Defining parameters
Level: | \( N \) | \(=\) | \( 765 = 3^{2} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 765.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(765, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 30 | 86 |
Cusp forms | 100 | 30 | 70 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(765, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
765.2.g.a | $4$ | $6.109$ | \(\Q(i, \sqrt{13})\) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q+(-1+\beta _{3})q^{2}+(2-\beta _{3})q^{4}-\beta _{2}q^{5}+\cdots\) |
765.2.g.b | $6$ | $6.109$ | 6.0.350464.1 | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{4}+\beta _{3}q^{5}+(2\beta _{4}+\cdots)q^{7}+\cdots\) |
765.2.g.c | $8$ | $6.109$ | 8.0.\(\cdots\).1 | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}+(1-\beta _{2}-\beta _{3})q^{4}-\beta _{5}q^{5}+\cdots\) |
765.2.g.d | $12$ | $6.109$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}+(1+\beta _{1})q^{4}+\beta _{6}q^{5}+\beta _{10}q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(765, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(765, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 2}\)