1.51522i 0.0508187 + 0.0508187i
\(890\) 19.7963 + 82.9634i 0.663574 + 2.78094i
\(891\) 0 0
\(892\) −7.26658 −0.243303
\(893\) −26.9582 −0.902122
\(894\) 0 0
\(895\) 46.3815 11.0673i 1.55036 0.369940i
\(896\) −3.22600 3.22600i −0.107773 0.107773i
\(897\) 0 0
\(898\) 5.39465 5.39465i 0.180022 0.180022i
\(899\) 20.4520i 0.682113i
\(900\) 0 0
\(901\) −20.5340 13.2092i −0.684087 0.440063i
\(902\) 0.998442i 0.0332445i
\(903\) 0 0
\(904\) −20.5488 20.5488i −0.683443 0.683443i
\(905\) 27.5036 + 16.9066i 0.914249 + 0.561995i
\(906\) 0 0
\(907\) −22.0708 22.0708i −0.732849 0.732849i 0.238334 0.971183i \(-0.423399\pi\)
−0.971183 + 0.238334i \(0.923399\pi\)
\(908\) −31.2361 31.2361i −1.03661 1.03661i
\(909\) 0 0
\(910\) −1.96713 1.20921i −0.0652099 0.0400850i
\(911\) −30.0472 + 30.0472i −0.995509 + 0.995509i −0.999990 0.00448095i \(-0.998574\pi\)
0.00448095 + 0.999990i \(0.498574\pi\)
\(912\) 0 0
\(913\) 2.27072 2.27072i 0.0751500 0.0751500i
\(914\) −72.0164 −2.38209
\(915\) 0 0
\(916\) 34.3763i 1.13583i
\(917\) 4.33076i 0.143014i
\(918\) 0 0
\(919\) −29.1312 −0.960949 −0.480475 0.877009i \(-0.659536\pi\)
−0.480475 + 0.877009i \(0.659536\pi\)
\(920\) −1.76397 + 2.86962i −0.0581565 + 0.0946085i
\(921\) 0 0
\(922\) 12.9220i 0.425562i
\(923\) −9.96391 + 9.96391i −0.327966 + 0.327966i
\(924\) 0 0
\(925\) −8.90782 + 27.1593i −0.292887 + 0.892994i
\(926\) 37.6004i 1.23562i
\(927\) 0 0
\(928\) −13.3561 13.3561i −0.438435 0.438435i
\(929\) −0.921171 + 0.921171i −0.0302226 + 0.0302226i −0.722057 0.691834i \(-0.756803\pi\)
0.691834 + 0.722057i \(0.256803\pi\)
\(930\) 0 0
\(931\) 27.8064 0.911318
\(932\) −67.3932 + 67.3932i −2.20754 + 2.20754i
\(933\) 0 0
\(934\) −25.6971 −0.840836
\(935\) −2.09640 4.36220i −0.0685595 0.142659i
\(936\) 0 0
\(937\) −9.43458 −0.308214 −0.154107 0.988054i \(-0.549250\pi\)
−0.154107 + 0.988054i \(0.549250\pi\)
\(938\) −4.27320 + 4.27320i −0.139525 + 0.139525i
\(939\) 0 0
\(940\) −54.1487 + 12.9207i −1.76613 + 0.421426i
\(941\) 17.8033 17.8033i 0.580370 0.580370i −0.354635 0.935005i \(-0.615395\pi\)
0.935005 + 0.354635i \(0.115395\pi\)
\(942\) 0 0
\(943\) 0.297042 0.00967302
\(944\) 13.5456i 0.440873i
\(945\) 0 0
\(946\) −2.20921 + 2.20921i −0.0718276 + 0.0718276i
\(947\) −19.5564 + 19.5564i −0.635496 + 0.635496i −0.949441 0.313945i \(-0.898349\pi\)
0.313945 + 0.949441i \(0.398349\pi\)
\(948\) 0 0
\(949\) 1.64875 + 1.64875i 0.0535208 + 0.0535208i
\(950\) 21.5485 + 42.5824i 0.699126 + 1.38156i
\(951\) 0 0
\(952\) 0.777794 + 3.58308i 0.0252085 + 0.116128i
\(953\) 16.0279i 0.519195i −0.965717 0.259598i \(-0.916410\pi\)
0.965717 0.259598i \(-0.0835899\pi\)
\(954\) 0 0
\(955\) 3.49923 + 14.6647i 0.113232 + 0.474540i
\(956\) 108.202 3.49949
\(957\) 0 0
\(958\) 62.2771 + 62.2771i 2.01208 + 2.01208i
\(959\) 0.724427 0.724427i 0.0233930 0.0233930i
\(960\) 0 0
\(961\) 22.4700i 0.724838i
\(962\) −18.9742 18.9742i −0.611752 0.611752i
\(963\) 0 0
\(964\) 22.1640 + 22.1640i 0.713853 + 0.713853i
\(965\) 17.1608 27.9171i 0.552426 0.898682i
\(966\) 0 0
\(967\) 10.9849 0.353252 0.176626 0.984278i \(-0.443482\pi\)
0.176626 + 0.984278i \(0.443482\pi\)
\(968\) 43.3506i 1.39334i
\(969\) 0 0
\(970\) −41.8884 25.7491i −1.34496 0.826753i
\(971\) 32.2944i 1.03638i 0.855267 + 0.518188i \(0.173393\pi\)
−0.855267 + 0.518188i \(0.826607\pi\)
\(972\) 0 0
\(973\) 1.15449i 0.0370113i
\(974\) −64.6632 64.6632i −2.07194 2.07194i
\(975\) 0 0
\(976\) −9.03043 + 9.03043i −0.289057 + 0.289057i
\(977\) −2.59459 −0.0830084 −0.0415042 0.999138i \(-0.513215\pi\)
−0.0415042 + 0.999138i \(0.513215\pi\)
\(978\) 0 0
\(979\) 5.93364 5.93364i 0.189640 0.189640i
\(980\) 55.8524 13.3272i 1.78414 0.425722i
\(981\) 0 0
\(982\) 90.7561i 2.89614i
\(983\) 6.79991 6.79991i 0.216883 0.216883i −0.590300 0.807184i \(-0.700991\pi\)
0.807184 + 0.590300i \(0.200991\pi\)
\(984\) 0 0
\(985\) −1.01796 + 1.65602i −0.0324351 + 0.0527651i
\(986\) 14.6152 + 67.3279i 0.465442 + 2.14416i
\(987\) 0 0
\(988\) −29.0663 −0.924723
\(989\) 0.657252 + 0.657252i 0.0208994 + 0.0208994i
\(990\) 0 0
\(991\) 19.9864 + 19.9864i 0.634888 + 0.634888i 0.949290 0.314402i \(-0.101804\pi\)
−0.314402 + 0.949290i \(0.601804\pi\)
\(992\) 5.57049 + 5.57049i 0.176863 + 0.176863i
\(993\) 0 0
\(994\) 3.76036i 0.119271i
\(995\) −15.5745 + 25.3364i −0.493744 + 0.803219i
\(996\) 0 0
\(997\) −2.36593 2.36593i −0.0749297 0.0749297i 0.668649 0.743578i \(-0.266873\pi\)
−0.743578 + 0.668649i \(0.766873\pi\)
\(998\) −15.7022 + 15.7022i −0.497045 + 0.497045i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.t.e.64.1 12
3.2 odd 2 85.2.j.c.64.6 yes 12
5.4 even 2 inner 765.2.t.e.64.6 12
15.2 even 4 425.2.e.d.251.6 12
15.8 even 4 425.2.e.d.251.1 12
15.14 odd 2 85.2.j.c.64.1 yes 12
17.4 even 4 inner 765.2.t.e.514.6 12
51.2 odd 8 1445.2.b.f.579.12 12
51.32 odd 8 1445.2.b.f.579.11 12
51.38 odd 4 85.2.j.c.4.1 12
85.4 even 4 inner 765.2.t.e.514.1 12
255.2 even 8 7225.2.a.bp.1.2 12
255.32 even 8 7225.2.a.bp.1.1 12
255.38 even 4 425.2.e.d.276.6 12
255.53 even 8 7225.2.a.bp.1.11 12
255.83 even 8 7225.2.a.bp.1.12 12
255.89 odd 4 85.2.j.c.4.6 yes 12
255.104 odd 8 1445.2.b.f.579.1 12
255.134 odd 8 1445.2.b.f.579.2 12
255.242 even 4 425.2.e.d.276.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.1 12 51.38 odd 4
85.2.j.c.4.6 yes 12 255.89 odd 4
85.2.j.c.64.1 yes 12 15.14 odd 2
85.2.j.c.64.6 yes 12 3.2 odd 2
425.2.e.d.251.1 12 15.8 even 4
425.2.e.d.251.6 12 15.2 even 4
425.2.e.d.276.1 12 255.242 even 4
425.2.e.d.276.6 12 255.38 even 4
765.2.t.e.64.1 12 1.1 even 1 trivial
765.2.t.e.64.6 12 5.4 even 2 inner
765.2.t.e.514.1 12 85.4 even 4 inner
765.2.t.e.514.6 12 17.4 even 4 inner
1445.2.b.f.579.1 12 255.104 odd 8
1445.2.b.f.579.2 12 255.134 odd 8
1445.2.b.f.579.11 12 51.32 odd 8
1445.2.b.f.579.12 12 51.2 odd 8
7225.2.a.bp.1.1 12 255.32 even 8
7225.2.a.bp.1.2 12 255.2 even 8
7225.2.a.bp.1.11 12 255.53 even 8
7225.2.a.bp.1.12 12 255.83 even 8