Properties

Label 765.2.t.b
Level $765$
Weight $2$
Character orbit 765.t
Analytic conductor $6.109$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(64,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.t (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{4} + (i + 2) q^{5} + ( - 3 i - 3) q^{7} - 3 q^{8} + (i + 2) q^{10} + ( - 3 i + 3) q^{11} + ( - 3 i - 3) q^{14} - q^{16} + ( - 4 i + 1) q^{17} - 6 i q^{19} + ( - i - 2) q^{20} + ( - 3 i + 3) q^{22} + \cdots + 11 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} + 4 q^{5} - 6 q^{7} - 6 q^{8} + 4 q^{10} + 6 q^{11} - 6 q^{14} - 2 q^{16} + 2 q^{17} - 4 q^{20} + 6 q^{22} - 2 q^{23} + 6 q^{25} + 6 q^{28} + 6 q^{29} - 2 q^{31} + 10 q^{32} + 2 q^{34}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(i\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1
1.00000i
1.00000i
1.00000 0 −1.00000 2.00000 + 1.00000i 0 −3.00000 3.00000i −3.00000 0 2.00000 + 1.00000i
514.1 1.00000 0 −1.00000 2.00000 1.00000i 0 −3.00000 + 3.00000i −3.00000 0 2.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.j even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 765.2.t.b 2
3.b odd 2 1 85.2.j.a 2
5.b even 2 1 765.2.t.a 2
15.d odd 2 1 85.2.j.b yes 2
15.e even 4 1 425.2.e.a 2
15.e even 4 1 425.2.e.b 2
17.c even 4 1 765.2.t.a 2
51.f odd 4 1 85.2.j.b yes 2
51.g odd 8 2 1445.2.b.a 4
85.j even 4 1 inner 765.2.t.b 2
255.i odd 4 1 85.2.j.a 2
255.k even 4 1 425.2.e.b 2
255.r even 4 1 425.2.e.a 2
255.v even 8 2 7225.2.a.i 2
255.y odd 8 2 1445.2.b.a 4
255.ba even 8 2 7225.2.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.j.a 2 3.b odd 2 1
85.2.j.a 2 255.i odd 4 1
85.2.j.b yes 2 15.d odd 2 1
85.2.j.b yes 2 51.f odd 4 1
425.2.e.a 2 15.e even 4 1
425.2.e.a 2 255.r even 4 1
425.2.e.b 2 15.e even 4 1
425.2.e.b 2 255.k even 4 1
765.2.t.a 2 5.b even 2 1
765.2.t.a 2 17.c even 4 1
765.2.t.b 2 1.a even 1 1 trivial
765.2.t.b 2 85.j even 4 1 inner
1445.2.b.a 4 51.g odd 8 2
1445.2.b.a 4 255.y odd 8 2
7225.2.a.i 2 255.v even 8 2
7225.2.a.p 2 255.ba even 8 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(765, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 17 \) Copy content Toggle raw display
$19$ \( T^{2} + 36 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$31$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$37$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$41$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$43$ \( (T + 12)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 4 \) Copy content Toggle raw display
$53$ \( (T + 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 36 \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$67$ \( T^{2} + 36 \) Copy content Toggle raw display
$71$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$73$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$79$ \( T^{2} + 14T + 98 \) Copy content Toggle raw display
$83$ \( (T - 4)^{2} \) Copy content Toggle raw display
$89$ \( (T + 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
show more
show less