Properties

Label 765.2.g.b.271.5
Level $765$
Weight $2$
Character 765.271
Analytic conductor $6.109$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(271,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.271");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.5
Root \(-0.854638 + 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 765.271
Dual form 765.2.g.b.271.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17009 q^{2} +2.70928 q^{4} -1.00000i q^{5} -4.87936i q^{7} +1.53919 q^{8} -2.17009i q^{10} +3.17009i q^{11} +2.63090 q^{13} -10.5886i q^{14} -2.07838 q^{16} +(3.24846 - 2.53919i) q^{17} +1.07838 q^{19} -2.70928i q^{20} +6.87936i q^{22} -5.21953i q^{23} -1.00000 q^{25} +5.70928 q^{26} -13.2195i q^{28} +2.92162i q^{29} +4.09171i q^{31} -7.58864 q^{32} +(7.04945 - 5.51026i) q^{34} -4.87936 q^{35} +5.26180i q^{37} +2.34017 q^{38} -1.53919i q^{40} +5.60197i q^{41} +3.36910 q^{43} +8.58864i q^{44} -11.3268i q^{46} +6.78765 q^{47} -16.8082 q^{49} -2.17009 q^{50} +7.12783 q^{52} -3.75872 q^{53} +3.17009 q^{55} -7.51026i q^{56} +6.34017i q^{58} +2.34017 q^{59} +12.2557i q^{61} +8.87936i q^{62} -12.3112 q^{64} -2.63090i q^{65} +10.2062 q^{67} +(8.80098 - 6.87936i) q^{68} -10.5886 q^{70} -4.06505i q^{71} +11.0784i q^{73} +11.4186i q^{74} +2.92162 q^{76} +15.4680 q^{77} +6.92881i q^{79} +2.07838i q^{80} +12.1568i q^{82} -8.23287 q^{83} +(-2.53919 - 3.24846i) q^{85} +7.31124 q^{86} +4.87936i q^{88} -7.15449 q^{89} -12.8371i q^{91} -14.1412i q^{92} +14.7298 q^{94} -1.07838i q^{95} -8.18342i q^{97} -36.4752 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 2 q^{4} + 6 q^{8} + 8 q^{13} - 6 q^{16} + 2 q^{17} - 6 q^{25} + 20 q^{26} - 6 q^{32} + 6 q^{34} - 4 q^{35} - 8 q^{38} + 28 q^{43} + 20 q^{47} - 14 q^{49} - 2 q^{50} + 28 q^{53} + 8 q^{55}+ \cdots - 86 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17009 1.53448 0.767241 0.641358i \(-0.221629\pi\)
0.767241 + 0.641358i \(0.221629\pi\)
\(3\) 0 0
\(4\) 2.70928 1.35464
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.87936i 1.84423i −0.386921 0.922113i \(-0.626462\pi\)
0.386921 0.922113i \(-0.373538\pi\)
\(8\) 1.53919 0.544185
\(9\) 0 0
\(10\) 2.17009i 0.686242i
\(11\) 3.17009i 0.955817i 0.878410 + 0.477909i \(0.158605\pi\)
−0.878410 + 0.477909i \(0.841395\pi\)
\(12\) 0 0
\(13\) 2.63090 0.729680 0.364840 0.931070i \(-0.381124\pi\)
0.364840 + 0.931070i \(0.381124\pi\)
\(14\) 10.5886i 2.82993i
\(15\) 0 0
\(16\) −2.07838 −0.519594
\(17\) 3.24846 2.53919i 0.787868 0.615844i
\(18\) 0 0
\(19\) 1.07838 0.247397 0.123698 0.992320i \(-0.460524\pi\)
0.123698 + 0.992320i \(0.460524\pi\)
\(20\) 2.70928i 0.605812i
\(21\) 0 0
\(22\) 6.87936i 1.46668i
\(23\) 5.21953i 1.08835i −0.838972 0.544174i \(-0.816843\pi\)
0.838972 0.544174i \(-0.183157\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 5.70928 1.11968
\(27\) 0 0
\(28\) 13.2195i 2.49826i
\(29\) 2.92162i 0.542532i 0.962504 + 0.271266i \(0.0874422\pi\)
−0.962504 + 0.271266i \(0.912558\pi\)
\(30\) 0 0
\(31\) 4.09171i 0.734893i 0.930045 + 0.367446i \(0.119768\pi\)
−0.930045 + 0.367446i \(0.880232\pi\)
\(32\) −7.58864 −1.34149
\(33\) 0 0
\(34\) 7.04945 5.51026i 1.20897 0.945002i
\(35\) −4.87936 −0.824763
\(36\) 0 0
\(37\) 5.26180i 0.865034i 0.901626 + 0.432517i \(0.142374\pi\)
−0.901626 + 0.432517i \(0.857626\pi\)
\(38\) 2.34017 0.379626
\(39\) 0 0
\(40\) 1.53919i 0.243367i
\(41\) 5.60197i 0.874880i 0.899247 + 0.437440i \(0.144115\pi\)
−0.899247 + 0.437440i \(0.855885\pi\)
\(42\) 0 0
\(43\) 3.36910 0.513783 0.256892 0.966440i \(-0.417302\pi\)
0.256892 + 0.966440i \(0.417302\pi\)
\(44\) 8.58864i 1.29479i
\(45\) 0 0
\(46\) 11.3268i 1.67005i
\(47\) 6.78765 0.990081 0.495040 0.868870i \(-0.335153\pi\)
0.495040 + 0.868870i \(0.335153\pi\)
\(48\) 0 0
\(49\) −16.8082 −2.40117
\(50\) −2.17009 −0.306897
\(51\) 0 0
\(52\) 7.12783 0.988452
\(53\) −3.75872 −0.516300 −0.258150 0.966105i \(-0.583113\pi\)
−0.258150 + 0.966105i \(0.583113\pi\)
\(54\) 0 0
\(55\) 3.17009 0.427454
\(56\) 7.51026i 1.00360i
\(57\) 0 0
\(58\) 6.34017i 0.832505i
\(59\) 2.34017 0.304665 0.152332 0.988329i \(-0.451322\pi\)
0.152332 + 0.988329i \(0.451322\pi\)
\(60\) 0 0
\(61\) 12.2557i 1.56918i 0.620018 + 0.784588i \(0.287125\pi\)
−0.620018 + 0.784588i \(0.712875\pi\)
\(62\) 8.87936i 1.12768i
\(63\) 0 0
\(64\) −12.3112 −1.53891
\(65\) 2.63090i 0.326323i
\(66\) 0 0
\(67\) 10.2062 1.24689 0.623443 0.781869i \(-0.285733\pi\)
0.623443 + 0.781869i \(0.285733\pi\)
\(68\) 8.80098 6.87936i 1.06728 0.834245i
\(69\) 0 0
\(70\) −10.5886 −1.26558
\(71\) 4.06505i 0.482432i −0.970471 0.241216i \(-0.922454\pi\)
0.970471 0.241216i \(-0.0775463\pi\)
\(72\) 0 0
\(73\) 11.0784i 1.29663i 0.761374 + 0.648313i \(0.224525\pi\)
−0.761374 + 0.648313i \(0.775475\pi\)
\(74\) 11.4186i 1.32738i
\(75\) 0 0
\(76\) 2.92162 0.335133
\(77\) 15.4680 1.76274
\(78\) 0 0
\(79\) 6.92881i 0.779552i 0.920910 + 0.389776i \(0.127448\pi\)
−0.920910 + 0.389776i \(0.872552\pi\)
\(80\) 2.07838i 0.232370i
\(81\) 0 0
\(82\) 12.1568i 1.34249i
\(83\) −8.23287 −0.903674 −0.451837 0.892100i \(-0.649231\pi\)
−0.451837 + 0.892100i \(0.649231\pi\)
\(84\) 0 0
\(85\) −2.53919 3.24846i −0.275414 0.352345i
\(86\) 7.31124 0.788392
\(87\) 0 0
\(88\) 4.87936i 0.520142i
\(89\) −7.15449 −0.758374 −0.379187 0.925320i \(-0.623796\pi\)
−0.379187 + 0.925320i \(0.623796\pi\)
\(90\) 0 0
\(91\) 12.8371i 1.34569i
\(92\) 14.1412i 1.47432i
\(93\) 0 0
\(94\) 14.7298 1.51926
\(95\) 1.07838i 0.110639i
\(96\) 0 0
\(97\) 8.18342i 0.830900i −0.909616 0.415450i \(-0.863624\pi\)
0.909616 0.415450i \(-0.136376\pi\)
\(98\) −36.4752 −3.68455
\(99\) 0 0
\(100\) −2.70928 −0.270928
\(101\) 2.47414 0.246186 0.123093 0.992395i \(-0.460719\pi\)
0.123093 + 0.992395i \(0.460719\pi\)
\(102\) 0 0
\(103\) −19.6514 −1.93631 −0.968156 0.250348i \(-0.919455\pi\)
−0.968156 + 0.250348i \(0.919455\pi\)
\(104\) 4.04945 0.397081
\(105\) 0 0
\(106\) −8.15676 −0.792254
\(107\) 12.6381i 1.22177i 0.791719 + 0.610885i \(0.209186\pi\)
−0.791719 + 0.610885i \(0.790814\pi\)
\(108\) 0 0
\(109\) 8.15676i 0.781275i −0.920544 0.390638i \(-0.872255\pi\)
0.920544 0.390638i \(-0.127745\pi\)
\(110\) 6.87936 0.655921
\(111\) 0 0
\(112\) 10.1412i 0.958249i
\(113\) 17.0205i 1.60116i −0.599229 0.800578i \(-0.704526\pi\)
0.599229 0.800578i \(-0.295474\pi\)
\(114\) 0 0
\(115\) −5.21953 −0.486724
\(116\) 7.91548i 0.734934i
\(117\) 0 0
\(118\) 5.07838 0.467503
\(119\) −12.3896 15.8504i −1.13575 1.45301i
\(120\) 0 0
\(121\) 0.950552 0.0864138
\(122\) 26.5958i 2.40787i
\(123\) 0 0
\(124\) 11.0856i 0.995513i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −8.04945 −0.714273 −0.357137 0.934052i \(-0.616247\pi\)
−0.357137 + 0.934052i \(0.616247\pi\)
\(128\) −11.5392 −1.01993
\(129\) 0 0
\(130\) 5.70928i 0.500737i
\(131\) 11.6937i 1.02168i −0.859675 0.510841i \(-0.829334\pi\)
0.859675 0.510841i \(-0.170666\pi\)
\(132\) 0 0
\(133\) 5.26180i 0.456256i
\(134\) 22.1483 1.91333
\(135\) 0 0
\(136\) 5.00000 3.90829i 0.428746 0.335133i
\(137\) −1.95055 −0.166647 −0.0833234 0.996523i \(-0.526553\pi\)
−0.0833234 + 0.996523i \(0.526553\pi\)
\(138\) 0 0
\(139\) 2.00719i 0.170247i −0.996370 0.0851237i \(-0.972871\pi\)
0.996370 0.0851237i \(-0.0271286\pi\)
\(140\) −13.2195 −1.11725
\(141\) 0 0
\(142\) 8.82150i 0.740284i
\(143\) 8.34017i 0.697440i
\(144\) 0 0
\(145\) 2.92162 0.242628
\(146\) 24.0410i 1.98965i
\(147\) 0 0
\(148\) 14.2557i 1.17181i
\(149\) 14.2823 1.17005 0.585026 0.811014i \(-0.301084\pi\)
0.585026 + 0.811014i \(0.301084\pi\)
\(150\) 0 0
\(151\) 12.8638 1.04684 0.523419 0.852075i \(-0.324656\pi\)
0.523419 + 0.852075i \(0.324656\pi\)
\(152\) 1.65983 0.134630
\(153\) 0 0
\(154\) 33.5669 2.70490
\(155\) 4.09171 0.328654
\(156\) 0 0
\(157\) 3.75872 0.299979 0.149989 0.988688i \(-0.452076\pi\)
0.149989 + 0.988688i \(0.452076\pi\)
\(158\) 15.0361i 1.19621i
\(159\) 0 0
\(160\) 7.58864i 0.599934i
\(161\) −25.4680 −2.00716
\(162\) 0 0
\(163\) 8.69594i 0.681119i −0.940223 0.340559i \(-0.889384\pi\)
0.940223 0.340559i \(-0.110616\pi\)
\(164\) 15.1773i 1.18515i
\(165\) 0 0
\(166\) −17.8660 −1.38667
\(167\) 1.37629i 0.106501i −0.998581 0.0532503i \(-0.983042\pi\)
0.998581 0.0532503i \(-0.0169581\pi\)
\(168\) 0 0
\(169\) −6.07838 −0.467568
\(170\) −5.51026 7.04945i −0.422618 0.540668i
\(171\) 0 0
\(172\) 9.12783 0.695990
\(173\) 17.3607i 1.31991i 0.751306 + 0.659954i \(0.229424\pi\)
−0.751306 + 0.659954i \(0.770576\pi\)
\(174\) 0 0
\(175\) 4.87936i 0.368845i
\(176\) 6.58864i 0.496637i
\(177\) 0 0
\(178\) −15.5259 −1.16371
\(179\) −6.83710 −0.511029 −0.255514 0.966805i \(-0.582245\pi\)
−0.255514 + 0.966805i \(0.582245\pi\)
\(180\) 0 0
\(181\) 15.0205i 1.11647i 0.829684 + 0.558233i \(0.188521\pi\)
−0.829684 + 0.558233i \(0.811479\pi\)
\(182\) 27.8576i 2.06494i
\(183\) 0 0
\(184\) 8.03385i 0.592263i
\(185\) 5.26180 0.386855
\(186\) 0 0
\(187\) 8.04945 + 10.2979i 0.588634 + 0.753058i
\(188\) 18.3896 1.34120
\(189\) 0 0
\(190\) 2.34017i 0.169774i
\(191\) 24.2823 1.75701 0.878503 0.477736i \(-0.158543\pi\)
0.878503 + 0.477736i \(0.158543\pi\)
\(192\) 0 0
\(193\) 11.8576i 0.853530i −0.904363 0.426765i \(-0.859653\pi\)
0.904363 0.426765i \(-0.140347\pi\)
\(194\) 17.7587i 1.27500i
\(195\) 0 0
\(196\) −45.5380 −3.25271
\(197\) 18.2557i 1.30066i 0.759651 + 0.650331i \(0.225370\pi\)
−0.759651 + 0.650331i \(0.774630\pi\)
\(198\) 0 0
\(199\) 3.72487i 0.264049i 0.991246 + 0.132025i \(0.0421478\pi\)
−0.991246 + 0.132025i \(0.957852\pi\)
\(200\) −1.53919 −0.108837
\(201\) 0 0
\(202\) 5.36910 0.377769
\(203\) 14.2557 1.00055
\(204\) 0 0
\(205\) 5.60197 0.391258
\(206\) −42.6453 −2.97124
\(207\) 0 0
\(208\) −5.46800 −0.379138
\(209\) 3.41855i 0.236466i
\(210\) 0 0
\(211\) 22.2485i 1.53165i −0.643051 0.765824i \(-0.722332\pi\)
0.643051 0.765824i \(-0.277668\pi\)
\(212\) −10.1834 −0.699400
\(213\) 0 0
\(214\) 27.4257i 1.87478i
\(215\) 3.36910i 0.229771i
\(216\) 0 0
\(217\) 19.9649 1.35531
\(218\) 17.7009i 1.19885i
\(219\) 0 0
\(220\) 8.58864 0.579046
\(221\) 8.54638 6.68035i 0.574892 0.449369i
\(222\) 0 0
\(223\) −2.19183 −0.146776 −0.0733878 0.997303i \(-0.523381\pi\)
−0.0733878 + 0.997303i \(0.523381\pi\)
\(224\) 37.0277i 2.47402i
\(225\) 0 0
\(226\) 36.9360i 2.45695i
\(227\) 9.55971i 0.634500i −0.948342 0.317250i \(-0.897241\pi\)
0.948342 0.317250i \(-0.102759\pi\)
\(228\) 0 0
\(229\) 7.36910 0.486964 0.243482 0.969905i \(-0.421710\pi\)
0.243482 + 0.969905i \(0.421710\pi\)
\(230\) −11.3268 −0.746870
\(231\) 0 0
\(232\) 4.49693i 0.295238i
\(233\) 9.44521i 0.618776i −0.950936 0.309388i \(-0.899876\pi\)
0.950936 0.309388i \(-0.100124\pi\)
\(234\) 0 0
\(235\) 6.78765i 0.442778i
\(236\) 6.34017 0.412710
\(237\) 0 0
\(238\) −26.8865 34.3968i −1.74280 2.22961i
\(239\) −6.25565 −0.404644 −0.202322 0.979319i \(-0.564849\pi\)
−0.202322 + 0.979319i \(0.564849\pi\)
\(240\) 0 0
\(241\) 2.49693i 0.160841i −0.996761 0.0804207i \(-0.974374\pi\)
0.996761 0.0804207i \(-0.0256264\pi\)
\(242\) 2.06278 0.132600
\(243\) 0 0
\(244\) 33.2039i 2.12566i
\(245\) 16.8082i 1.07383i
\(246\) 0 0
\(247\) 2.83710 0.180520
\(248\) 6.29791i 0.399918i
\(249\) 0 0
\(250\) 2.17009i 0.137248i
\(251\) 11.8166 0.745856 0.372928 0.927860i \(-0.378354\pi\)
0.372928 + 0.927860i \(0.378354\pi\)
\(252\) 0 0
\(253\) 16.5464 1.04026
\(254\) −17.4680 −1.09604
\(255\) 0 0
\(256\) −0.418551 −0.0261594
\(257\) −14.9444 −0.932207 −0.466103 0.884730i \(-0.654342\pi\)
−0.466103 + 0.884730i \(0.654342\pi\)
\(258\) 0 0
\(259\) 25.6742 1.59532
\(260\) 7.12783i 0.442049i
\(261\) 0 0
\(262\) 25.3763i 1.56775i
\(263\) 12.9444 0.798186 0.399093 0.916910i \(-0.369325\pi\)
0.399093 + 0.916910i \(0.369325\pi\)
\(264\) 0 0
\(265\) 3.75872i 0.230897i
\(266\) 11.4186i 0.700116i
\(267\) 0 0
\(268\) 27.6514 1.68908
\(269\) 7.47641i 0.455845i 0.973679 + 0.227922i \(0.0731932\pi\)
−0.973679 + 0.227922i \(0.926807\pi\)
\(270\) 0 0
\(271\) −2.15676 −0.131014 −0.0655068 0.997852i \(-0.520866\pi\)
−0.0655068 + 0.997852i \(0.520866\pi\)
\(272\) −6.75154 + 5.27739i −0.409372 + 0.319989i
\(273\) 0 0
\(274\) −4.23287 −0.255717
\(275\) 3.17009i 0.191163i
\(276\) 0 0
\(277\) 12.1568i 0.730429i 0.930923 + 0.365214i \(0.119004\pi\)
−0.930923 + 0.365214i \(0.880996\pi\)
\(278\) 4.35577i 0.261242i
\(279\) 0 0
\(280\) −7.51026 −0.448824
\(281\) −13.1194 −0.782639 −0.391319 0.920255i \(-0.627981\pi\)
−0.391319 + 0.920255i \(0.627981\pi\)
\(282\) 0 0
\(283\) 13.9577i 0.829701i −0.909889 0.414851i \(-0.863834\pi\)
0.909889 0.414851i \(-0.136166\pi\)
\(284\) 11.0133i 0.653521i
\(285\) 0 0
\(286\) 18.0989i 1.07021i
\(287\) 27.3340 1.61348
\(288\) 0 0
\(289\) 4.10504 16.4969i 0.241473 0.970408i
\(290\) 6.34017 0.372308
\(291\) 0 0
\(292\) 30.0144i 1.75646i
\(293\) −4.73820 −0.276809 −0.138404 0.990376i \(-0.544197\pi\)
−0.138404 + 0.990376i \(0.544197\pi\)
\(294\) 0 0
\(295\) 2.34017i 0.136250i
\(296\) 8.09890i 0.470739i
\(297\) 0 0
\(298\) 30.9939 1.79543
\(299\) 13.7321i 0.794146i
\(300\) 0 0
\(301\) 16.4391i 0.947532i
\(302\) 27.9155 1.60636
\(303\) 0 0
\(304\) −2.24128 −0.128546
\(305\) 12.2557 0.701757
\(306\) 0 0
\(307\) −21.5936 −1.23241 −0.616205 0.787586i \(-0.711331\pi\)
−0.616205 + 0.787586i \(0.711331\pi\)
\(308\) 41.9071 2.38788
\(309\) 0 0
\(310\) 8.87936 0.504314
\(311\) 24.2628i 1.37582i −0.725796 0.687910i \(-0.758528\pi\)
0.725796 0.687910i \(-0.241472\pi\)
\(312\) 0 0
\(313\) 4.07223i 0.230176i 0.993355 + 0.115088i \(0.0367151\pi\)
−0.993355 + 0.115088i \(0.963285\pi\)
\(314\) 8.15676 0.460312
\(315\) 0 0
\(316\) 18.7721i 1.05601i
\(317\) 8.05786i 0.452574i −0.974061 0.226287i \(-0.927341\pi\)
0.974061 0.226287i \(-0.0726588\pi\)
\(318\) 0 0
\(319\) −9.26180 −0.518561
\(320\) 12.3112i 0.688219i
\(321\) 0 0
\(322\) −55.2678 −3.07995
\(323\) 3.50307 2.73820i 0.194916 0.152358i
\(324\) 0 0
\(325\) −2.63090 −0.145936
\(326\) 18.8710i 1.04517i
\(327\) 0 0
\(328\) 8.62249i 0.476097i
\(329\) 33.1194i 1.82593i
\(330\) 0 0
\(331\) −10.0722 −0.553620 −0.276810 0.960925i \(-0.589277\pi\)
−0.276810 + 0.960925i \(0.589277\pi\)
\(332\) −22.3051 −1.22415
\(333\) 0 0
\(334\) 2.98667i 0.163423i
\(335\) 10.2062i 0.557624i
\(336\) 0 0
\(337\) 11.2351i 0.612017i −0.952029 0.306008i \(-0.901006\pi\)
0.952029 0.306008i \(-0.0989936\pi\)
\(338\) −13.1906 −0.717474
\(339\) 0 0
\(340\) −6.87936 8.80098i −0.373086 0.477300i
\(341\) −12.9711 −0.702423
\(342\) 0 0
\(343\) 47.8576i 2.58407i
\(344\) 5.18568 0.279593
\(345\) 0 0
\(346\) 37.6742i 2.02538i
\(347\) 8.74927i 0.469685i 0.972033 + 0.234843i \(0.0754575\pi\)
−0.972033 + 0.234843i \(0.924543\pi\)
\(348\) 0 0
\(349\) −26.9093 −1.44042 −0.720212 0.693754i \(-0.755955\pi\)
−0.720212 + 0.693754i \(0.755955\pi\)
\(350\) 10.5886i 0.565986i
\(351\) 0 0
\(352\) 24.0566i 1.28222i
\(353\) −18.3135 −0.974730 −0.487365 0.873198i \(-0.662042\pi\)
−0.487365 + 0.873198i \(0.662042\pi\)
\(354\) 0 0
\(355\) −4.06505 −0.215750
\(356\) −19.3835 −1.02732
\(357\) 0 0
\(358\) −14.8371 −0.784165
\(359\) 9.57531 0.505365 0.252683 0.967549i \(-0.418687\pi\)
0.252683 + 0.967549i \(0.418687\pi\)
\(360\) 0 0
\(361\) −17.8371 −0.938795
\(362\) 32.5958i 1.71320i
\(363\) 0 0
\(364\) 34.7792i 1.82293i
\(365\) 11.0784 0.579869
\(366\) 0 0
\(367\) 12.1145i 0.632371i 0.948697 + 0.316186i \(0.102402\pi\)
−0.948697 + 0.316186i \(0.897598\pi\)
\(368\) 10.8482i 0.565500i
\(369\) 0 0
\(370\) 11.4186 0.593622
\(371\) 18.3402i 0.952174i
\(372\) 0 0
\(373\) 30.4619 1.57726 0.788628 0.614871i \(-0.210792\pi\)
0.788628 + 0.614871i \(0.210792\pi\)
\(374\) 17.4680 + 22.3474i 0.903249 + 1.15555i
\(375\) 0 0
\(376\) 10.4475 0.538788
\(377\) 7.68649i 0.395874i
\(378\) 0 0
\(379\) 0.986669i 0.0506818i −0.999679 0.0253409i \(-0.991933\pi\)
0.999679 0.0253409i \(-0.00806712\pi\)
\(380\) 2.92162i 0.149876i
\(381\) 0 0
\(382\) 52.6947 2.69610
\(383\) 24.9588 1.27533 0.637667 0.770312i \(-0.279900\pi\)
0.637667 + 0.770312i \(0.279900\pi\)
\(384\) 0 0
\(385\) 15.4680i 0.788322i
\(386\) 25.7321i 1.30973i
\(387\) 0 0
\(388\) 22.1711i 1.12557i
\(389\) −33.8082 −1.71414 −0.857071 0.515198i \(-0.827718\pi\)
−0.857071 + 0.515198i \(0.827718\pi\)
\(390\) 0 0
\(391\) −13.2534 16.9555i −0.670252 0.857475i
\(392\) −25.8710 −1.30668
\(393\) 0 0
\(394\) 39.6163i 1.99584i
\(395\) 6.92881 0.348626
\(396\) 0 0
\(397\) 28.5236i 1.43156i 0.698327 + 0.715779i \(0.253928\pi\)
−0.698327 + 0.715779i \(0.746072\pi\)
\(398\) 8.08330i 0.405179i
\(399\) 0 0
\(400\) 2.07838 0.103919
\(401\) 33.0928i 1.65257i 0.563250 + 0.826287i \(0.309551\pi\)
−0.563250 + 0.826287i \(0.690449\pi\)
\(402\) 0 0
\(403\) 10.7649i 0.536236i
\(404\) 6.70313 0.333493
\(405\) 0 0
\(406\) 30.9360 1.53533
\(407\) −16.6803 −0.826814
\(408\) 0 0
\(409\) −30.1978 −1.49318 −0.746592 0.665282i \(-0.768311\pi\)
−0.746592 + 0.665282i \(0.768311\pi\)
\(410\) 12.1568 0.600379
\(411\) 0 0
\(412\) −53.2411 −2.62300
\(413\) 11.4186i 0.561870i
\(414\) 0 0
\(415\) 8.23287i 0.404135i
\(416\) −19.9649 −0.978861
\(417\) 0 0
\(418\) 7.41855i 0.362853i
\(419\) 18.1639i 0.887367i −0.896184 0.443683i \(-0.853671\pi\)
0.896184 0.443683i \(-0.146329\pi\)
\(420\) 0 0
\(421\) 0.760991 0.0370884 0.0185442 0.999828i \(-0.494097\pi\)
0.0185442 + 0.999828i \(0.494097\pi\)
\(422\) 48.2811i 2.35029i
\(423\) 0 0
\(424\) −5.78539 −0.280963
\(425\) −3.24846 + 2.53919i −0.157574 + 0.123169i
\(426\) 0 0
\(427\) 59.7998 2.89391
\(428\) 34.2401i 1.65506i
\(429\) 0 0
\(430\) 7.31124i 0.352579i
\(431\) 6.34736i 0.305742i −0.988246 0.152871i \(-0.951148\pi\)
0.988246 0.152871i \(-0.0488518\pi\)
\(432\) 0 0
\(433\) 3.62475 0.174195 0.0870973 0.996200i \(-0.472241\pi\)
0.0870973 + 0.996200i \(0.472241\pi\)
\(434\) 43.3256 2.07970
\(435\) 0 0
\(436\) 22.0989i 1.05835i
\(437\) 5.62863i 0.269254i
\(438\) 0 0
\(439\) 6.40522i 0.305704i −0.988249 0.152852i \(-0.951154\pi\)
0.988249 0.152852i \(-0.0488459\pi\)
\(440\) 4.87936 0.232614
\(441\) 0 0
\(442\) 18.5464 14.4969i 0.882161 0.689549i
\(443\) −27.4824 −1.30573 −0.652864 0.757476i \(-0.726432\pi\)
−0.652864 + 0.757476i \(0.726432\pi\)
\(444\) 0 0
\(445\) 7.15449i 0.339155i
\(446\) −4.75646 −0.225225
\(447\) 0 0
\(448\) 60.0710i 2.83809i
\(449\) 28.7526i 1.35692i 0.734638 + 0.678459i \(0.237352\pi\)
−0.734638 + 0.678459i \(0.762648\pi\)
\(450\) 0 0
\(451\) −17.7587 −0.836226
\(452\) 46.1133i 2.16899i
\(453\) 0 0
\(454\) 20.7454i 0.973630i
\(455\) −12.8371 −0.601813
\(456\) 0 0
\(457\) −31.4101 −1.46930 −0.734652 0.678444i \(-0.762655\pi\)
−0.734652 + 0.678444i \(0.762655\pi\)
\(458\) 15.9916 0.747238
\(459\) 0 0
\(460\) −14.1412 −0.659335
\(461\) 7.75872 0.361360 0.180680 0.983542i \(-0.442170\pi\)
0.180680 + 0.983542i \(0.442170\pi\)
\(462\) 0 0
\(463\) 24.2329 1.12620 0.563098 0.826390i \(-0.309609\pi\)
0.563098 + 0.826390i \(0.309609\pi\)
\(464\) 6.07223i 0.281896i
\(465\) 0 0
\(466\) 20.4969i 0.949502i
\(467\) 12.3174 0.569981 0.284990 0.958530i \(-0.408010\pi\)
0.284990 + 0.958530i \(0.408010\pi\)
\(468\) 0 0
\(469\) 49.7998i 2.29954i
\(470\) 14.7298i 0.679435i
\(471\) 0 0
\(472\) 3.60197 0.165794
\(473\) 10.6803i 0.491083i
\(474\) 0 0
\(475\) −1.07838 −0.0494794
\(476\) −33.5669 42.9432i −1.53854 1.96830i
\(477\) 0 0
\(478\) −13.5753 −0.620920
\(479\) 2.14957i 0.0982162i −0.998793 0.0491081i \(-0.984362\pi\)
0.998793 0.0491081i \(-0.0156379\pi\)
\(480\) 0 0
\(481\) 13.8432i 0.631198i
\(482\) 5.41855i 0.246808i
\(483\) 0 0
\(484\) 2.57531 0.117059
\(485\) −8.18342 −0.371590
\(486\) 0 0
\(487\) 40.0833i 1.81635i −0.418593 0.908174i \(-0.637477\pi\)
0.418593 0.908174i \(-0.362523\pi\)
\(488\) 18.8638i 0.853922i
\(489\) 0 0
\(490\) 36.4752i 1.64778i
\(491\) 2.25565 0.101796 0.0508981 0.998704i \(-0.483792\pi\)
0.0508981 + 0.998704i \(0.483792\pi\)
\(492\) 0 0
\(493\) 7.41855 + 9.49079i 0.334115 + 0.427443i
\(494\) 6.15676 0.277006
\(495\) 0 0
\(496\) 8.50412i 0.381846i
\(497\) −19.8348 −0.889714
\(498\) 0 0
\(499\) 42.5452i 1.90458i −0.305190 0.952291i \(-0.598720\pi\)
0.305190 0.952291i \(-0.401280\pi\)
\(500\) 2.70928i 0.121162i
\(501\) 0 0
\(502\) 25.6430 1.14450
\(503\) 9.55971i 0.426246i 0.977025 + 0.213123i \(0.0683636\pi\)
−0.977025 + 0.213123i \(0.931636\pi\)
\(504\) 0 0
\(505\) 2.47414i 0.110098i
\(506\) 35.9071 1.59626
\(507\) 0 0
\(508\) −21.8082 −0.967581
\(509\) −28.3545 −1.25679 −0.628397 0.777893i \(-0.716288\pi\)
−0.628397 + 0.777893i \(0.716288\pi\)
\(510\) 0 0
\(511\) 54.0554 2.39127
\(512\) 22.1701 0.979789
\(513\) 0 0
\(514\) −32.4307 −1.43046
\(515\) 19.6514i 0.865945i
\(516\) 0 0
\(517\) 21.5174i 0.946336i
\(518\) 55.7152 2.44799
\(519\) 0 0
\(520\) 4.04945i 0.177580i
\(521\) 15.1050i 0.661764i −0.943672 0.330882i \(-0.892654\pi\)
0.943672 0.330882i \(-0.107346\pi\)
\(522\) 0 0
\(523\) −10.8865 −0.476036 −0.238018 0.971261i \(-0.576498\pi\)
−0.238018 + 0.971261i \(0.576498\pi\)
\(524\) 31.6814i 1.38401i
\(525\) 0 0
\(526\) 28.0905 1.22480
\(527\) 10.3896 + 13.2918i 0.452579 + 0.578999i
\(528\) 0 0
\(529\) −4.24354 −0.184502
\(530\) 8.15676i 0.354307i
\(531\) 0 0
\(532\) 14.2557i 0.618061i
\(533\) 14.7382i 0.638383i
\(534\) 0 0
\(535\) 12.6381 0.546392
\(536\) 15.7093 0.678537
\(537\) 0 0
\(538\) 16.2245i 0.699486i
\(539\) 53.2834i 2.29508i
\(540\) 0 0
\(541\) 6.86830i 0.295291i 0.989040 + 0.147646i \(0.0471695\pi\)
−0.989040 + 0.147646i \(0.952830\pi\)
\(542\) −4.68035 −0.201038
\(543\) 0 0
\(544\) −24.6514 + 19.2690i −1.05692 + 0.826151i
\(545\) −8.15676 −0.349397
\(546\) 0 0
\(547\) 5.89988i 0.252261i −0.992014 0.126130i \(-0.959744\pi\)
0.992014 0.126130i \(-0.0402558\pi\)
\(548\) −5.28458 −0.225746
\(549\) 0 0
\(550\) 6.87936i 0.293337i
\(551\) 3.15061i 0.134221i
\(552\) 0 0
\(553\) 33.8082 1.43767
\(554\) 26.3812i 1.12083i
\(555\) 0 0
\(556\) 5.43802i 0.230624i
\(557\) 17.7359 0.751496 0.375748 0.926722i \(-0.377386\pi\)
0.375748 + 0.926722i \(0.377386\pi\)
\(558\) 0 0
\(559\) 8.86376 0.374897
\(560\) 10.1412 0.428542
\(561\) 0 0
\(562\) −28.4703 −1.20095
\(563\) 38.8020 1.63531 0.817655 0.575708i \(-0.195274\pi\)
0.817655 + 0.575708i \(0.195274\pi\)
\(564\) 0 0
\(565\) −17.0205 −0.716059
\(566\) 30.2895i 1.27316i
\(567\) 0 0
\(568\) 6.25687i 0.262533i
\(569\) −12.1568 −0.509638 −0.254819 0.966989i \(-0.582016\pi\)
−0.254819 + 0.966989i \(0.582016\pi\)
\(570\) 0 0
\(571\) 15.4569i 0.646853i −0.946253 0.323426i \(-0.895165\pi\)
0.946253 0.323426i \(-0.104835\pi\)
\(572\) 22.5958i 0.944779i
\(573\) 0 0
\(574\) 59.3172 2.47585
\(575\) 5.21953i 0.217670i
\(576\) 0 0
\(577\) −2.36296 −0.0983713 −0.0491856 0.998790i \(-0.515663\pi\)
−0.0491856 + 0.998790i \(0.515663\pi\)
\(578\) 8.90829 35.7998i 0.370536 1.48907i
\(579\) 0 0
\(580\) 7.91548 0.328672
\(581\) 40.1711i 1.66658i
\(582\) 0 0
\(583\) 11.9155i 0.493489i
\(584\) 17.0517i 0.705605i
\(585\) 0 0
\(586\) −10.2823 −0.424758
\(587\) 3.65142 0.150710 0.0753550 0.997157i \(-0.475991\pi\)
0.0753550 + 0.997157i \(0.475991\pi\)
\(588\) 0 0
\(589\) 4.41241i 0.181810i
\(590\) 5.07838i 0.209074i
\(591\) 0 0
\(592\) 10.9360i 0.449467i
\(593\) 1.38735 0.0569718 0.0284859 0.999594i \(-0.490931\pi\)
0.0284859 + 0.999594i \(0.490931\pi\)
\(594\) 0 0
\(595\) −15.8504 + 12.3896i −0.649804 + 0.507925i
\(596\) 38.6947 1.58500
\(597\) 0 0
\(598\) 29.7998i 1.21860i
\(599\) 0.451356 0.0184419 0.00922095 0.999957i \(-0.497065\pi\)
0.00922095 + 0.999957i \(0.497065\pi\)
\(600\) 0 0
\(601\) 22.1301i 0.902705i 0.892346 + 0.451353i \(0.149058\pi\)
−0.892346 + 0.451353i \(0.850942\pi\)
\(602\) 35.6742i 1.45397i
\(603\) 0 0
\(604\) 34.8515 1.41809
\(605\) 0.950552i 0.0386454i
\(606\) 0 0
\(607\) 10.2667i 0.416713i 0.978053 + 0.208357i \(0.0668114\pi\)
−0.978053 + 0.208357i \(0.933189\pi\)
\(608\) −8.18342 −0.331881
\(609\) 0 0
\(610\) 26.5958 1.07683
\(611\) 17.8576 0.722442
\(612\) 0 0
\(613\) −9.05172 −0.365595 −0.182798 0.983151i \(-0.558515\pi\)
−0.182798 + 0.983151i \(0.558515\pi\)
\(614\) −46.8599 −1.89111
\(615\) 0 0
\(616\) 23.8082 0.959259
\(617\) 17.8166i 0.717269i −0.933478 0.358634i \(-0.883243\pi\)
0.933478 0.358634i \(-0.116757\pi\)
\(618\) 0 0
\(619\) 38.3884i 1.54296i 0.636254 + 0.771480i \(0.280483\pi\)
−0.636254 + 0.771480i \(0.719517\pi\)
\(620\) 11.0856 0.445207
\(621\) 0 0
\(622\) 52.6525i 2.11117i
\(623\) 34.9093i 1.39861i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 8.83710i 0.353202i
\(627\) 0 0
\(628\) 10.1834 0.406363
\(629\) 13.3607 + 17.0928i 0.532726 + 0.681533i
\(630\) 0 0
\(631\) −27.4863 −1.09421 −0.547105 0.837064i \(-0.684270\pi\)
−0.547105 + 0.837064i \(0.684270\pi\)
\(632\) 10.6647i 0.424221i
\(633\) 0 0
\(634\) 17.4863i 0.694468i
\(635\) 8.04945i 0.319433i
\(636\) 0 0
\(637\) −44.2206 −1.75208
\(638\) −20.0989 −0.795723
\(639\) 0 0
\(640\) 11.5392i 0.456126i
\(641\) 9.79976i 0.387067i −0.981094 0.193534i \(-0.938005\pi\)
0.981094 0.193534i \(-0.0619949\pi\)
\(642\) 0 0
\(643\) 16.9372i 0.667939i 0.942584 + 0.333969i \(0.108388\pi\)
−0.942584 + 0.333969i \(0.891612\pi\)
\(644\) −68.9998 −2.71897
\(645\) 0 0
\(646\) 7.60197 5.94214i 0.299095 0.233790i
\(647\) 2.98545 0.117370 0.0586850 0.998277i \(-0.481309\pi\)
0.0586850 + 0.998277i \(0.481309\pi\)
\(648\) 0 0
\(649\) 7.41855i 0.291204i
\(650\) −5.70928 −0.223936
\(651\) 0 0
\(652\) 23.5597i 0.922669i
\(653\) 40.1978i 1.57306i −0.617551 0.786531i \(-0.711875\pi\)
0.617551 0.786531i \(-0.288125\pi\)
\(654\) 0 0
\(655\) −11.6937 −0.456910
\(656\) 11.6430i 0.454583i
\(657\) 0 0
\(658\) 71.8720i 2.80186i
\(659\) −43.9832 −1.71334 −0.856671 0.515864i \(-0.827471\pi\)
−0.856671 + 0.515864i \(0.827471\pi\)
\(660\) 0 0
\(661\) 26.1133 1.01569 0.507844 0.861449i \(-0.330443\pi\)
0.507844 + 0.861449i \(0.330443\pi\)
\(662\) −21.8576 −0.849521
\(663\) 0 0
\(664\) −12.6719 −0.491766
\(665\) −5.26180 −0.204044
\(666\) 0 0
\(667\) 15.2495 0.590463
\(668\) 3.72875i 0.144270i
\(669\) 0 0
\(670\) 22.1483i 0.855665i
\(671\) −38.8515 −1.49984
\(672\) 0 0
\(673\) 13.3340i 0.513989i −0.966413 0.256995i \(-0.917268\pi\)
0.966413 0.256995i \(-0.0827322\pi\)
\(674\) 24.3812i 0.939129i
\(675\) 0 0
\(676\) −16.4680 −0.633385
\(677\) 26.5113i 1.01891i 0.860497 + 0.509456i \(0.170153\pi\)
−0.860497 + 0.509456i \(0.829847\pi\)
\(678\) 0 0
\(679\) −39.9299 −1.53237
\(680\) −3.90829 5.00000i −0.149876 0.191741i
\(681\) 0 0
\(682\) −28.1483 −1.07786
\(683\) 5.71646i 0.218734i −0.994001 0.109367i \(-0.965118\pi\)
0.994001 0.109367i \(-0.0348824\pi\)
\(684\) 0 0
\(685\) 1.95055i 0.0745267i
\(686\) 103.855i 3.96521i
\(687\) 0 0
\(688\) −7.00227 −0.266959
\(689\) −9.88882 −0.376734
\(690\) 0 0
\(691\) 43.8504i 1.66815i −0.551652 0.834075i \(-0.686002\pi\)
0.551652 0.834075i \(-0.313998\pi\)
\(692\) 47.0349i 1.78800i
\(693\) 0 0
\(694\) 18.9867i 0.720724i
\(695\) −2.00719 −0.0761370
\(696\) 0 0
\(697\) 14.2245 + 18.1978i 0.538790 + 0.689291i
\(698\) −58.3956 −2.21031
\(699\) 0 0
\(700\) 13.2195i 0.499651i
\(701\) −0.0806452 −0.00304593 −0.00152296 0.999999i \(-0.500485\pi\)
−0.00152296 + 0.999999i \(0.500485\pi\)
\(702\) 0 0
\(703\) 5.67420i 0.214007i
\(704\) 39.0277i 1.47091i
\(705\) 0 0
\(706\) −39.7419 −1.49571
\(707\) 12.0722i 0.454023i
\(708\) 0 0
\(709\) 10.8227i 0.406456i −0.979131 0.203228i \(-0.934857\pi\)
0.979131 0.203228i \(-0.0651433\pi\)
\(710\) −8.82150 −0.331065
\(711\) 0 0
\(712\) −11.0121 −0.412696
\(713\) 21.3568 0.799819
\(714\) 0 0
\(715\) 8.34017 0.311905
\(716\) −18.5236 −0.692259
\(717\) 0 0
\(718\) 20.7792 0.775474
\(719\) 43.7659i 1.63219i 0.577916 + 0.816097i \(0.303866\pi\)
−0.577916 + 0.816097i \(0.696134\pi\)
\(720\) 0 0
\(721\) 95.8864i 3.57100i
\(722\) −38.7081 −1.44056
\(723\) 0 0
\(724\) 40.6947i 1.51241i
\(725\) 2.92162i 0.108506i
\(726\) 0 0
\(727\) −3.59809 −0.133446 −0.0667229 0.997772i \(-0.521254\pi\)
−0.0667229 + 0.997772i \(0.521254\pi\)
\(728\) 19.7587i 0.732307i
\(729\) 0 0
\(730\) 24.0410 0.889799
\(731\) 10.9444 8.55479i 0.404794 0.316410i
\(732\) 0 0
\(733\) −39.8264 −1.47102 −0.735511 0.677513i \(-0.763058\pi\)
−0.735511 + 0.677513i \(0.763058\pi\)
\(734\) 26.2895i 0.970363i
\(735\) 0 0
\(736\) 39.6092i 1.46001i
\(737\) 32.3545i 1.19180i
\(738\) 0 0
\(739\) 13.7587 0.506123 0.253061 0.967450i \(-0.418563\pi\)
0.253061 + 0.967450i \(0.418563\pi\)
\(740\) 14.2557 0.524048
\(741\) 0 0
\(742\) 39.7998i 1.46110i
\(743\) 9.34963i 0.343005i 0.985184 + 0.171502i \(0.0548621\pi\)
−0.985184 + 0.171502i \(0.945138\pi\)
\(744\) 0 0
\(745\) 14.2823i 0.523264i
\(746\) 66.1049 2.42027
\(747\) 0 0
\(748\) 21.8082 + 27.8999i 0.797386 + 1.02012i
\(749\) 61.6658 2.25322
\(750\) 0 0
\(751\) 53.7392i 1.96097i 0.196586 + 0.980487i \(0.437014\pi\)
−0.196586 + 0.980487i \(0.562986\pi\)
\(752\) −14.1073 −0.514441
\(753\) 0 0
\(754\) 16.6803i 0.607462i
\(755\) 12.8638i 0.468160i
\(756\) 0 0
\(757\) −41.5136 −1.50884 −0.754418 0.656394i \(-0.772081\pi\)
−0.754418 + 0.656394i \(0.772081\pi\)
\(758\) 2.14116i 0.0777703i
\(759\) 0 0
\(760\) 1.65983i 0.0602083i
\(761\) 18.0372 0.653847 0.326923 0.945051i \(-0.393988\pi\)
0.326923 + 0.945051i \(0.393988\pi\)
\(762\) 0 0
\(763\) −39.7998 −1.44085
\(764\) 65.7875 2.38011
\(765\) 0 0
\(766\) 54.1627 1.95698
\(767\) 6.15676 0.222308
\(768\) 0 0
\(769\) −23.0843 −0.832443 −0.416221 0.909263i \(-0.636646\pi\)
−0.416221 + 0.909263i \(0.636646\pi\)
\(770\) 33.5669i 1.20967i
\(771\) 0 0
\(772\) 32.1256i 1.15622i
\(773\) 27.4101 0.985874 0.492937 0.870065i \(-0.335923\pi\)
0.492937 + 0.870065i \(0.335923\pi\)
\(774\) 0 0
\(775\) 4.09171i 0.146979i
\(776\) 12.5958i 0.452164i
\(777\) 0 0
\(778\) −73.3667 −2.63032
\(779\) 6.04104i 0.216443i
\(780\) 0 0
\(781\) 12.8865 0.461117
\(782\) −28.7610 36.7948i −1.02849 1.31578i
\(783\) 0 0
\(784\) 34.9337 1.24763
\(785\) 3.75872i 0.134155i
\(786\) 0 0
\(787\) 30.6069i 1.09102i 0.838105 + 0.545509i \(0.183664\pi\)
−0.838105 + 0.545509i \(0.816336\pi\)
\(788\) 49.4596i 1.76192i
\(789\) 0 0
\(790\) 15.0361 0.534961
\(791\) −83.0493 −2.95289
\(792\) 0 0
\(793\) 32.2434i 1.14500i
\(794\) 61.8987i 2.19670i
\(795\) 0 0
\(796\) 10.0917i 0.357691i
\(797\) −22.9770 −0.813888 −0.406944 0.913453i \(-0.633406\pi\)
−0.406944 + 0.913453i \(0.633406\pi\)
\(798\) 0 0
\(799\) 22.0494 17.2351i 0.780053 0.609735i
\(800\) 7.58864 0.268299
\(801\) 0 0
\(802\) 71.8141i 2.53585i
\(803\) −35.1194 −1.23934
\(804\) 0 0
\(805\) 25.4680i 0.897629i
\(806\) 23.3607i 0.822845i
\(807\) 0 0
\(808\) 3.80817 0.133971
\(809\) 42.7670i 1.50361i −0.659388 0.751803i \(-0.729184\pi\)
0.659388 0.751803i \(-0.270816\pi\)
\(810\) 0 0
\(811\) 9.41136i 0.330478i 0.986254 + 0.165239i \(0.0528395\pi\)
−0.986254 + 0.165239i \(0.947161\pi\)
\(812\) 38.6225 1.35538
\(813\) 0 0
\(814\) −36.1978 −1.26873
\(815\) −8.69594 −0.304606
\(816\) 0 0
\(817\) 3.63317 0.127108
\(818\) −65.5318 −2.29127
\(819\) 0 0
\(820\) 15.1773 0.530013
\(821\) 32.6681i 1.14012i 0.821602 + 0.570062i \(0.193081\pi\)
−0.821602 + 0.570062i \(0.806919\pi\)
\(822\) 0 0
\(823\) 15.9265i 0.555164i −0.960702 0.277582i \(-0.910467\pi\)
0.960702 0.277582i \(-0.0895331\pi\)
\(824\) −30.2472 −1.05371
\(825\) 0 0
\(826\) 24.7792i 0.862180i
\(827\) 6.01560i 0.209183i 0.994515 + 0.104591i \(0.0333535\pi\)
−0.994515 + 0.104591i \(0.966647\pi\)
\(828\) 0 0
\(829\) 11.0472 0.383684 0.191842 0.981426i \(-0.438554\pi\)
0.191842 + 0.981426i \(0.438554\pi\)
\(830\) 17.8660i 0.620139i
\(831\) 0 0
\(832\) −32.3896 −1.12291
\(833\) −54.6007 + 42.6791i −1.89180 + 1.47874i
\(834\) 0 0
\(835\) −1.37629 −0.0476285
\(836\) 9.26180i 0.320326i
\(837\) 0 0
\(838\) 39.4173i 1.36165i
\(839\) 35.9805i 1.24219i 0.783737 + 0.621093i \(0.213311\pi\)
−0.783737 + 0.621093i \(0.786689\pi\)
\(840\) 0 0
\(841\) 20.4641 0.705659
\(842\) 1.65142 0.0569116
\(843\) 0 0
\(844\) 60.2772i 2.07483i
\(845\) 6.07838i 0.209103i
\(846\) 0 0
\(847\) 4.63809i 0.159367i
\(848\) 7.81205 0.268267
\(849\) 0 0
\(850\) −7.04945 + 5.51026i −0.241794 + 0.189000i
\(851\) 27.4641 0.941458
\(852\) 0 0
\(853\) 28.7792i 0.985382i −0.870204 0.492691i \(-0.836013\pi\)
0.870204 0.492691i \(-0.163987\pi\)
\(854\) 129.771 4.44066
\(855\) 0 0
\(856\) 19.4524i 0.664869i
\(857\) 17.0661i 0.582967i 0.956576 + 0.291483i \(0.0941488\pi\)
−0.956576 + 0.291483i \(0.905851\pi\)
\(858\) 0 0
\(859\) −18.9360 −0.646088 −0.323044 0.946384i \(-0.604706\pi\)
−0.323044 + 0.946384i \(0.604706\pi\)
\(860\) 9.12783i 0.311256i
\(861\) 0 0
\(862\) 13.7743i 0.469155i
\(863\) −30.8332 −1.04958 −0.524788 0.851233i \(-0.675855\pi\)
−0.524788 + 0.851233i \(0.675855\pi\)
\(864\) 0 0
\(865\) 17.3607 0.590281
\(866\) 7.86603 0.267299
\(867\) 0 0
\(868\) 54.0905 1.83595
\(869\) −21.9649 −0.745109
\(870\) 0 0
\(871\) 26.8515 0.909828
\(872\) 12.5548i 0.425159i
\(873\) 0 0
\(874\) 12.2146i 0.413165i
\(875\) 4.87936 0.164953
\(876\) 0 0
\(877\) 4.30898i 0.145504i 0.997350 + 0.0727519i \(0.0231781\pi\)
−0.997350 + 0.0727519i \(0.976822\pi\)
\(878\) 13.8999i 0.469098i
\(879\) 0 0
\(880\) −6.58864 −0.222103
\(881\) 12.2245i 0.411852i 0.978568 + 0.205926i \(0.0660207\pi\)
−0.978568 + 0.205926i \(0.933979\pi\)
\(882\) 0 0
\(883\) −28.2329 −0.950112 −0.475056 0.879956i \(-0.657572\pi\)
−0.475056 + 0.879956i \(0.657572\pi\)
\(884\) 23.1545 18.0989i 0.778770 0.608732i
\(885\) 0 0
\(886\) −59.6391 −2.00362
\(887\) 5.17396i 0.173725i −0.996220 0.0868623i \(-0.972316\pi\)
0.996220 0.0868623i \(-0.0276840\pi\)
\(888\) 0 0
\(889\) 39.2762i 1.31728i
\(890\) 15.5259i 0.520428i
\(891\) 0 0
\(892\) −5.93827 −0.198828
\(893\) 7.31965 0.244943
\(894\) 0 0
\(895\) 6.83710i 0.228539i
\(896\) 56.3039i 1.88098i
\(897\) 0 0
\(898\) 62.3956i 2.08217i
\(899\) −11.9544 −0.398702
\(900\) 0 0
\(901\) −12.2101 + 9.54411i −0.406777 + 0.317960i
\(902\) −38.5380 −1.28317
\(903\) 0 0
\(904\) 26.1978i 0.871326i
\(905\) 15.0205 0.499299
\(906\) 0 0
\(907\) 6.32457i 0.210004i −0.994472 0.105002i \(-0.966515\pi\)
0.994472 0.105002i \(-0.0334849\pi\)
\(908\) 25.8999i 0.859518i
\(909\) 0 0
\(910\) −27.8576 −0.923471
\(911\) 27.6526i 0.916173i −0.888908 0.458086i \(-0.848535\pi\)
0.888908 0.458086i \(-0.151465\pi\)
\(912\) 0 0
\(913\) 26.0989i 0.863747i
\(914\) −68.1627 −2.25462
\(915\) 0 0
\(916\) 19.9649 0.659660
\(917\) −57.0577 −1.88421
\(918\) 0 0
\(919\) −47.5318 −1.56793 −0.783965 0.620805i \(-0.786806\pi\)
−0.783965 + 0.620805i \(0.786806\pi\)
\(920\) −8.03385 −0.264868
\(921\) 0 0
\(922\) 16.8371 0.554500
\(923\) 10.6947i 0.352021i
\(924\) 0 0
\(925\) 5.26180i 0.173007i
\(926\) 52.5874 1.72813
\(927\) 0 0
\(928\) 22.1711i 0.727803i
\(929\) 43.7875i 1.43662i 0.695723 + 0.718310i \(0.255084\pi\)
−0.695723 + 0.718310i \(0.744916\pi\)
\(930\) 0 0
\(931\) −18.1256 −0.594041
\(932\) 25.5897i 0.838218i
\(933\) 0 0
\(934\) 26.7298 0.874626
\(935\) 10.2979 8.04945i 0.336778 0.263245i
\(936\) 0 0
\(937\) 14.2367 0.465094 0.232547 0.972585i \(-0.425294\pi\)
0.232547 + 0.972585i \(0.425294\pi\)
\(938\) 108.070i 3.52860i
\(939\) 0 0
\(940\) 18.3896i 0.599803i
\(941\) 35.2183i 1.14808i −0.818826 0.574042i \(-0.805375\pi\)
0.818826 0.574042i \(-0.194625\pi\)
\(942\) 0 0
\(943\) 29.2397 0.952175
\(944\) −4.86376 −0.158302
\(945\) 0 0
\(946\) 23.1773i 0.753558i
\(947\) 49.1227i 1.59627i −0.602476 0.798137i \(-0.705819\pi\)
0.602476 0.798137i \(-0.294181\pi\)
\(948\) 0 0
\(949\) 29.1461i 0.946122i
\(950\) −2.34017 −0.0759252
\(951\) 0 0
\(952\) −19.0700 24.3968i −0.618061 0.790705i
\(953\) 17.0556 0.552485 0.276242 0.961088i \(-0.410911\pi\)
0.276242 + 0.961088i \(0.410911\pi\)
\(954\) 0 0
\(955\) 24.2823i 0.785757i
\(956\) −16.9483 −0.548147
\(957\) 0 0
\(958\) 4.66475i 0.150711i
\(959\) 9.51745i 0.307334i
\(960\) 0 0
\(961\) 14.2579 0.459933
\(962\) 30.0410i 0.968562i
\(963\) 0 0
\(964\) 6.76487i 0.217882i
\(965\) −11.8576 −0.381710
\(966\) 0 0
\(967\) −25.1955 −0.810233 −0.405117 0.914265i \(-0.632769\pi\)
−0.405117 + 0.914265i \(0.632769\pi\)
\(968\) 1.46308 0.0470251
\(969\) 0 0
\(970\) −17.7587 −0.570198
\(971\) −1.67420 −0.0537277 −0.0268639 0.999639i \(-0.508552\pi\)
−0.0268639 + 0.999639i \(0.508552\pi\)
\(972\) 0 0
\(973\) −9.79380 −0.313975
\(974\) 86.9842i 2.78715i
\(975\) 0 0
\(976\) 25.4719i 0.815335i
\(977\) 39.9109 1.27686 0.638432 0.769678i \(-0.279583\pi\)
0.638432 + 0.769678i \(0.279583\pi\)
\(978\) 0 0
\(979\) 22.6803i 0.724867i
\(980\) 45.5380i 1.45466i
\(981\) 0 0
\(982\) 4.89496 0.156204
\(983\) 5.46081i 0.174173i 0.996201 + 0.0870864i \(0.0277556\pi\)
−0.996201 + 0.0870864i \(0.972244\pi\)
\(984\) 0 0
\(985\) 18.2557 0.581673
\(986\) 16.0989 + 20.5958i 0.512693 + 0.655905i
\(987\) 0 0
\(988\) 7.68649 0.244540
\(989\) 17.5851i 0.559175i
\(990\) 0 0
\(991\) 42.0749i 1.33655i −0.743913 0.668276i \(-0.767032\pi\)
0.743913 0.668276i \(-0.232968\pi\)
\(992\) 31.0505i 0.985854i
\(993\) 0 0
\(994\) −43.0433 −1.36525
\(995\) 3.72487 0.118086
\(996\) 0 0
\(997\) 54.6681i 1.73135i −0.500602 0.865677i \(-0.666888\pi\)
0.500602 0.865677i \(-0.333112\pi\)
\(998\) 92.3267i 2.92255i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.g.b.271.5 6
3.2 odd 2 85.2.d.a.16.1 6
12.11 even 2 1360.2.c.f.1121.4 6
15.2 even 4 425.2.c.b.424.1 6
15.8 even 4 425.2.c.a.424.6 6
15.14 odd 2 425.2.d.c.101.6 6
17.16 even 2 inner 765.2.g.b.271.6 6
51.38 odd 4 1445.2.a.k.1.3 3
51.47 odd 4 1445.2.a.j.1.3 3
51.50 odd 2 85.2.d.a.16.2 yes 6
204.203 even 2 1360.2.c.f.1121.3 6
255.89 odd 4 7225.2.a.r.1.1 3
255.149 odd 4 7225.2.a.q.1.1 3
255.152 even 4 425.2.c.a.424.1 6
255.203 even 4 425.2.c.b.424.6 6
255.254 odd 2 425.2.d.c.101.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.1 6 3.2 odd 2
85.2.d.a.16.2 yes 6 51.50 odd 2
425.2.c.a.424.1 6 255.152 even 4
425.2.c.a.424.6 6 15.8 even 4
425.2.c.b.424.1 6 15.2 even 4
425.2.c.b.424.6 6 255.203 even 4
425.2.d.c.101.5 6 255.254 odd 2
425.2.d.c.101.6 6 15.14 odd 2
765.2.g.b.271.5 6 1.1 even 1 trivial
765.2.g.b.271.6 6 17.16 even 2 inner
1360.2.c.f.1121.3 6 204.203 even 2
1360.2.c.f.1121.4 6 12.11 even 2
1445.2.a.j.1.3 3 51.47 odd 4
1445.2.a.k.1.3 3 51.38 odd 4
7225.2.a.q.1.1 3 255.149 odd 4
7225.2.a.r.1.1 3 255.89 odd 4