Properties

Label 765.2.t.e.514.4
Level $765$
Weight $2$
Character 765.514
Analytic conductor $6.109$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [765,2,Mod(64,765)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("765.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 514.4
Root \(1.23239i\) of defining polynomial
Character \(\chi\) \(=\) 765.514
Dual form 765.2.t.e.64.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.232389 q^{2} -1.94600 q^{4} +(-2.04770 + 0.898299i) q^{5} +(-1.46067 + 1.46067i) q^{7} -0.917007 q^{8} +(-0.475863 + 0.208755i) q^{10} +(0.339444 + 0.339444i) q^{11} -4.07073i q^{13} +(-0.339444 + 0.339444i) q^{14} +3.67889 q^{16} +(3.75946 + 1.69306i) q^{17} -4.00000i q^{19} +(3.98481 - 1.74809i) q^{20} +(0.0788831 + 0.0788831i) q^{22} +(5.76379 - 5.76379i) q^{23} +(3.38612 - 3.67889i) q^{25} -0.945995i q^{26} +(2.84245 - 2.84245i) q^{28} +(-0.732893 + 0.732893i) q^{29} +(-4.28544 + 4.28544i) q^{31} +2.68895 q^{32} +(0.873659 + 0.393449i) q^{34} +(1.67889 - 4.30312i) q^{35} +(0.917007 + 0.917007i) q^{37} -0.929557i q^{38} +(1.87775 - 0.823747i) q^{40} +(-7.62488 - 7.62488i) q^{41} +7.45685 q^{43} +(-0.660556 - 0.660556i) q^{44} +(1.33944 - 1.33944i) q^{46} -3.60596i q^{47} +2.73289i q^{49} +(0.786897 - 0.854934i) q^{50} +7.92163i q^{52} +6.14969 q^{53} +(-1.00000 - 0.390156i) q^{55} +(1.33944 - 1.33944i) q^{56} +(-0.170316 + 0.170316i) q^{58} -6.00000i q^{59} +(-4.00000 - 4.00000i) q^{61} +(-0.995890 + 0.995890i) q^{62} -6.73289 q^{64} +(3.65674 + 8.33563i) q^{65} -3.14118i q^{67} +(-7.31589 - 3.29468i) q^{68} +(0.390156 - 1.00000i) q^{70} +(-1.28544 + 1.28544i) q^{71} +(-8.60625 - 8.60625i) q^{73} +(0.213103 + 0.213103i) q^{74} +7.78398i q^{76} -0.991630 q^{77} +(7.23143 + 7.23143i) q^{79} +(-7.53324 + 3.30474i) q^{80} +(-1.77194 - 1.77194i) q^{82} +2.23672 q^{83} +(-9.21911 - 0.0897461i) q^{85} +1.73289 q^{86} +(-0.311272 - 0.311272i) q^{88} +9.37220 q^{89} +(5.94600 + 5.94600i) q^{91} +(-11.2163 + 11.2163i) q^{92} -0.837986i q^{94} +(3.59320 + 8.19078i) q^{95} +(11.8220 + 11.8220i) q^{97} +0.635095i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} - 4 q^{10} - 16 q^{11} + 16 q^{14} + 4 q^{16} + 32 q^{20} - 4 q^{29} + 4 q^{31} - 20 q^{35} + 24 q^{40} - 16 q^{41} - 28 q^{44} - 4 q^{46} + 40 q^{50} - 12 q^{55} - 4 q^{56} - 48 q^{61}+ \cdots + 36 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.232389 0.164324 0.0821620 0.996619i \(-0.473817\pi\)
0.0821620 + 0.996619i \(0.473817\pi\)
\(3\) 0 0
\(4\) −1.94600 −0.972998
\(5\) −2.04770 + 0.898299i −0.915757 + 0.401732i
\(6\) 0 0
\(7\) −1.46067 + 1.46067i −0.552081 + 0.552081i −0.927041 0.374960i \(-0.877656\pi\)
0.374960 + 0.927041i \(0.377656\pi\)
\(8\) −0.917007 −0.324211
\(9\) 0 0
\(10\) −0.475863 + 0.208755i −0.150481 + 0.0660142i
\(11\) 0.339444 + 0.339444i 0.102346 + 0.102346i 0.756426 0.654080i \(-0.226944\pi\)
−0.654080 + 0.756426i \(0.726944\pi\)
\(12\) 0 0
\(13\) 4.07073i 1.12902i −0.825427 0.564509i \(-0.809065\pi\)
0.825427 0.564509i \(-0.190935\pi\)
\(14\) −0.339444 + 0.339444i −0.0907202 + 0.0907202i
\(15\) 0 0
\(16\) 3.67889 0.919722
\(17\) 3.75946 + 1.69306i 0.911803 + 0.410627i
\(18\) 0 0
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 3.98481 1.74809i 0.891030 0.390884i
\(21\) 0 0
\(22\) 0.0788831 + 0.0788831i 0.0168179 + 0.0168179i
\(23\) 5.76379 5.76379i 1.20183 1.20183i 0.228226 0.973608i \(-0.426708\pi\)
0.973608 0.228226i \(-0.0732924\pi\)
\(24\) 0 0
\(25\) 3.38612 3.67889i 0.677223 0.735778i
\(26\) 0.945995i 0.185525i
\(27\) 0 0
\(28\) 2.84245 2.84245i 0.537173 0.537173i
\(29\) −0.732893 + 0.732893i −0.136095 + 0.136095i −0.771872 0.635778i \(-0.780680\pi\)
0.635778 + 0.771872i \(0.280680\pi\)
\(30\) 0 0
\(31\) −4.28544 + 4.28544i −0.769688 + 0.769688i −0.978051 0.208364i \(-0.933186\pi\)
0.208364 + 0.978051i \(0.433186\pi\)
\(32\) 2.68895 0.475343
\(33\) 0 0
\(34\) 0.873659 + 0.393449i 0.149831 + 0.0674759i
\(35\) 1.67889 4.30312i 0.283784 0.727361i
\(36\) 0 0
\(37\) 0.917007 + 0.917007i 0.150755 + 0.150755i 0.778455 0.627700i \(-0.216004\pi\)
−0.627700 + 0.778455i \(0.716004\pi\)
\(38\) 0.929557i 0.150794i
\(39\) 0 0
\(40\) 1.87775 0.823747i 0.296899 0.130246i
\(41\) −7.62488 7.62488i −1.19081 1.19081i −0.976841 0.213965i \(-0.931362\pi\)
−0.213965 0.976841i \(-0.568638\pi\)
\(42\) 0 0
\(43\) 7.45685 1.13716 0.568580 0.822628i \(-0.307493\pi\)
0.568580 + 0.822628i \(0.307493\pi\)
\(44\) −0.660556 0.660556i −0.0995826 0.0995826i
\(45\) 0 0
\(46\) 1.33944 1.33944i 0.197490 0.197490i
\(47\) 3.60596i 0.525983i −0.964798 0.262991i \(-0.915291\pi\)
0.964798 0.262991i \(-0.0847091\pi\)
\(48\) 0 0
\(49\) 2.73289i 0.390413i
\(50\) 0.786897 0.854934i 0.111284 0.120906i
\(51\) 0 0
\(52\) 7.92163i 1.09853i
\(53\) 6.14969 0.844725 0.422362 0.906427i \(-0.361201\pi\)
0.422362 + 0.906427i \(0.361201\pi\)
\(54\) 0 0
\(55\) −1.00000 0.390156i −0.134840 0.0526086i
\(56\) 1.33944 1.33944i 0.178991 0.178991i
\(57\) 0 0
\(58\) −0.170316 + 0.170316i −0.0223636 + 0.0223636i
\(59\) 6.00000i 0.781133i −0.920575 0.390567i \(-0.872279\pi\)
0.920575 0.390567i \(-0.127721\pi\)
\(60\) 0 0
\(61\) −4.00000 4.00000i −0.512148 0.512148i 0.403036 0.915184i \(-0.367955\pi\)
−0.915184 + 0.403036i \(0.867955\pi\)
\(62\) −0.995890 + 0.995890i −0.126478 + 0.126478i
\(63\) 0 0
\(64\) −6.73289 −0.841612
\(65\) 3.65674 + 8.33563i 0.453563 + 1.03391i
\(66\) 0 0
\(67\) 3.14118i 0.383756i −0.981419 0.191878i \(-0.938542\pi\)
0.981419 0.191878i \(-0.0614578\pi\)
\(68\) −7.31589 3.29468i −0.887183 0.399539i
\(69\) 0 0
\(70\) 0.390156 1.00000i 0.0466325 0.119523i
\(71\) −1.28544 + 1.28544i −0.152554 + 0.152554i −0.779257 0.626704i \(-0.784404\pi\)
0.626704 + 0.779257i \(0.284404\pi\)
\(72\) 0 0
\(73\) −8.60625 8.60625i −1.00729 1.00729i −0.999973 0.00731179i \(-0.997673\pi\)
−0.00731179 0.999973i \(-0.502327\pi\)
\(74\) 0.213103 + 0.213103i 0.0247727 + 0.0247727i
\(75\) 0 0
\(76\) 7.78398i 0.892884i
\(77\) −0.991630 −0.113007
\(78\) 0 0
\(79\) 7.23143 + 7.23143i 0.813600 + 0.813600i 0.985172 0.171572i \(-0.0548845\pi\)
−0.171572 + 0.985172i \(0.554885\pi\)
\(80\) −7.53324 + 3.30474i −0.842242 + 0.369481i
\(81\) 0 0
\(82\) −1.77194 1.77194i −0.195678 0.195678i
\(83\) 2.23672 0.245512 0.122756 0.992437i \(-0.460827\pi\)
0.122756 + 0.992437i \(0.460827\pi\)
\(84\) 0 0
\(85\) −9.21911 0.0897461i −0.999953 0.00973434i
\(86\) 1.73289 0.186863
\(87\) 0 0
\(88\) −0.311272 0.311272i −0.0331818 0.0331818i
\(89\) 9.37220 0.993451 0.496726 0.867908i \(-0.334536\pi\)
0.496726 + 0.867908i \(0.334536\pi\)
\(90\) 0 0
\(91\) 5.94600 + 5.94600i 0.623310 + 0.623310i
\(92\) −11.2163 + 11.2163i −1.16938 + 1.16938i
\(93\) 0 0
\(94\) 0.837986i 0.0864316i
\(95\) 3.59320 + 8.19078i 0.368654 + 0.840357i
\(96\) 0 0
\(97\) 11.8220 + 11.8220i 1.20035 + 1.20035i 0.974061 + 0.226286i \(0.0726585\pi\)
0.226286 + 0.974061i \(0.427342\pi\)
\(98\) 0.635095i 0.0641543i
\(99\) 0 0
\(100\) −6.58937 + 7.15910i −0.658937 + 0.715910i
\(101\) 4.41178 0.438989 0.219494 0.975614i \(-0.429559\pi\)
0.219494 + 0.975614i \(0.429559\pi\)
\(102\) 0 0
\(103\) 17.4323i 1.71766i −0.512262 0.858829i \(-0.671192\pi\)
0.512262 0.858829i \(-0.328808\pi\)
\(104\) 3.73289i 0.366040i
\(105\) 0 0
\(106\) 1.42912 0.138809
\(107\) −3.68484 3.68484i −0.356227 0.356227i 0.506193 0.862420i \(-0.331052\pi\)
−0.862420 + 0.506193i \(0.831052\pi\)
\(108\) 0 0
\(109\) −5.73289 5.73289i −0.549112 0.549112i 0.377072 0.926184i \(-0.376931\pi\)
−0.926184 + 0.377072i \(0.876931\pi\)
\(110\) −0.232389 0.0906680i −0.0221575 0.00864485i
\(111\) 0 0
\(112\) −5.37364 + 5.37364i −0.507761 + 0.507761i
\(113\) 2.45656 2.45656i 0.231094 0.231094i −0.582055 0.813149i \(-0.697751\pi\)
0.813149 + 0.582055i \(0.197751\pi\)
\(114\) 0 0
\(115\) −6.62488 + 16.9801i −0.617774 + 1.58340i
\(116\) 1.42621 1.42621i 0.132420 0.132420i
\(117\) 0 0
\(118\) 1.39434i 0.128359i
\(119\) −7.96433 + 3.01833i −0.730089 + 0.276690i
\(120\) 0 0
\(121\) 10.7696i 0.979051i
\(122\) −0.929557 0.929557i −0.0841582 0.0841582i
\(123\) 0 0
\(124\) 8.33944 8.33944i 0.748904 0.748904i
\(125\) −3.62899 + 10.5750i −0.324587 + 0.945856i
\(126\) 0 0
\(127\) −2.98341 −0.264735 −0.132367 0.991201i \(-0.542258\pi\)
−0.132367 + 0.991201i \(0.542258\pi\)
\(128\) −6.94255 −0.613640
\(129\) 0 0
\(130\) 0.849787 + 1.93711i 0.0745312 + 0.169896i
\(131\) −5.08676 + 5.08676i −0.444432 + 0.444432i −0.893499 0.449066i \(-0.851757\pi\)
0.449066 + 0.893499i \(0.351757\pi\)
\(132\) 0 0
\(133\) 5.84268 + 5.84268i 0.506624 + 0.506624i
\(134\) 0.729976i 0.0630603i
\(135\) 0 0
\(136\) −3.44745 1.55255i −0.295617 0.133130i
\(137\) 0.526852i 0.0450120i −0.999747 0.0225060i \(-0.992836\pi\)
0.999747 0.0225060i \(-0.00716448\pi\)
\(138\) 0 0
\(139\) 12.4985 12.4985i 1.06011 1.06011i 0.0620387 0.998074i \(-0.480240\pi\)
0.998074 0.0620387i \(-0.0197602\pi\)
\(140\) −3.26711 + 8.37386i −0.276121 + 0.707720i
\(141\) 0 0
\(142\) −0.298722 + 0.298722i −0.0250682 + 0.0250682i
\(143\) 1.38179 1.38179i 0.115551 0.115551i
\(144\) 0 0
\(145\) 0.842384 2.15910i 0.0699562 0.179303i
\(146\) −2.00000 2.00000i −0.165521 0.165521i
\(147\) 0 0
\(148\) −1.78449 1.78449i −0.146684 0.146684i
\(149\) −7.32111 −0.599769 −0.299884 0.953976i \(-0.596948\pi\)
−0.299884 + 0.953976i \(0.596948\pi\)
\(150\) 0 0
\(151\) 7.46579i 0.607557i 0.952743 + 0.303778i \(0.0982483\pi\)
−0.952743 + 0.303778i \(0.901752\pi\)
\(152\) 3.66803i 0.297516i
\(153\) 0 0
\(154\) −0.230444 −0.0185697
\(155\) 4.92567 12.6249i 0.395639 1.01405i
\(156\) 0 0
\(157\) 12.4571i 0.994188i −0.867697 0.497094i \(-0.834400\pi\)
0.867697 0.497094i \(-0.165600\pi\)
\(158\) 1.68051 + 1.68051i 0.133694 + 0.133694i
\(159\) 0 0
\(160\) −5.50615 + 2.41548i −0.435299 + 0.190961i
\(161\) 16.8380i 1.32702i
\(162\) 0 0
\(163\) 6.05825 6.05825i 0.474519 0.474519i −0.428854 0.903374i \(-0.641083\pi\)
0.903374 + 0.428854i \(0.141083\pi\)
\(164\) 14.8380 + 14.8380i 1.15865 + 1.15865i
\(165\) 0 0
\(166\) 0.519790 0.0403435
\(167\) 6.68080 + 6.68080i 0.516976 + 0.516976i 0.916655 0.399679i \(-0.130878\pi\)
−0.399679 + 0.916655i \(0.630878\pi\)
\(168\) 0 0
\(169\) −3.57088 −0.274683
\(170\) −2.14242 0.0208560i −0.164316 0.00159959i
\(171\) 0 0
\(172\) −14.5110 −1.10645
\(173\) −11.6979 11.6979i −0.889375 0.889375i 0.105088 0.994463i \(-0.466488\pi\)
−0.994463 + 0.105088i \(0.966488\pi\)
\(174\) 0 0
\(175\) 0.427642 + 10.3196i 0.0323267 + 0.780091i
\(176\) 1.24878 + 1.24878i 0.0941300 + 0.0941300i
\(177\) 0 0
\(178\) 2.17800 0.163248
\(179\) 19.5313i 1.45984i −0.683534 0.729919i \(-0.739558\pi\)
0.683534 0.729919i \(-0.260442\pi\)
\(180\) 0 0
\(181\) 7.41178 + 7.41178i 0.550913 + 0.550913i 0.926704 0.375791i \(-0.122629\pi\)
−0.375791 + 0.926704i \(0.622629\pi\)
\(182\) 1.38179 + 1.38179i 0.102425 + 0.102425i
\(183\) 0 0
\(184\) −5.28544 + 5.28544i −0.389648 + 0.389648i
\(185\) −2.70150 1.05400i −0.198618 0.0774920i
\(186\) 0 0
\(187\) 0.701428 + 1.85082i 0.0512935 + 0.135346i
\(188\) 7.01717i 0.511780i
\(189\) 0 0
\(190\) 0.835021 + 1.90345i 0.0605788 + 0.138091i
\(191\) 5.32111 0.385022 0.192511 0.981295i \(-0.438337\pi\)
0.192511 + 0.981295i \(0.438337\pi\)
\(192\) 0 0
\(193\) −8.82609 + 8.82609i −0.635316 + 0.635316i −0.949396 0.314081i \(-0.898304\pi\)
0.314081 + 0.949396i \(0.398304\pi\)
\(194\) 2.74732 + 2.74732i 0.197246 + 0.197246i
\(195\) 0 0
\(196\) 5.31820i 0.379871i
\(197\) −0.390156 + 0.390156i −0.0277974 + 0.0277974i −0.720869 0.693071i \(-0.756257\pi\)
0.693071 + 0.720869i \(0.256257\pi\)
\(198\) 0 0
\(199\) −12.4445 + 12.4445i −0.882170 + 0.882170i −0.993755 0.111585i \(-0.964407\pi\)
0.111585 + 0.993755i \(0.464407\pi\)
\(200\) −3.10509 + 3.37357i −0.219563 + 0.238547i
\(201\) 0 0
\(202\) 1.02525 0.0721364
\(203\) 2.14103i 0.150271i
\(204\) 0 0
\(205\) 22.4629 + 8.76401i 1.56887 + 0.612105i
\(206\) 4.05109i 0.282253i
\(207\) 0 0
\(208\) 14.9758i 1.03838i
\(209\) 1.35778 1.35778i 0.0939193 0.0939193i
\(210\) 0 0
\(211\) −9.07234 9.07234i −0.624565 0.624565i 0.322130 0.946695i \(-0.395601\pi\)
−0.946695 + 0.322130i \(0.895601\pi\)
\(212\) −11.9673 −0.821915
\(213\) 0 0
\(214\) −0.856317 0.856317i −0.0585366 0.0585366i
\(215\) −15.2694 + 6.69848i −1.04136 + 0.456833i
\(216\) 0 0
\(217\) 12.5192i 0.849860i
\(218\) −1.33226 1.33226i −0.0902322 0.0902322i
\(219\) 0 0
\(220\) 1.94600 + 0.759241i 0.131199 + 0.0511880i
\(221\) 6.89199 15.3038i 0.463605 1.02944i
\(222\) 0 0
\(223\) −4.07073 −0.272597 −0.136298 0.990668i \(-0.543521\pi\)
−0.136298 + 0.990668i \(0.543521\pi\)
\(224\) −3.92766 + 3.92766i −0.262428 + 0.262428i
\(225\) 0 0
\(226\) 0.570878 0.570878i 0.0379742 0.0379742i
\(227\) 11.1542 11.1542i 0.740333 0.740333i −0.232309 0.972642i \(-0.574628\pi\)
0.972642 + 0.232309i \(0.0746281\pi\)
\(228\) 0 0
\(229\) 14.9460i 0.987659i 0.869559 + 0.493830i \(0.164403\pi\)
−0.869559 + 0.493830i \(0.835597\pi\)
\(230\) −1.53955 + 3.94600i −0.101515 + 0.260191i
\(231\) 0 0
\(232\) 0.672068 0.672068i 0.0441234 0.0441234i
\(233\) −0.514301 0.514301i −0.0336930 0.0336930i 0.690060 0.723753i \(-0.257584\pi\)
−0.723753 + 0.690060i \(0.757584\pi\)
\(234\) 0 0
\(235\) 3.23923 + 7.38390i 0.211304 + 0.481673i
\(236\) 11.6760i 0.760041i
\(237\) 0 0
\(238\) −1.85082 + 0.701428i −0.119971 + 0.0454668i
\(239\) 9.57379 0.619277 0.309639 0.950854i \(-0.399792\pi\)
0.309639 + 0.950854i \(0.399792\pi\)
\(240\) 0 0
\(241\) 6.00000 6.00000i 0.386494 0.386494i −0.486941 0.873435i \(-0.661887\pi\)
0.873435 + 0.486941i \(0.161887\pi\)
\(242\) 2.50273i 0.160882i
\(243\) 0 0
\(244\) 7.78398 + 7.78398i 0.498318 + 0.498318i
\(245\) −2.45496 5.59613i −0.156841 0.357524i
\(246\) 0 0
\(247\) −16.2829 −1.03606
\(248\) 3.92978 3.92978i 0.249541 0.249541i
\(249\) 0 0
\(250\) −0.843340 + 2.45751i −0.0533375 + 0.155427i
\(251\) 6.03666 0.381031 0.190515 0.981684i \(-0.438984\pi\)
0.190515 + 0.981684i \(0.438984\pi\)
\(252\) 0 0
\(253\) 3.91297 0.246006
\(254\) −0.693313 −0.0435023
\(255\) 0 0
\(256\) 11.8524 0.740776
\(257\) −27.2752 −1.70138 −0.850689 0.525670i \(-0.823815\pi\)
−0.850689 + 0.525670i \(0.823815\pi\)
\(258\) 0 0
\(259\) −2.67889 −0.166458
\(260\) −7.11599 16.2211i −0.441315 1.00599i
\(261\) 0 0
\(262\) −1.18211 + 1.18211i −0.0730309 + 0.0730309i
\(263\) −12.3700 −0.762765 −0.381382 0.924417i \(-0.624552\pi\)
−0.381382 + 0.924417i \(0.624552\pi\)
\(264\) 0 0
\(265\) −12.5927 + 5.52426i −0.773563 + 0.339353i
\(266\) 1.35778 + 1.35778i 0.0832506 + 0.0832506i
\(267\) 0 0
\(268\) 6.11272i 0.373394i
\(269\) −14.1958 + 14.1958i −0.865531 + 0.865531i −0.991974 0.126443i \(-0.959644\pi\)
0.126443 + 0.991974i \(0.459644\pi\)
\(270\) 0 0
\(271\) −24.2102 −1.47066 −0.735332 0.677707i \(-0.762974\pi\)
−0.735332 + 0.677707i \(0.762974\pi\)
\(272\) 13.8306 + 6.22857i 0.838606 + 0.377663i
\(273\) 0 0
\(274\) 0.122435i 0.00739655i
\(275\) 2.39817 0.0993794i 0.144615 0.00599280i
\(276\) 0 0
\(277\) 4.78045 + 4.78045i 0.287230 + 0.287230i 0.835984 0.548754i \(-0.184898\pi\)
−0.548754 + 0.835984i \(0.684898\pi\)
\(278\) 2.90453 2.90453i 0.174202 0.174202i
\(279\) 0 0
\(280\) −1.53955 + 3.94600i −0.0920058 + 0.235818i
\(281\) 18.0367i 1.07598i 0.842952 + 0.537989i \(0.180816\pi\)
−0.842952 + 0.537989i \(0.819184\pi\)
\(282\) 0 0
\(283\) 17.8308 17.8308i 1.05993 1.05993i 0.0618440 0.998086i \(-0.480302\pi\)
0.998086 0.0618440i \(-0.0196981\pi\)
\(284\) 2.50146 2.50146i 0.148434 0.148434i
\(285\) 0 0
\(286\) 0.321112 0.321112i 0.0189878 0.0189878i
\(287\) 22.2749 1.31484
\(288\) 0 0
\(289\) 11.2671 + 12.7300i 0.662771 + 0.748822i
\(290\) 0.195761 0.501751i 0.0114955 0.0294639i
\(291\) 0 0
\(292\) 16.7477 + 16.7477i 0.980086 + 0.980086i
\(293\) 26.2584i 1.53403i 0.641627 + 0.767017i \(0.278260\pi\)
−0.641627 + 0.767017i \(0.721740\pi\)
\(294\) 0 0
\(295\) 5.38980 + 12.2862i 0.313806 + 0.715329i
\(296\) −0.840902 0.840902i −0.0488764 0.0488764i
\(297\) 0 0
\(298\) −1.70135 −0.0985565
\(299\) −23.4629 23.4629i −1.35689 1.35689i
\(300\) 0 0
\(301\) −10.8920 + 10.8920i −0.627804 + 0.627804i
\(302\) 1.73497i 0.0998362i
\(303\) 0 0
\(304\) 14.7156i 0.843995i
\(305\) 11.7840 + 4.59759i 0.674749 + 0.263257i
\(306\) 0 0
\(307\) 13.9136i 0.794088i −0.917800 0.397044i \(-0.870036\pi\)
0.917800 0.397044i \(-0.129964\pi\)
\(308\) 1.92971 0.109955
\(309\) 0 0
\(310\) 1.14467 2.93389i 0.0650130 0.166634i
\(311\) 6.18035 6.18035i 0.350455 0.350455i −0.509824 0.860279i \(-0.670289\pi\)
0.860279 + 0.509824i \(0.170289\pi\)
\(312\) 0 0
\(313\) 4.91312 4.91312i 0.277706 0.277706i −0.554487 0.832193i \(-0.687085\pi\)
0.832193 + 0.554487i \(0.187085\pi\)
\(314\) 2.89491i 0.163369i
\(315\) 0 0
\(316\) −14.0723 14.0723i −0.791631 0.791631i
\(317\) 2.98341 2.98341i 0.167565 0.167565i −0.618343 0.785908i \(-0.712196\pi\)
0.785908 + 0.618343i \(0.212196\pi\)
\(318\) 0 0
\(319\) −0.497552 −0.0278575
\(320\) 13.7869 6.04815i 0.770712 0.338102i
\(321\) 0 0
\(322\) 3.91297i 0.218061i
\(323\) 6.77223 15.0378i 0.376817 0.836728i
\(324\) 0 0
\(325\) −14.9758 13.7840i −0.830707 0.764598i
\(326\) 1.40787 1.40787i 0.0779749 0.0779749i
\(327\) 0 0
\(328\) 6.99207 + 6.99207i 0.386073 + 0.386073i
\(329\) 5.26711 + 5.26711i 0.290385 + 0.290385i
\(330\) 0 0
\(331\) 13.6760i 0.751699i −0.926681 0.375850i \(-0.877351\pi\)
0.926681 0.375850i \(-0.122649\pi\)
\(332\) −4.35265 −0.238883
\(333\) 0 0
\(334\) 1.55255 + 1.55255i 0.0849516 + 0.0849516i
\(335\) 2.82172 + 6.43218i 0.154167 + 0.351427i
\(336\) 0 0
\(337\) 4.58504 + 4.58504i 0.249763 + 0.249763i 0.820873 0.571110i \(-0.193487\pi\)
−0.571110 + 0.820873i \(0.693487\pi\)
\(338\) −0.829834 −0.0451370
\(339\) 0 0
\(340\) 17.9403 + 0.174646i 0.972952 + 0.00947148i
\(341\) −2.90933 −0.157549
\(342\) 0 0
\(343\) −14.2165 14.2165i −0.767621 0.767621i
\(344\) −6.83799 −0.368679
\(345\) 0 0
\(346\) −2.71847 2.71847i −0.146146 0.146146i
\(347\) 3.53962 3.53962i 0.190017 0.190017i −0.605686 0.795703i \(-0.707101\pi\)
0.795703 + 0.605686i \(0.207101\pi\)
\(348\) 0 0
\(349\) 9.21310i 0.493166i −0.969122 0.246583i \(-0.920692\pi\)
0.969122 0.246583i \(-0.0793078\pi\)
\(350\) 0.0993794 + 2.39817i 0.00531205 + 0.128188i
\(351\) 0 0
\(352\) 0.912747 + 0.912747i 0.0486496 + 0.0486496i
\(353\) 13.8600i 0.737693i −0.929490 0.368847i \(-0.879753\pi\)
0.929490 0.368847i \(-0.120247\pi\)
\(354\) 0 0
\(355\) 1.47748 3.78690i 0.0784165 0.200988i
\(356\) −18.2383 −0.966626
\(357\) 0 0
\(358\) 4.53887i 0.239886i
\(359\) 11.5024i 0.607076i −0.952819 0.303538i \(-0.901832\pi\)
0.952819 0.303538i \(-0.0981679\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 1.72242 + 1.72242i 0.0905283 + 0.0905283i
\(363\) 0 0
\(364\) −11.5709 11.5709i −0.606479 0.606479i
\(365\) 25.3540 + 9.89199i 1.32709 + 0.517770i
\(366\) 0 0
\(367\) 13.7349 13.7349i 0.716958 0.716958i −0.251023 0.967981i \(-0.580767\pi\)
0.967981 + 0.251023i \(0.0807669\pi\)
\(368\) 21.2043 21.2043i 1.10535 1.10535i
\(369\) 0 0
\(370\) −0.627799 0.244939i −0.0326377 0.0127338i
\(371\) −8.98266 + 8.98266i −0.466356 + 0.466356i
\(372\) 0 0
\(373\) 5.58922i 0.289399i 0.989476 + 0.144699i \(0.0462215\pi\)
−0.989476 + 0.144699i \(0.953779\pi\)
\(374\) 0.163004 + 0.430112i 0.00842876 + 0.0222406i
\(375\) 0 0
\(376\) 3.30669i 0.170529i
\(377\) 2.98341 + 2.98341i 0.153653 + 0.153653i
\(378\) 0 0
\(379\) −0.393449 + 0.393449i −0.0202101 + 0.0202101i −0.717140 0.696930i \(-0.754549\pi\)
0.696930 + 0.717140i \(0.254549\pi\)
\(380\) −6.99234 15.9392i −0.358700 0.817665i
\(381\) 0 0
\(382\) 1.23657 0.0632684
\(383\) 24.8020 1.26732 0.633662 0.773610i \(-0.281551\pi\)
0.633662 + 0.773610i \(0.281551\pi\)
\(384\) 0 0
\(385\) 2.03056 0.890781i 0.103487 0.0453984i
\(386\) −2.05109 + 2.05109i −0.104398 + 0.104398i
\(387\) 0 0
\(388\) −23.0056 23.0056i −1.16793 1.16793i
\(389\) 8.76664i 0.444486i −0.974991 0.222243i \(-0.928662\pi\)
0.974991 0.222243i \(-0.0713379\pi\)
\(390\) 0 0
\(391\) 31.4272 11.9103i 1.58934 0.602331i
\(392\) 2.50608i 0.126576i
\(393\) 0 0
\(394\) −0.0906680 + 0.0906680i −0.00456779 + 0.00456779i
\(395\) −21.3038 8.31179i −1.07191 0.418211i
\(396\) 0 0
\(397\) 4.97519 4.97519i 0.249698 0.249698i −0.571149 0.820847i \(-0.693502\pi\)
0.820847 + 0.571149i \(0.193502\pi\)
\(398\) −2.89198 + 2.89198i −0.144962 + 0.144962i
\(399\) 0 0
\(400\) 12.4571 13.5342i 0.622857 0.676711i
\(401\) 7.51979 + 7.51979i 0.375520 + 0.375520i 0.869483 0.493963i \(-0.164452\pi\)
−0.493963 + 0.869483i \(0.664452\pi\)
\(402\) 0 0
\(403\) 17.4449 + 17.4449i 0.868992 + 0.868992i
\(404\) −8.58530 −0.427135
\(405\) 0 0
\(406\) 0.497552i 0.0246931i
\(407\) 0.622545i 0.0308584i
\(408\) 0 0
\(409\) −2.53421 −0.125309 −0.0626544 0.998035i \(-0.519957\pi\)
−0.0626544 + 0.998035i \(0.519957\pi\)
\(410\) 5.22013 + 2.03666i 0.257804 + 0.100584i
\(411\) 0 0
\(412\) 33.9232i 1.67128i
\(413\) 8.76401 + 8.76401i 0.431249 + 0.431249i
\(414\) 0 0
\(415\) −4.58012 + 2.00924i −0.224829 + 0.0986299i
\(416\) 10.9460i 0.536672i
\(417\) 0 0
\(418\) 0.315533 0.315533i 0.0154332 0.0154332i
\(419\) 18.6403 + 18.6403i 0.910638 + 0.910638i 0.996322 0.0856842i \(-0.0273076\pi\)
−0.0856842 + 0.996322i \(0.527308\pi\)
\(420\) 0 0
\(421\) −7.94308 −0.387122 −0.193561 0.981088i \(-0.562004\pi\)
−0.193561 + 0.981088i \(0.562004\pi\)
\(422\) −2.10831 2.10831i −0.102631 0.102631i
\(423\) 0 0
\(424\) −5.63931 −0.273869
\(425\) 18.9585 8.09775i 0.919625 0.392798i
\(426\) 0 0
\(427\) 11.6854 0.565494
\(428\) 7.17068 + 7.17068i 0.346608 + 0.346608i
\(429\) 0 0
\(430\) −3.54844 + 1.55666i −0.171121 + 0.0750686i
\(431\) 8.01833 + 8.01833i 0.386229 + 0.386229i 0.873340 0.487111i \(-0.161949\pi\)
−0.487111 + 0.873340i \(0.661949\pi\)
\(432\) 0 0
\(433\) 6.24538 0.300134 0.150067 0.988676i \(-0.452051\pi\)
0.150067 + 0.988676i \(0.452051\pi\)
\(434\) 2.90933i 0.139652i
\(435\) 0 0
\(436\) 11.1562 + 11.1562i 0.534284 + 0.534284i
\(437\) −23.0552 23.0552i −1.10288 1.10288i
\(438\) 0 0
\(439\) −7.44454 + 7.44454i −0.355308 + 0.355308i −0.862080 0.506772i \(-0.830839\pi\)
0.506772 + 0.862080i \(0.330839\pi\)
\(440\) 0.917007 + 0.357775i 0.0437166 + 0.0170563i
\(441\) 0 0
\(442\) 1.60162 3.55643i 0.0761815 0.169162i
\(443\) 29.2669i 1.39051i −0.718761 0.695257i \(-0.755291\pi\)
0.718761 0.695257i \(-0.244709\pi\)
\(444\) 0 0
\(445\) −19.1914 + 8.41904i −0.909760 + 0.399101i
\(446\) −0.945995 −0.0447942
\(447\) 0 0
\(448\) 9.83453 9.83453i 0.464638 0.464638i
\(449\) 23.1418 + 23.1418i 1.09213 + 1.09213i 0.995301 + 0.0968256i \(0.0308689\pi\)
0.0968256 + 0.995301i \(0.469131\pi\)
\(450\) 0 0
\(451\) 5.17644i 0.243749i
\(452\) −4.78045 + 4.78045i −0.224854 + 0.224854i
\(453\) 0 0
\(454\) 2.59213 2.59213i 0.121655 0.121655i
\(455\) −17.5169 6.83431i −0.821204 0.320397i
\(456\) 0 0
\(457\) −31.4752 −1.47235 −0.736174 0.676792i \(-0.763369\pi\)
−0.736174 + 0.676792i \(0.763369\pi\)
\(458\) 3.47329i 0.162296i
\(459\) 0 0
\(460\) 12.8920 33.0432i 0.601092 1.54065i
\(461\) 26.6442i 1.24094i −0.784228 0.620472i \(-0.786941\pi\)
0.784228 0.620472i \(-0.213059\pi\)
\(462\) 0 0
\(463\) 14.2040i 0.660115i 0.943961 + 0.330058i \(0.107068\pi\)
−0.943961 + 0.330058i \(0.892932\pi\)
\(464\) −2.69623 + 2.69623i −0.125169 + 0.125169i
\(465\) 0 0
\(466\) −0.119518 0.119518i −0.00553657 0.00553657i
\(467\) 29.1177 1.34741 0.673703 0.739002i \(-0.264703\pi\)
0.673703 + 0.739002i \(0.264703\pi\)
\(468\) 0 0
\(469\) 4.58822 + 4.58822i 0.211864 + 0.211864i
\(470\) 0.752762 + 1.71594i 0.0347223 + 0.0791504i
\(471\) 0 0
\(472\) 5.50204i 0.253252i
\(473\) 2.53118 + 2.53118i 0.116384 + 0.116384i
\(474\) 0 0
\(475\) −14.7156 13.5445i −0.675196 0.621463i
\(476\) 15.4985 5.87366i 0.710374 0.269219i
\(477\) 0 0
\(478\) 2.22485 0.101762
\(479\) 1.39053 1.39053i 0.0635350 0.0635350i −0.674625 0.738160i \(-0.735695\pi\)
0.738160 + 0.674625i \(0.235695\pi\)
\(480\) 0 0
\(481\) 3.73289 3.73289i 0.170205 0.170205i
\(482\) 1.39434 1.39434i 0.0635103 0.0635103i
\(483\) 0 0
\(484\) 20.9575i 0.952614i
\(485\) −34.8277 13.5882i −1.58144 0.617009i
\(486\) 0 0
\(487\) 3.41883 3.41883i 0.154922 0.154922i −0.625390 0.780312i \(-0.715060\pi\)
0.780312 + 0.625390i \(0.215060\pi\)
\(488\) 3.66803 + 3.66803i 0.166044 + 0.166044i
\(489\) 0 0
\(490\) −0.570505 1.30048i −0.0257728 0.0587498i
\(491\) 16.8949i 0.762456i −0.924481 0.381228i \(-0.875501\pi\)
0.924481 0.381228i \(-0.124499\pi\)
\(492\) 0 0
\(493\) −3.99611 + 1.51445i −0.179976 + 0.0682075i
\(494\) −3.78398 −0.170249
\(495\) 0 0
\(496\) −15.7656 + 15.7656i −0.707899 + 0.707899i
\(497\) 3.75520i 0.168444i
\(498\) 0 0
\(499\) 3.07234 + 3.07234i 0.137537 + 0.137537i 0.772523 0.634987i \(-0.218994\pi\)
−0.634987 + 0.772523i \(0.718994\pi\)
\(500\) 7.06201 20.5789i 0.315822 0.920315i
\(501\) 0 0
\(502\) 1.40286 0.0626125
\(503\) −8.13721 + 8.13721i −0.362820 + 0.362820i −0.864850 0.502030i \(-0.832587\pi\)
0.502030 + 0.864850i \(0.332587\pi\)
\(504\) 0 0
\(505\) −9.03398 + 3.96310i −0.402007 + 0.176356i
\(506\) 0.909332 0.0404247
\(507\) 0 0
\(508\) 5.80570 0.257586
\(509\) −34.8177 −1.54327 −0.771634 0.636066i \(-0.780560\pi\)
−0.771634 + 0.636066i \(0.780560\pi\)
\(510\) 0 0
\(511\) 25.1418 1.11221
\(512\) 16.6395 0.735368
\(513\) 0 0
\(514\) −6.33845 −0.279577
\(515\) 15.6595 + 35.6961i 0.690038 + 1.57296i
\(516\) 0 0
\(517\) 1.22402 1.22402i 0.0538323 0.0538323i
\(518\) −0.622545 −0.0273531
\(519\) 0 0
\(520\) −3.35325 7.64383i −0.147050 0.335204i
\(521\) −15.8746 15.8746i −0.695481 0.695481i 0.267951 0.963432i \(-0.413653\pi\)
−0.963432 + 0.267951i \(0.913653\pi\)
\(522\) 0 0
\(523\) 16.4943i 0.721243i 0.932712 + 0.360622i \(0.117435\pi\)
−0.932712 + 0.360622i \(0.882565\pi\)
\(524\) 9.89881 9.89881i 0.432432 0.432432i
\(525\) 0 0
\(526\) −2.87465 −0.125341
\(527\) −23.3664 + 8.85545i −1.01786 + 0.385749i
\(528\) 0 0
\(529\) 43.4426i 1.88881i
\(530\) −2.92641 + 1.28378i −0.127115 + 0.0557638i
\(531\) 0 0
\(532\) −11.3698 11.3698i −0.492944 0.492944i
\(533\) −31.0389 + 31.0389i −1.34444 + 1.34444i
\(534\) 0 0
\(535\) 10.8555 + 4.23534i 0.469325 + 0.183110i
\(536\) 2.88048i 0.124418i
\(537\) 0 0
\(538\) −3.29894 + 3.29894i −0.142228 + 0.142228i
\(539\) −0.927664 + 0.927664i −0.0399573 + 0.0399573i
\(540\) 0 0
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) −5.62619 −0.241666
\(543\) 0 0
\(544\) 10.1090 + 4.55255i 0.433420 + 0.195189i
\(545\) 16.8891 + 6.58937i 0.723448 + 0.282257i
\(546\) 0 0
\(547\) 8.84290 + 8.84290i 0.378095 + 0.378095i 0.870415 0.492320i \(-0.163851\pi\)
−0.492320 + 0.870415i \(0.663851\pi\)
\(548\) 1.02525i 0.0437965i
\(549\) 0 0
\(550\) 0.557310 0.0230947i 0.0237638 0.000984762i
\(551\) 2.93157 + 2.93157i 0.124889 + 0.124889i
\(552\) 0 0
\(553\) −21.1255 −0.898346
\(554\) 1.11093 + 1.11093i 0.0471987 + 0.0471987i
\(555\) 0 0
\(556\) −24.3221 + 24.3221i −1.03149 + 1.03149i
\(557\) 38.9354i 1.64975i 0.565318 + 0.824873i \(0.308753\pi\)
−0.565318 + 0.824873i \(0.691247\pi\)
\(558\) 0 0
\(559\) 30.3549i 1.28387i
\(560\) 6.17644 15.8307i 0.261002 0.668970i
\(561\) 0 0
\(562\) 4.19153i 0.176809i
\(563\) −8.17844 −0.344680 −0.172340 0.985038i \(-0.555133\pi\)
−0.172340 + 0.985038i \(0.555133\pi\)
\(564\) 0 0
\(565\) −2.82356 + 7.23701i −0.118788 + 0.304463i
\(566\) 4.14368 4.14368i 0.174172 0.174172i
\(567\) 0 0
\(568\) 1.17876 1.17876i 0.0494595 0.0494595i
\(569\) 11.8920i 0.498538i 0.968434 + 0.249269i \(0.0801904\pi\)
−0.968434 + 0.249269i \(0.919810\pi\)
\(570\) 0 0
\(571\) −2.80523 2.80523i −0.117395 0.117395i 0.645969 0.763364i \(-0.276454\pi\)
−0.763364 + 0.645969i \(0.776454\pi\)
\(572\) −2.68895 + 2.68895i −0.112431 + 0.112431i
\(573\) 0 0
\(574\) 5.17644 0.216060
\(575\) −1.68747 40.7212i −0.0703725 1.69819i
\(576\) 0 0
\(577\) 6.58601i 0.274179i 0.990559 + 0.137090i \(0.0437749\pi\)
−0.990559 + 0.137090i \(0.956225\pi\)
\(578\) 2.61836 + 2.95831i 0.108909 + 0.123049i
\(579\) 0 0
\(580\) −1.63928 + 4.20159i −0.0680672 + 0.174462i
\(581\) −3.26711 + 3.26711i −0.135542 + 0.135542i
\(582\) 0 0
\(583\) 2.08747 + 2.08747i 0.0864543 + 0.0864543i
\(584\) 7.89199 + 7.89199i 0.326573 + 0.326573i
\(585\) 0 0
\(586\) 6.10218i 0.252079i
\(587\) 22.3369 0.921944 0.460972 0.887415i \(-0.347501\pi\)
0.460972 + 0.887415i \(0.347501\pi\)
\(588\) 0 0
\(589\) 17.1418 + 17.1418i 0.706314 + 0.706314i
\(590\) 1.25253 + 2.85518i 0.0515659 + 0.117546i
\(591\) 0 0
\(592\) 3.37357 + 3.37357i 0.138653 + 0.138653i
\(593\) −30.1344 −1.23747 −0.618736 0.785599i \(-0.712355\pi\)
−0.618736 + 0.785599i \(0.712355\pi\)
\(594\) 0 0
\(595\) 13.5972 13.3350i 0.557429 0.546681i
\(596\) 14.2468 0.583574
\(597\) 0 0
\(598\) −5.45252 5.45252i −0.222970 0.222970i
\(599\) 8.88907 0.363198 0.181599 0.983373i \(-0.441873\pi\)
0.181599 + 0.983373i \(0.441873\pi\)
\(600\) 0 0
\(601\) 17.1418 + 17.1418i 0.699227 + 0.699227i 0.964244 0.265017i \(-0.0853776\pi\)
−0.265017 + 0.964244i \(0.585378\pi\)
\(602\) −2.53118 + 2.53118i −0.103163 + 0.103163i
\(603\) 0 0
\(604\) 14.5284i 0.591151i
\(605\) 9.67429 + 22.0528i 0.393316 + 0.896573i
\(606\) 0 0
\(607\) −10.5442 10.5442i −0.427978 0.427978i 0.459961 0.887939i \(-0.347863\pi\)
−0.887939 + 0.459961i \(0.847863\pi\)
\(608\) 10.7558i 0.436205i
\(609\) 0 0
\(610\) 2.73847 + 1.06843i 0.110877 + 0.0432595i
\(611\) −14.6789 −0.593844
\(612\) 0 0
\(613\) 31.3459i 1.26605i 0.774132 + 0.633024i \(0.218187\pi\)
−0.774132 + 0.633024i \(0.781813\pi\)
\(614\) 3.23336i 0.130488i
\(615\) 0 0
\(616\) 0.909332 0.0366380
\(617\) −10.9050 10.9050i −0.439020 0.439020i 0.452662 0.891682i \(-0.350474\pi\)
−0.891682 + 0.452662i \(0.850474\pi\)
\(618\) 0 0
\(619\) 31.8930 + 31.8930i 1.28189 + 1.28189i 0.939593 + 0.342294i \(0.111204\pi\)
0.342294 + 0.939593i \(0.388796\pi\)
\(620\) −9.58533 + 24.5680i −0.384956 + 0.986673i
\(621\) 0 0
\(622\) 1.43625 1.43625i 0.0575882 0.0575882i
\(623\) −13.6897 + 13.6897i −0.548466 + 0.548466i
\(624\) 0 0
\(625\) −2.06843 24.9143i −0.0827372 0.996571i
\(626\) 1.14176 1.14176i 0.0456338 0.0456338i
\(627\) 0 0
\(628\) 24.2415i 0.967343i
\(629\) 1.89491 + 5.00000i 0.0755549 + 0.199363i
\(630\) 0 0
\(631\) 29.7493i 1.18430i −0.805827 0.592150i \(-0.798279\pi\)
0.805827 0.592150i \(-0.201721\pi\)
\(632\) −6.63128 6.63128i −0.263778 0.263778i
\(633\) 0 0
\(634\) 0.693313 0.693313i 0.0275350 0.0275350i
\(635\) 6.10912 2.68000i 0.242433 0.106352i
\(636\) 0 0
\(637\) 11.1249 0.440784
\(638\) −0.115626 −0.00457767
\(639\) 0 0
\(640\) 14.2162 6.23649i 0.561946 0.246519i
\(641\) −31.2131 + 31.2131i −1.23284 + 1.23284i −0.269977 + 0.962867i \(0.587016\pi\)
−0.962867 + 0.269977i \(0.912984\pi\)
\(642\) 0 0
\(643\) 5.36109 + 5.36109i 0.211421 + 0.211421i 0.804871 0.593450i \(-0.202235\pi\)
−0.593450 + 0.804871i \(0.702235\pi\)
\(644\) 32.7666i 1.29119i
\(645\) 0 0
\(646\) 1.57379 3.49464i 0.0619201 0.137495i
\(647\) 10.2540i 0.403128i −0.979475 0.201564i \(-0.935398\pi\)
0.979475 0.201564i \(-0.0646024\pi\)
\(648\) 0 0
\(649\) 2.03666 2.03666i 0.0799460 0.0799460i
\(650\) −3.48021 3.20325i −0.136505 0.125642i
\(651\) 0 0
\(652\) −11.7893 + 11.7893i −0.461706 + 0.461706i
\(653\) 10.1207 10.1207i 0.396054 0.396054i −0.480785 0.876839i \(-0.659648\pi\)
0.876839 + 0.480785i \(0.159648\pi\)
\(654\) 0 0
\(655\) 5.84671 14.9856i 0.228450 0.585535i
\(656\) −28.0511 28.0511i −1.09521 1.09521i
\(657\) 0 0
\(658\) 1.22402 + 1.22402i 0.0477172 + 0.0477172i
\(659\) 43.9653 1.71265 0.856323 0.516441i \(-0.172743\pi\)
0.856323 + 0.516441i \(0.172743\pi\)
\(660\) 0 0
\(661\) 20.7077i 0.805438i 0.915324 + 0.402719i \(0.131935\pi\)
−0.915324 + 0.402719i \(0.868065\pi\)
\(662\) 3.17815i 0.123522i
\(663\) 0 0
\(664\) −2.05109 −0.0795977
\(665\) −17.2125 6.71555i −0.667472 0.260418i
\(666\) 0 0
\(667\) 8.44848i 0.327126i
\(668\) −13.0008 13.0008i −0.503016 0.503016i
\(669\) 0 0
\(670\) 0.655737 + 1.49477i 0.0253333 + 0.0577480i
\(671\) 2.71555i 0.104833i
\(672\) 0 0
\(673\) −32.7151 + 32.7151i −1.26108 + 1.26108i −0.310503 + 0.950572i \(0.600497\pi\)
−0.950572 + 0.310503i \(0.899503\pi\)
\(674\) 1.06551 + 1.06551i 0.0410420 + 0.0410420i
\(675\) 0 0
\(676\) 6.94891 0.267266
\(677\) −1.24509 1.24509i −0.0478527 0.0478527i 0.682776 0.730628i \(-0.260773\pi\)
−0.730628 + 0.682776i \(0.760773\pi\)
\(678\) 0 0
\(679\) −34.5362 −1.32538
\(680\) 8.45399 + 0.0822978i 0.324196 + 0.00315598i
\(681\) 0 0
\(682\) −0.676098 −0.0258891
\(683\) 16.2377 + 16.2377i 0.621317 + 0.621317i 0.945868 0.324551i \(-0.105213\pi\)
−0.324551 + 0.945868i \(0.605213\pi\)
\(684\) 0 0
\(685\) 0.473270 + 1.07883i 0.0180827 + 0.0412200i
\(686\) −3.30377 3.30377i −0.126139 0.126139i
\(687\) 0 0
\(688\) 27.4329 1.04587
\(689\) 25.0337i 0.953710i
\(690\) 0 0
\(691\) −18.2314 18.2314i −0.693556 0.693556i 0.269456 0.963013i \(-0.413156\pi\)
−0.963013 + 0.269456i \(0.913156\pi\)
\(692\) 22.7641 + 22.7641i 0.865360 + 0.865360i
\(693\) 0 0
\(694\) 0.822571 0.822571i 0.0312244 0.0312244i
\(695\) −14.3658 + 36.8206i −0.544925 + 1.39669i
\(696\) 0 0
\(697\) −15.7561 41.5748i −0.596804 1.57476i
\(698\) 2.14103i 0.0810391i
\(699\) 0 0
\(700\) −0.832189 20.0820i −0.0314538 0.759027i
\(701\) 25.1195 0.948751 0.474376 0.880323i \(-0.342674\pi\)
0.474376 + 0.880323i \(0.342674\pi\)
\(702\) 0 0
\(703\) 3.66803 3.66803i 0.138342 0.138342i
\(704\) −2.28544 2.28544i −0.0861357 0.0861357i
\(705\) 0 0
\(706\) 3.22092i 0.121221i
\(707\) −6.44415 + 6.44415i −0.242357 + 0.242357i
\(708\) 0 0
\(709\) −23.7156 + 23.7156i −0.890656 + 0.890656i −0.994585 0.103929i \(-0.966859\pi\)
0.103929 + 0.994585i \(0.466859\pi\)
\(710\) 0.343350 0.880035i 0.0128857 0.0330271i
\(711\) 0 0
\(712\) −8.59437 −0.322088
\(713\) 49.4008i 1.85007i
\(714\) 0 0
\(715\) −1.58822 + 4.07073i −0.0593961 + 0.152237i
\(716\) 38.0078i 1.42042i
\(717\) 0 0
\(718\) 2.67305i 0.0997572i
\(719\) −29.4812 + 29.4812i −1.09946 + 1.09946i −0.104990 + 0.994473i \(0.533481\pi\)
−0.994473 + 0.104990i \(0.966519\pi\)
\(720\) 0 0
\(721\) 25.4629 + 25.4629i 0.948287 + 0.948287i
\(722\) 0.697168 0.0259459
\(723\) 0 0
\(724\) −14.4233 14.4233i −0.536037 0.536037i
\(725\) 0.214570 + 5.17789i 0.00796892 + 0.192302i
\(726\) 0 0
\(727\) 12.2458i 0.454172i −0.973875 0.227086i \(-0.927080\pi\)
0.973875 0.227086i \(-0.0729199\pi\)
\(728\) −5.45252 5.45252i −0.202084 0.202084i
\(729\) 0 0
\(730\) 5.89199 + 2.29879i 0.218072 + 0.0850821i
\(731\) 28.0337 + 12.6249i 1.03687 + 0.466948i
\(732\) 0 0
\(733\) −32.8393 −1.21295 −0.606473 0.795104i \(-0.707416\pi\)
−0.606473 + 0.795104i \(0.707416\pi\)
\(734\) 3.19185 3.19185i 0.117814 0.117814i
\(735\) 0 0
\(736\) 15.4985 15.4985i 0.571284 0.571284i
\(737\) 1.06625 1.06625i 0.0392759 0.0392759i
\(738\) 0 0
\(739\) 6.00000i 0.220714i 0.993892 + 0.110357i \(0.0351994\pi\)
−0.993892 + 0.110357i \(0.964801\pi\)
\(740\) 5.25710 + 2.05109i 0.193255 + 0.0753995i
\(741\) 0 0
\(742\) −2.08747 + 2.08747i −0.0766336 + 0.0766336i
\(743\) 16.1704 + 16.1704i 0.593236 + 0.593236i 0.938504 0.345268i \(-0.112212\pi\)
−0.345268 + 0.938504i \(0.612212\pi\)
\(744\) 0 0
\(745\) 14.9914 6.57655i 0.549243 0.240946i
\(746\) 1.29887i 0.0475552i
\(747\) 0 0
\(748\) −1.36498 3.60170i −0.0499085 0.131691i
\(749\) 10.7647 0.393332
\(750\) 0 0
\(751\) −22.6799 + 22.6799i −0.827600 + 0.827600i −0.987184 0.159584i \(-0.948985\pi\)
0.159584 + 0.987184i \(0.448985\pi\)
\(752\) 13.2659i 0.483758i
\(753\) 0 0
\(754\) 0.693313 + 0.693313i 0.0252490 + 0.0252490i
\(755\) −6.70651 15.2877i −0.244075 0.556375i
\(756\) 0 0
\(757\) −36.2220 −1.31651 −0.658256 0.752794i \(-0.728706\pi\)
−0.658256 + 0.752794i \(0.728706\pi\)
\(758\) −0.0914333 + 0.0914333i −0.00332101 + 0.00332101i
\(759\) 0 0
\(760\) −3.29499 7.51101i −0.119522 0.272453i
\(761\) −24.4851 −0.887584 −0.443792 0.896130i \(-0.646367\pi\)
−0.443792 + 0.896130i \(0.646367\pi\)
\(762\) 0 0
\(763\) 16.7477 0.606308
\(764\) −10.3549 −0.374626
\(765\) 0 0
\(766\) 5.76372 0.208252
\(767\) −24.4244 −0.881914
\(768\) 0 0
\(769\) −5.55937 −0.200476 −0.100238 0.994963i \(-0.531960\pi\)
−0.100238 + 0.994963i \(0.531960\pi\)
\(770\) 0.471880 0.207008i 0.0170054 0.00746005i
\(771\) 0 0
\(772\) 17.1755 17.1755i 0.618161 0.618161i
\(773\) −36.5376 −1.31416 −0.657082 0.753819i \(-0.728210\pi\)
−0.657082 + 0.753819i \(0.728210\pi\)
\(774\) 0 0
\(775\) 1.25465 + 30.2766i 0.0450685 + 1.08757i
\(776\) −10.8409 10.8409i −0.389166 0.389166i
\(777\) 0 0
\(778\) 2.03727i 0.0730398i
\(779\) −30.4995 + 30.4995i −1.09276 + 1.09276i
\(780\) 0 0
\(781\) −0.872669 −0.0312265
\(782\) 7.30334 2.76783i 0.261167 0.0989775i
\(783\) 0 0
\(784\) 10.0540i 0.359072i
\(785\) 11.1902 + 25.5084i 0.399397 + 0.910435i
\(786\) 0 0
\(787\) −11.3490 11.3490i −0.404547 0.404547i 0.475285 0.879832i \(-0.342345\pi\)
−0.879832 + 0.475285i \(0.842345\pi\)
\(788\) 0.759241 0.759241i 0.0270468 0.0270468i
\(789\) 0 0
\(790\) −4.95077 1.93157i −0.176140 0.0687222i
\(791\) 7.17644i 0.255165i
\(792\) 0 0
\(793\) −16.2829 + 16.2829i −0.578224 + 0.578224i
\(794\) 1.15618 1.15618i 0.0410313 0.0410313i
\(795\) 0 0
\(796\) 24.2170 24.2170i 0.858349 0.858349i
\(797\) −34.7907 −1.23235 −0.616175 0.787609i \(-0.711319\pi\)
−0.616175 + 0.787609i \(0.711319\pi\)
\(798\) 0 0
\(799\) 6.10509 13.5565i 0.215983 0.479593i
\(800\) 9.10509 9.89234i 0.321914 0.349747i
\(801\) 0 0
\(802\) 1.74752 + 1.74752i 0.0617070 + 0.0617070i
\(803\) 5.84268i 0.206184i
\(804\) 0 0
\(805\) −15.1256 34.4791i −0.533106 1.21523i
\(806\) 4.05400 + 4.05400i 0.142796 + 0.142796i
\(807\) 0 0
\(808\) −4.04563 −0.142325
\(809\) 13.3549 + 13.3549i 0.469532 + 0.469532i 0.901763 0.432231i \(-0.142274\pi\)
−0.432231 + 0.901763i \(0.642274\pi\)
\(810\) 0 0
\(811\) −9.28544 + 9.28544i −0.326056 + 0.326056i −0.851085 0.525029i \(-0.824055\pi\)
0.525029 + 0.851085i \(0.324055\pi\)
\(812\) 4.16643i 0.146213i
\(813\) 0 0
\(814\) 0.144673i 0.00507078i
\(815\) −6.96334 + 17.8476i −0.243915 + 0.625174i
\(816\) 0 0
\(817\) 29.8274i 1.04353i
\(818\) −0.588924 −0.0205913
\(819\) 0 0
\(820\) −43.7126 17.0547i −1.52651 0.595577i
\(821\) 27.8206 27.8206i 0.970947 0.970947i −0.0286425 0.999590i \(-0.509118\pi\)
0.999590 + 0.0286425i \(0.00911845\pi\)
\(822\) 0 0
\(823\) −28.4414 + 28.4414i −0.991403 + 0.991403i −0.999963 0.00855996i \(-0.997275\pi\)
0.00855996 + 0.999963i \(0.497275\pi\)
\(824\) 15.9856i 0.556884i
\(825\) 0 0
\(826\) 2.03666 + 2.03666i 0.0708646 + 0.0708646i
\(827\) 23.9764 23.9764i 0.833742 0.833742i −0.154284 0.988027i \(-0.549307\pi\)
0.988027 + 0.154284i \(0.0493071\pi\)
\(828\) 0 0
\(829\) −8.18134 −0.284150 −0.142075 0.989856i \(-0.545377\pi\)
−0.142075 + 0.989856i \(0.545377\pi\)
\(830\) −1.06437 + 0.466927i −0.0369449 + 0.0162073i
\(831\) 0 0
\(832\) 27.4078i 0.950195i
\(833\) −4.62695 + 10.2742i −0.160314 + 0.355980i
\(834\) 0 0
\(835\) −19.6816 7.67889i −0.681110 0.265739i
\(836\) −2.64222 + 2.64222i −0.0913832 + 0.0913832i
\(837\) 0 0
\(838\) 4.33181 + 4.33181i 0.149640 + 0.149640i
\(839\) −15.5381 15.5381i −0.536436 0.536436i 0.386045 0.922480i \(-0.373841\pi\)
−0.922480 + 0.386045i \(0.873841\pi\)
\(840\) 0 0
\(841\) 27.9257i 0.962956i
\(842\) −1.84589 −0.0636135
\(843\) 0 0
\(844\) 17.6547 + 17.6547i 0.607701 + 0.607701i
\(845\) 7.31207 3.20772i 0.251543 0.110349i
\(846\) 0 0
\(847\) 15.7308 + 15.7308i 0.540515 + 0.540515i
\(848\) 22.6240 0.776912
\(849\) 0 0
\(850\) 4.40576 1.88183i 0.151116 0.0645462i
\(851\) 10.5709 0.362365
\(852\) 0 0
\(853\) 26.1383 + 26.1383i 0.894959 + 0.894959i 0.994985 0.100026i \(-0.0318927\pi\)
−0.100026 + 0.994985i \(0.531893\pi\)
\(854\) 2.71555 0.0929242
\(855\) 0 0
\(856\) 3.37902 + 3.37902i 0.115493 + 0.115493i
\(857\) −10.6231 + 10.6231i −0.362879 + 0.362879i −0.864872 0.501993i \(-0.832600\pi\)
0.501993 + 0.864872i \(0.332600\pi\)
\(858\) 0 0
\(859\) 40.2180i 1.37222i −0.727498 0.686110i \(-0.759317\pi\)
0.727498 0.686110i \(-0.240683\pi\)
\(860\) 29.7141 13.0352i 1.01324 0.444497i
\(861\) 0 0
\(862\) 1.86337 + 1.86337i 0.0634668 + 0.0634668i
\(863\) 12.3865i 0.421643i 0.977525 + 0.210822i \(0.0676139\pi\)
−0.977525 + 0.210822i \(0.932386\pi\)
\(864\) 0 0
\(865\) 34.4620 + 13.4455i 1.17174 + 0.457162i
\(866\) 1.45136 0.0493192
\(867\) 0 0
\(868\) 24.3623i 0.826911i
\(869\) 4.90933i 0.166538i
\(870\) 0 0
\(871\) −12.7869 −0.433267
\(872\) 5.25710 + 5.25710i 0.178028 + 0.178028i
\(873\) 0 0
\(874\) −5.35778 5.35778i −0.181229 0.181229i
\(875\) −10.1458 20.7473i −0.342991 0.701387i
\(876\) 0 0
\(877\) 31.9433 31.9433i 1.07865 1.07865i 0.0820188 0.996631i \(-0.473863\pi\)
0.996631 0.0820188i \(-0.0261368\pi\)
\(878\) −1.73003 + 1.73003i −0.0583857 + 0.0583857i
\(879\) 0 0
\(880\) −3.67889 1.43534i −0.124015 0.0483853i
\(881\) 12.0367 12.0367i 0.405525 0.405525i −0.474649 0.880175i \(-0.657425\pi\)
0.880175 + 0.474649i \(0.157425\pi\)
\(882\) 0 0
\(883\) 13.3497i 0.449254i 0.974445 + 0.224627i \(0.0721164\pi\)
−0.974445 + 0.224627i \(0.927884\pi\)
\(884\) −13.4118 + 29.7811i −0.451087 + 1.00165i
\(885\) 0 0
\(886\) 6.80132i 0.228495i
\(887\) −31.4868 31.4868i −1.05722 1.05722i −0.998260 0.0589646i \(-0.981220\pi\)
−0.0589646 0.998260i \(-0.518780\pi\)
\(888\) 0 0
\(889\) 4.35778 4.35778i 0.146155 0.146155i
\(890\) −4.45988 + 1.95650i −0.149496 + 0.0655819i
\(891\) 0 0
\(892\) 7.92163 0.265236
\(893\) −14.4238 −0.482675
\(894\) 0 0
\(895\) 17.5450 + 39.9942i 0.586463 + 1.33686i
\(896\) 10.1408 10.1408i 0.338779 0.338779i
\(897\) 0 0
\(898\) 5.37790 + 5.37790i 0.179463 + 0.179463i
\(899\) 6.28153i 0.209501i
\(900\) 0 0
\(901\) 23.1195 + 10.4118i 0.770223 + 0.346867i
\(902\) 1.20295i 0.0400538i
\(903\) 0 0
\(904\) −2.25268 + 2.25268i −0.0749231 + 0.0749231i
\(905\) −21.8351 8.51907i −0.725822 0.283184i
\(906\) 0 0
\(907\) 23.2958 23.2958i 0.773526 0.773526i −0.205195 0.978721i \(-0.565783\pi\)
0.978721 + 0.205195i \(0.0657829\pi\)
\(908\) −21.7061 + 21.7061i −0.720342 + 0.720342i
\(909\) 0 0
\(910\) −4.07073 1.58822i −0.134944 0.0526490i
\(911\) −25.1630 25.1630i −0.833688 0.833688i 0.154332 0.988019i \(-0.450678\pi\)
−0.988019 + 0.154332i \(0.950678\pi\)
\(912\) 0 0
\(913\) 0.759241 + 0.759241i 0.0251272 + 0.0251272i
\(914\) −7.31450 −0.241942
\(915\) 0 0
\(916\) 29.0848i 0.960990i
\(917\) 14.8601i 0.490725i
\(918\) 0 0
\(919\) 28.5997 0.943418 0.471709 0.881754i \(-0.343637\pi\)
0.471709 + 0.881754i \(0.343637\pi\)
\(920\) 6.07507 15.5709i 0.200289 0.513357i
\(921\) 0 0
\(922\) 6.19183i 0.203917i
\(923\) 5.23268 + 5.23268i 0.172236 + 0.172236i
\(924\) 0 0
\(925\) 6.47866 0.268473i 0.213017 0.00882735i
\(926\) 3.30085i 0.108473i
\(927\) 0 0
\(928\) −1.97071 + 1.97071i −0.0646917 + 0.0646917i
\(929\) 8.98266 + 8.98266i 0.294711 + 0.294711i 0.838938 0.544227i \(-0.183177\pi\)
−0.544227 + 0.838938i \(0.683177\pi\)
\(930\) 0 0
\(931\) 10.9316 0.358268
\(932\) 1.00083 + 1.00083i 0.0327832 + 0.0327832i
\(933\) 0 0
\(934\) 6.76664 0.221411
\(935\) −3.09891 3.15983i −0.101345 0.103338i
\(936\) 0 0
\(937\) 30.7655 1.00506 0.502532 0.864558i \(-0.332402\pi\)
0.502532 + 0.864558i \(0.332402\pi\)
\(938\) 1.06625 + 1.06625i 0.0348144 + 0.0348144i
\(939\) 0 0
\(940\) −6.30352 14.3690i −0.205598 0.468666i
\(941\) 27.7522 + 27.7522i 0.904696 + 0.904696i 0.995838 0.0911416i \(-0.0290516\pi\)
−0.0911416 + 0.995838i \(0.529052\pi\)
\(942\) 0 0
\(943\) −87.8965 −2.86230
\(944\) 22.0733i 0.718426i
\(945\) 0 0
\(946\) 0.588220 + 0.588220i 0.0191247 + 0.0191247i
\(947\) −2.52289 2.52289i −0.0819830 0.0819830i 0.664926 0.746909i \(-0.268463\pi\)
−0.746909 + 0.664926i \(0.768463\pi\)
\(948\) 0 0
\(949\) −35.0337 + 35.0337i −1.13724 + 1.13724i
\(950\) −3.41974 3.14759i −0.110951 0.102121i
\(951\) 0 0
\(952\) 7.30334 2.76783i 0.236703 0.0897059i
\(953\) 53.8491i 1.74434i 0.489200 + 0.872172i \(0.337289\pi\)
−0.489200 + 0.872172i \(0.662711\pi\)
\(954\) 0 0
\(955\) −10.8960 + 4.77995i −0.352587 + 0.154676i
\(956\) −18.6306 −0.602555
\(957\) 0 0
\(958\) 0.323145 0.323145i 0.0104403 0.0104403i
\(959\) 0.769556 + 0.769556i 0.0248503 + 0.0248503i
\(960\) 0 0
\(961\) 5.72998i 0.184838i
\(962\) 0.867484 0.867484i 0.0279688 0.0279688i
\(963\) 0 0
\(964\) −11.6760 + 11.6760i −0.376058 + 0.376058i
\(965\) 10.1447 26.0016i 0.326569 0.837021i
\(966\) 0 0
\(967\) 14.6688 0.471716 0.235858 0.971788i \(-0.424210\pi\)
0.235858 + 0.971788i \(0.424210\pi\)
\(968\) 9.87576i 0.317419i
\(969\) 0 0
\(970\) −8.09358 3.15776i −0.259869 0.101389i
\(971\) 14.2468i 0.457203i 0.973520 + 0.228602i \(0.0734153\pi\)
−0.973520 + 0.228602i \(0.926585\pi\)
\(972\) 0 0
\(973\) 36.5125i 1.17054i
\(974\) 0.794499 0.794499i 0.0254574 0.0254574i
\(975\) 0 0
\(976\) −14.7156 14.7156i −0.471033 0.471033i
\(977\) 20.9141 0.669103 0.334551 0.942378i \(-0.391415\pi\)
0.334551 + 0.942378i \(0.391415\pi\)
\(978\) 0 0
\(979\) 3.18134 + 3.18134i 0.101676 + 0.101676i
\(980\) 4.77733 + 10.8900i 0.152606 + 0.347870i
\(981\) 0 0
\(982\) 3.92620i 0.125290i
\(983\) −12.3036 12.3036i −0.392425 0.392425i 0.483126 0.875551i \(-0.339501\pi\)
−0.875551 + 0.483126i \(0.839501\pi\)
\(984\) 0 0
\(985\) 0.448443 1.14940i 0.0142886 0.0366228i
\(986\) −0.928654 + 0.351942i −0.0295744 + 0.0112081i
\(987\) 0 0
\(988\) 31.6865 1.00808
\(989\) 42.9797 42.9797i 1.36668 1.36668i
\(990\) 0 0
\(991\) 3.73190 3.73190i 0.118548 0.118548i −0.645344 0.763892i \(-0.723286\pi\)
0.763892 + 0.645344i \(0.223286\pi\)
\(992\) −11.5233 + 11.5233i −0.365866 + 0.365866i
\(993\) 0 0
\(994\) 0.872669i 0.0276794i
\(995\) 14.3037 36.6615i 0.453458 1.16225i
\(996\) 0 0
\(997\) −18.1295 + 18.1295i −0.574167 + 0.574167i −0.933290 0.359123i \(-0.883076\pi\)
0.359123 + 0.933290i \(0.383076\pi\)
\(998\) 0.713978 + 0.713978i 0.0226006 + 0.0226006i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.t.e.514.4 12
3.2 odd 2 85.2.j.c.4.3 12
5.4 even 2 inner 765.2.t.e.514.3 12
15.2 even 4 425.2.e.d.276.3 12
15.8 even 4 425.2.e.d.276.4 12
15.14 odd 2 85.2.j.c.4.4 yes 12
17.13 even 4 inner 765.2.t.e.64.3 12
51.8 odd 8 1445.2.b.f.579.7 12
51.26 odd 8 1445.2.b.f.579.8 12
51.47 odd 4 85.2.j.c.64.4 yes 12
85.64 even 4 inner 765.2.t.e.64.4 12
255.8 even 8 7225.2.a.bp.1.8 12
255.47 even 4 425.2.e.d.251.4 12
255.59 odd 8 1445.2.b.f.579.6 12
255.77 even 8 7225.2.a.bp.1.6 12
255.98 even 4 425.2.e.d.251.3 12
255.128 even 8 7225.2.a.bp.1.7 12
255.149 odd 4 85.2.j.c.64.3 yes 12
255.179 odd 8 1445.2.b.f.579.5 12
255.212 even 8 7225.2.a.bp.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.3 12 3.2 odd 2
85.2.j.c.4.4 yes 12 15.14 odd 2
85.2.j.c.64.3 yes 12 255.149 odd 4
85.2.j.c.64.4 yes 12 51.47 odd 4
425.2.e.d.251.3 12 255.98 even 4
425.2.e.d.251.4 12 255.47 even 4
425.2.e.d.276.3 12 15.2 even 4
425.2.e.d.276.4 12 15.8 even 4
765.2.t.e.64.3 12 17.13 even 4 inner
765.2.t.e.64.4 12 85.64 even 4 inner
765.2.t.e.514.3 12 5.4 even 2 inner
765.2.t.e.514.4 12 1.1 even 1 trivial
1445.2.b.f.579.5 12 255.179 odd 8
1445.2.b.f.579.6 12 255.59 odd 8
1445.2.b.f.579.7 12 51.8 odd 8
1445.2.b.f.579.8 12 51.26 odd 8
7225.2.a.bp.1.5 12 255.212 even 8
7225.2.a.bp.1.6 12 255.77 even 8
7225.2.a.bp.1.7 12 255.128 even 8
7225.2.a.bp.1.8 12 255.8 even 8