Properties

Label 765.2.g
Level $765$
Weight $2$
Character orbit 765.g
Rep. character $\chi_{765}(271,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $4$
Sturm bound $216$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(216\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(765, [\chi])\).

Total New Old
Modular forms 116 30 86
Cusp forms 100 30 70
Eisenstein series 16 0 16

Trace form

\( 30 q + 2 q^{2} + 34 q^{4} + 6 q^{8} + 8 q^{13} + 26 q^{16} + 10 q^{17} - 16 q^{19} - 30 q^{25} - 4 q^{26} + 74 q^{32} + 6 q^{34} - 12 q^{35} - 24 q^{38} - 20 q^{43} - 12 q^{47} - 22 q^{49} - 2 q^{50} + 16 q^{52}+ \cdots - 102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(765, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
765.2.g.a 765.g 17.b $4$ $6.109$ \(\Q(i, \sqrt{13})\) None 255.2.g.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta _{3})q^{2}+(2-\beta _{3})q^{4}-\beta _{2}q^{5}+\cdots\)
765.2.g.b 765.g 17.b $6$ $6.109$ 6.0.350464.1 None 85.2.d.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{4}+\beta _{3}q^{5}+(2\beta _{4}+\cdots)q^{7}+\cdots\)
765.2.g.c 765.g 17.b $8$ $6.109$ 8.0.\(\cdots\).1 None 255.2.g.b \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+(1-\beta _{2}-\beta _{3})q^{4}-\beta _{5}q^{5}+\cdots\)
765.2.g.d 765.g 17.b $12$ $6.109$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 765.2.g.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+(1+\beta _{1})q^{4}+\beta _{6}q^{5}+\beta _{10}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(765, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(765, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 2}\)