Properties

Label 765.2.be.b.631.3
Level $765$
Weight $2$
Character 765.631
Analytic conductor $6.109$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [765,2,Mod(406,765)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("765.406"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.be (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 631.3
Character \(\chi\) \(=\) 765.631
Dual form 765.2.be.b.451.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.213325 - 0.213325i) q^{2} -1.90899i q^{4} +(0.382683 + 0.923880i) q^{5} +(-0.960473 + 2.31879i) q^{7} +(-0.833883 + 0.833883i) q^{8} +(0.115451 - 0.278722i) q^{10} +(-2.25941 - 0.935880i) q^{11} +5.61335i q^{13} +(0.699548 - 0.289762i) q^{14} -3.46219 q^{16} +(-2.76113 + 3.06205i) q^{17} +(-5.04243 - 5.04243i) q^{19} +(1.76367 - 0.730537i) q^{20} +(0.282343 + 0.681636i) q^{22} +(-0.795280 - 0.329416i) q^{23} +(-0.707107 + 0.707107i) q^{25} +(1.19747 - 1.19747i) q^{26} +(4.42653 + 1.83353i) q^{28} +(1.43561 + 3.46587i) q^{29} +(-2.07626 + 0.860015i) q^{31} +(2.40634 + 2.40634i) q^{32} +(1.24223 - 0.0641935i) q^{34} -2.50984 q^{35} +(4.71693 - 1.95382i) q^{37} +2.15135i q^{38} +(-1.08952 - 0.451294i) q^{40} +(-4.72598 + 11.4095i) q^{41} +(-1.85272 + 1.85272i) q^{43} +(-1.78658 + 4.31319i) q^{44} +(0.0993804 + 0.239926i) q^{46} -2.30114i q^{47} +(0.495478 + 0.495478i) q^{49} +0.301687 q^{50} +10.7158 q^{52} +(-1.96204 - 1.96204i) q^{53} -2.44557i q^{55} +(-1.13268 - 2.73452i) q^{56} +(0.433105 - 1.04561i) q^{58} +(5.26206 - 5.26206i) q^{59} +(-0.346822 + 0.837303i) q^{61} +(0.626380 + 0.259455i) q^{62} +5.89773i q^{64} +(-5.18606 + 2.14814i) q^{65} -6.69889 q^{67} +(5.84541 + 5.27096i) q^{68} +(0.535411 + 0.535411i) q^{70} +(-0.222439 + 0.0921372i) q^{71} +(-2.47116 - 5.96591i) q^{73} +(-1.42304 - 0.589441i) q^{74} +(-9.62592 + 9.62592i) q^{76} +(4.34022 - 4.34022i) q^{77} +(13.5899 + 5.62912i) q^{79} +(-1.32492 - 3.19865i) q^{80} +(3.44210 - 1.42577i) q^{82} +(9.82767 + 9.82767i) q^{83} +(-3.88561 - 1.37916i) q^{85} +0.790460 q^{86} +(2.66450 - 1.10367i) q^{88} +0.395163i q^{89} +(-13.0162 - 5.39148i) q^{91} +(-0.628850 + 1.51818i) q^{92} +(-0.490889 + 0.490889i) q^{94} +(2.72894 - 6.58825i) q^{95} +(3.42855 + 8.27725i) q^{97} -0.211396i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{11} - 24 q^{16} + 8 q^{17} - 8 q^{19} - 32 q^{22} + 16 q^{23} - 16 q^{26} + 48 q^{28} + 8 q^{29} + 16 q^{34} + 32 q^{35} + 24 q^{37} + 16 q^{40} - 16 q^{41} + 8 q^{43} - 16 q^{44} + 8 q^{46}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.213325 0.213325i −0.150843 0.150843i 0.627651 0.778495i \(-0.284016\pi\)
−0.778495 + 0.627651i \(0.784016\pi\)
\(3\) 0 0
\(4\) 1.90899i 0.954493i
\(5\) 0.382683 + 0.923880i 0.171141 + 0.413171i
\(6\) 0 0
\(7\) −0.960473 + 2.31879i −0.363025 + 0.876420i 0.631830 + 0.775107i \(0.282304\pi\)
−0.994855 + 0.101312i \(0.967696\pi\)
\(8\) −0.833883 + 0.833883i −0.294822 + 0.294822i
\(9\) 0 0
\(10\) 0.115451 0.278722i 0.0365087 0.0881397i
\(11\) −2.25941 0.935880i −0.681239 0.282179i 0.0151056 0.999886i \(-0.495192\pi\)
−0.696345 + 0.717707i \(0.745192\pi\)
\(12\) 0 0
\(13\) 5.61335i 1.55686i 0.627729 + 0.778432i \(0.283985\pi\)
−0.627729 + 0.778432i \(0.716015\pi\)
\(14\) 0.699548 0.289762i 0.186962 0.0774422i
\(15\) 0 0
\(16\) −3.46219 −0.865549
\(17\) −2.76113 + 3.06205i −0.669673 + 0.742656i
\(18\) 0 0
\(19\) −5.04243 5.04243i −1.15681 1.15681i −0.985157 0.171655i \(-0.945089\pi\)
−0.171655 0.985157i \(-0.554911\pi\)
\(20\) 1.76367 0.730537i 0.394369 0.163353i
\(21\) 0 0
\(22\) 0.282343 + 0.681636i 0.0601957 + 0.145325i
\(23\) −0.795280 0.329416i −0.165827 0.0686880i 0.298226 0.954495i \(-0.403605\pi\)
−0.464053 + 0.885807i \(0.653605\pi\)
\(24\) 0 0
\(25\) −0.707107 + 0.707107i −0.141421 + 0.141421i
\(26\) 1.19747 1.19747i 0.234843 0.234843i
\(27\) 0 0
\(28\) 4.42653 + 1.83353i 0.836536 + 0.346505i
\(29\) 1.43561 + 3.46587i 0.266586 + 0.643597i 0.999318 0.0369210i \(-0.0117550\pi\)
−0.732732 + 0.680518i \(0.761755\pi\)
\(30\) 0 0
\(31\) −2.07626 + 0.860015i −0.372907 + 0.154463i −0.561263 0.827638i \(-0.689684\pi\)
0.188356 + 0.982101i \(0.439684\pi\)
\(32\) 2.40634 + 2.40634i 0.425385 + 0.425385i
\(33\) 0 0
\(34\) 1.24223 0.0641935i 0.213041 0.0110091i
\(35\) −2.50984 −0.424240
\(36\) 0 0
\(37\) 4.71693 1.95382i 0.775459 0.321206i 0.0403776 0.999184i \(-0.487144\pi\)
0.735081 + 0.677979i \(0.237144\pi\)
\(38\) 2.15135i 0.348995i
\(39\) 0 0
\(40\) −1.08952 0.451294i −0.172268 0.0713559i
\(41\) −4.72598 + 11.4095i −0.738074 + 1.78187i −0.124518 + 0.992217i \(0.539738\pi\)
−0.613556 + 0.789651i \(0.710262\pi\)
\(42\) 0 0
\(43\) −1.85272 + 1.85272i −0.282536 + 0.282536i −0.834120 0.551583i \(-0.814024\pi\)
0.551583 + 0.834120i \(0.314024\pi\)
\(44\) −1.78658 + 4.31319i −0.269337 + 0.650238i
\(45\) 0 0
\(46\) 0.0993804 + 0.239926i 0.0146528 + 0.0353751i
\(47\) 2.30114i 0.335655i −0.985816 0.167828i \(-0.946325\pi\)
0.985816 0.167828i \(-0.0536752\pi\)
\(48\) 0 0
\(49\) 0.495478 + 0.495478i 0.0707826 + 0.0707826i
\(50\) 0.301687 0.0426650
\(51\) 0 0
\(52\) 10.7158 1.48602
\(53\) −1.96204 1.96204i −0.269507 0.269507i 0.559394 0.828902i \(-0.311034\pi\)
−0.828902 + 0.559394i \(0.811034\pi\)
\(54\) 0 0
\(55\) 2.44557i 0.329761i
\(56\) −1.13268 2.73452i −0.151360 0.365416i
\(57\) 0 0
\(58\) 0.433105 1.04561i 0.0568695 0.137295i
\(59\) 5.26206 5.26206i 0.685062 0.685062i −0.276075 0.961136i \(-0.589034\pi\)
0.961136 + 0.276075i \(0.0890337\pi\)
\(60\) 0 0
\(61\) −0.346822 + 0.837303i −0.0444061 + 0.107206i −0.944526 0.328436i \(-0.893478\pi\)
0.900120 + 0.435642i \(0.143478\pi\)
\(62\) 0.626380 + 0.259455i 0.0795504 + 0.0329508i
\(63\) 0 0
\(64\) 5.89773i 0.737216i
\(65\) −5.18606 + 2.14814i −0.643252 + 0.266444i
\(66\) 0 0
\(67\) −6.69889 −0.818399 −0.409200 0.912445i \(-0.634192\pi\)
−0.409200 + 0.912445i \(0.634192\pi\)
\(68\) 5.84541 + 5.27096i 0.708860 + 0.639198i
\(69\) 0 0
\(70\) 0.535411 + 0.535411i 0.0639938 + 0.0639938i
\(71\) −0.222439 + 0.0921372i −0.0263986 + 0.0109347i −0.395844 0.918318i \(-0.629548\pi\)
0.369445 + 0.929253i \(0.379548\pi\)
\(72\) 0 0
\(73\) −2.47116 5.96591i −0.289228 0.698257i 0.710759 0.703436i \(-0.248352\pi\)
−0.999987 + 0.00517825i \(0.998352\pi\)
\(74\) −1.42304 0.589441i −0.165425 0.0685211i
\(75\) 0 0
\(76\) −9.62592 + 9.62592i −1.10417 + 1.10417i
\(77\) 4.34022 4.34022i 0.494614 0.494614i
\(78\) 0 0
\(79\) 13.5899 + 5.62912i 1.52898 + 0.633325i 0.979366 0.202093i \(-0.0647743\pi\)
0.549615 + 0.835418i \(0.314774\pi\)
\(80\) −1.32492 3.19865i −0.148131 0.357620i
\(81\) 0 0
\(82\) 3.44210 1.42577i 0.380117 0.157449i
\(83\) 9.82767 + 9.82767i 1.07873 + 1.07873i 0.996624 + 0.0821031i \(0.0261637\pi\)
0.0821031 + 0.996624i \(0.473836\pi\)
\(84\) 0 0
\(85\) −3.88561 1.37916i −0.421453 0.149591i
\(86\) 0.790460 0.0852375
\(87\) 0 0
\(88\) 2.66450 1.10367i 0.284037 0.117652i
\(89\) 0.395163i 0.0418872i 0.999781 + 0.0209436i \(0.00666704\pi\)
−0.999781 + 0.0209436i \(0.993333\pi\)
\(90\) 0 0
\(91\) −13.0162 5.39148i −1.36447 0.565181i
\(92\) −0.628850 + 1.51818i −0.0655621 + 0.158281i
\(93\) 0 0
\(94\) −0.490889 + 0.490889i −0.0506314 + 0.0506314i
\(95\) 2.72894 6.58825i 0.279983 0.675940i
\(96\) 0 0
\(97\) 3.42855 + 8.27725i 0.348116 + 0.840427i 0.996842 + 0.0794052i \(0.0253021\pi\)
−0.648726 + 0.761022i \(0.724698\pi\)
\(98\) 0.211396i 0.0213542i
\(99\) 0 0
\(100\) 1.34986 + 1.34986i 0.134986 + 0.134986i
\(101\) −15.2882 −1.52124 −0.760619 0.649199i \(-0.775104\pi\)
−0.760619 + 0.649199i \(0.775104\pi\)
\(102\) 0 0
\(103\) −14.7746 −1.45579 −0.727894 0.685690i \(-0.759501\pi\)
−0.727894 + 0.685690i \(0.759501\pi\)
\(104\) −4.68088 4.68088i −0.458998 0.458998i
\(105\) 0 0
\(106\) 0.837105i 0.0813068i
\(107\) −0.562841 1.35882i −0.0544119 0.131362i 0.894336 0.447396i \(-0.147649\pi\)
−0.948748 + 0.316034i \(0.897649\pi\)
\(108\) 0 0
\(109\) 3.61166 8.71931i 0.345934 0.835158i −0.651157 0.758943i \(-0.725716\pi\)
0.997091 0.0762157i \(-0.0242838\pi\)
\(110\) −0.521701 + 0.521701i −0.0497423 + 0.0497423i
\(111\) 0 0
\(112\) 3.32535 8.02809i 0.314216 0.758584i
\(113\) −13.8222 5.72534i −1.30028 0.538595i −0.378249 0.925704i \(-0.623474\pi\)
−0.922034 + 0.387109i \(0.873474\pi\)
\(114\) 0 0
\(115\) 0.860805i 0.0802705i
\(116\) 6.61630 2.74056i 0.614308 0.254455i
\(117\) 0 0
\(118\) −2.24505 −0.206674
\(119\) −4.44825 9.34350i −0.407771 0.856517i
\(120\) 0 0
\(121\) −3.54909 3.54909i −0.322645 0.322645i
\(122\) 0.252603 0.104632i 0.0228696 0.00947291i
\(123\) 0 0
\(124\) 1.64176 + 3.96355i 0.147434 + 0.355937i
\(125\) −0.923880 0.382683i −0.0826343 0.0342282i
\(126\) 0 0
\(127\) 4.21071 4.21071i 0.373640 0.373640i −0.495161 0.868801i \(-0.664891\pi\)
0.868801 + 0.495161i \(0.164891\pi\)
\(128\) 6.07081 6.07081i 0.536589 0.536589i
\(129\) 0 0
\(130\) 1.56457 + 0.648065i 0.137222 + 0.0568390i
\(131\) 1.60241 + 3.86856i 0.140003 + 0.337998i 0.978293 0.207228i \(-0.0664441\pi\)
−0.838290 + 0.545225i \(0.816444\pi\)
\(132\) 0 0
\(133\) 16.5354 6.84920i 1.43380 0.593901i
\(134\) 1.42904 + 1.42904i 0.123450 + 0.123450i
\(135\) 0 0
\(136\) −0.250931 4.85585i −0.0215172 0.416386i
\(137\) −7.25998 −0.620262 −0.310131 0.950694i \(-0.600373\pi\)
−0.310131 + 0.950694i \(0.600373\pi\)
\(138\) 0 0
\(139\) 9.60207 3.97731i 0.814437 0.337351i 0.0637140 0.997968i \(-0.479705\pi\)
0.750723 + 0.660617i \(0.229705\pi\)
\(140\) 4.79124i 0.404934i
\(141\) 0 0
\(142\) 0.0671069 + 0.0277966i 0.00563149 + 0.00233264i
\(143\) 5.25343 12.6829i 0.439314 1.06060i
\(144\) 0 0
\(145\) −2.65267 + 2.65267i −0.220292 + 0.220292i
\(146\) −0.745517 + 1.79984i −0.0616994 + 0.148956i
\(147\) 0 0
\(148\) −3.72981 9.00455i −0.306588 0.740170i
\(149\) 6.01765i 0.492985i −0.969145 0.246492i \(-0.920722\pi\)
0.969145 0.246492i \(-0.0792781\pi\)
\(150\) 0 0
\(151\) 7.36684 + 7.36684i 0.599505 + 0.599505i 0.940181 0.340676i \(-0.110656\pi\)
−0.340676 + 0.940181i \(0.610656\pi\)
\(152\) 8.40959 0.682108
\(153\) 0 0
\(154\) −1.85175 −0.149218
\(155\) −1.58910 1.58910i −0.127640 0.127640i
\(156\) 0 0
\(157\) 13.4073i 1.07002i 0.844847 + 0.535008i \(0.179691\pi\)
−0.844847 + 0.535008i \(0.820309\pi\)
\(158\) −1.69823 4.09989i −0.135104 0.326170i
\(159\) 0 0
\(160\) −1.30230 + 3.14403i −0.102956 + 0.248558i
\(161\) 1.52769 1.52769i 0.120399 0.120399i
\(162\) 0 0
\(163\) 0.602777 1.45523i 0.0472132 0.113983i −0.898513 0.438946i \(-0.855352\pi\)
0.945727 + 0.324963i \(0.105352\pi\)
\(164\) 21.7806 + 9.02182i 1.70078 + 0.704486i
\(165\) 0 0
\(166\) 4.19297i 0.325438i
\(167\) 16.2648 6.73711i 1.25861 0.521333i 0.349127 0.937075i \(-0.386478\pi\)
0.909482 + 0.415742i \(0.136478\pi\)
\(168\) 0 0
\(169\) −18.5098 −1.42383
\(170\) 0.534688 + 1.12310i 0.0410087 + 0.0861382i
\(171\) 0 0
\(172\) 3.53681 + 3.53681i 0.269679 + 0.269679i
\(173\) 17.4086 7.21087i 1.32355 0.548232i 0.394741 0.918792i \(-0.370834\pi\)
0.928808 + 0.370560i \(0.120834\pi\)
\(174\) 0 0
\(175\) −0.960473 2.31879i −0.0726050 0.175284i
\(176\) 7.82253 + 3.24020i 0.589646 + 0.244239i
\(177\) 0 0
\(178\) 0.0842980 0.0842980i 0.00631840 0.00631840i
\(179\) −2.34324 + 2.34324i −0.175142 + 0.175142i −0.789234 0.614092i \(-0.789522\pi\)
0.614092 + 0.789234i \(0.289522\pi\)
\(180\) 0 0
\(181\) −14.6575 6.07133i −1.08948 0.451278i −0.235656 0.971836i \(-0.575724\pi\)
−0.853826 + 0.520558i \(0.825724\pi\)
\(182\) 1.62654 + 3.92681i 0.120567 + 0.291075i
\(183\) 0 0
\(184\) 0.937865 0.388477i 0.0691404 0.0286389i
\(185\) 3.61018 + 3.61018i 0.265426 + 0.265426i
\(186\) 0 0
\(187\) 9.10425 4.33435i 0.665769 0.316959i
\(188\) −4.39284 −0.320380
\(189\) 0 0
\(190\) −1.98759 + 0.823286i −0.144195 + 0.0597274i
\(191\) 27.4943i 1.98941i −0.102748 0.994707i \(-0.532764\pi\)
0.102748 0.994707i \(-0.467236\pi\)
\(192\) 0 0
\(193\) 13.6376 + 5.64889i 0.981658 + 0.406616i 0.815040 0.579405i \(-0.196715\pi\)
0.166619 + 0.986021i \(0.446715\pi\)
\(194\) 1.03435 2.49714i 0.0742618 0.179284i
\(195\) 0 0
\(196\) 0.945861 0.945861i 0.0675615 0.0675615i
\(197\) 0.144044 0.347754i 0.0102627 0.0247764i −0.918665 0.395037i \(-0.870732\pi\)
0.928928 + 0.370261i \(0.120732\pi\)
\(198\) 0 0
\(199\) 2.88162 + 6.95685i 0.204273 + 0.493158i 0.992503 0.122223i \(-0.0390022\pi\)
−0.788230 + 0.615381i \(0.789002\pi\)
\(200\) 1.17929i 0.0833883i
\(201\) 0 0
\(202\) 3.26136 + 3.26136i 0.229469 + 0.229469i
\(203\) −9.41549 −0.660838
\(204\) 0 0
\(205\) −12.3496 −0.862532
\(206\) 3.15180 + 3.15180i 0.219596 + 0.219596i
\(207\) 0 0
\(208\) 19.4345i 1.34754i
\(209\) 6.67383 + 16.1120i 0.461638 + 1.11449i
\(210\) 0 0
\(211\) 3.32647 8.03080i 0.229003 0.552863i −0.767053 0.641584i \(-0.778278\pi\)
0.996057 + 0.0887204i \(0.0282778\pi\)
\(212\) −3.74551 + 3.74551i −0.257243 + 0.257243i
\(213\) 0 0
\(214\) −0.169802 + 0.409938i −0.0116074 + 0.0280228i
\(215\) −2.42069 1.00268i −0.165090 0.0683824i
\(216\) 0 0
\(217\) 5.64043i 0.382897i
\(218\) −2.63050 + 1.08959i −0.178160 + 0.0737963i
\(219\) 0 0
\(220\) −4.66856 −0.314754
\(221\) −17.1884 15.4992i −1.15622 1.04259i
\(222\) 0 0
\(223\) 4.57010 + 4.57010i 0.306037 + 0.306037i 0.843370 0.537333i \(-0.180568\pi\)
−0.537333 + 0.843370i \(0.680568\pi\)
\(224\) −7.89101 + 3.26856i −0.527241 + 0.218390i
\(225\) 0 0
\(226\) 1.72726 + 4.16997i 0.114896 + 0.277382i
\(227\) −2.82763 1.17124i −0.187676 0.0777381i 0.286866 0.957971i \(-0.407386\pi\)
−0.474543 + 0.880233i \(0.657386\pi\)
\(228\) 0 0
\(229\) 5.34518 5.34518i 0.353219 0.353219i −0.508087 0.861306i \(-0.669647\pi\)
0.861306 + 0.508087i \(0.169647\pi\)
\(230\) −0.183631 + 0.183631i −0.0121083 + 0.0121083i
\(231\) 0 0
\(232\) −4.08727 1.69300i −0.268342 0.111151i
\(233\) −8.55214 20.6467i −0.560270 1.35261i −0.909551 0.415593i \(-0.863574\pi\)
0.349281 0.937018i \(-0.386426\pi\)
\(234\) 0 0
\(235\) 2.12597 0.880607i 0.138683 0.0574445i
\(236\) −10.0452 10.0452i −0.653886 0.653886i
\(237\) 0 0
\(238\) −1.04428 + 2.94212i −0.0676904 + 0.190709i
\(239\) 3.45981 0.223797 0.111898 0.993720i \(-0.464307\pi\)
0.111898 + 0.993720i \(0.464307\pi\)
\(240\) 0 0
\(241\) −16.6541 + 6.89834i −1.07278 + 0.444361i −0.847972 0.530042i \(-0.822176\pi\)
−0.224810 + 0.974403i \(0.572176\pi\)
\(242\) 1.51422i 0.0973376i
\(243\) 0 0
\(244\) 1.59840 + 0.662079i 0.102327 + 0.0423853i
\(245\) −0.268151 + 0.647374i −0.0171315 + 0.0413592i
\(246\) 0 0
\(247\) 28.3049 28.3049i 1.80100 1.80100i
\(248\) 1.01421 2.44851i 0.0644022 0.155481i
\(249\) 0 0
\(250\) 0.115451 + 0.278722i 0.00730173 + 0.0176279i
\(251\) 24.0478i 1.51788i 0.651159 + 0.758941i \(0.274283\pi\)
−0.651159 + 0.758941i \(0.725717\pi\)
\(252\) 0 0
\(253\) 1.48857 + 1.48857i 0.0935859 + 0.0935859i
\(254\) −1.79650 −0.112722
\(255\) 0 0
\(256\) 9.20534 0.575334
\(257\) 10.4664 + 10.4664i 0.652873 + 0.652873i 0.953684 0.300811i \(-0.0972573\pi\)
−0.300811 + 0.953684i \(0.597257\pi\)
\(258\) 0 0
\(259\) 12.8142i 0.796233i
\(260\) 4.10076 + 9.90012i 0.254319 + 0.613979i
\(261\) 0 0
\(262\) 0.483426 1.16709i 0.0298661 0.0721032i
\(263\) −17.3357 + 17.3357i −1.06896 + 1.06896i −0.0715243 + 0.997439i \(0.522786\pi\)
−0.997439 + 0.0715243i \(0.977214\pi\)
\(264\) 0 0
\(265\) 1.06185 2.56353i 0.0652289 0.157477i
\(266\) −4.98852 2.06631i −0.305866 0.126694i
\(267\) 0 0
\(268\) 12.7881i 0.781156i
\(269\) −6.09269 + 2.52367i −0.371478 + 0.153871i −0.560609 0.828081i \(-0.689433\pi\)
0.189131 + 0.981952i \(0.439433\pi\)
\(270\) 0 0
\(271\) −26.1956 −1.59127 −0.795634 0.605778i \(-0.792862\pi\)
−0.795634 + 0.605778i \(0.792862\pi\)
\(272\) 9.55957 10.6014i 0.579634 0.642805i
\(273\) 0 0
\(274\) 1.54873 + 1.54873i 0.0935624 + 0.0935624i
\(275\) 2.25941 0.935880i 0.136248 0.0564357i
\(276\) 0 0
\(277\) 3.66038 + 8.83695i 0.219931 + 0.530961i 0.994880 0.101063i \(-0.0322245\pi\)
−0.774949 + 0.632024i \(0.782224\pi\)
\(278\) −2.89682 1.19990i −0.173740 0.0719653i
\(279\) 0 0
\(280\) 2.09291 2.09291i 0.125075 0.125075i
\(281\) −8.78037 + 8.78037i −0.523793 + 0.523793i −0.918715 0.394922i \(-0.870772\pi\)
0.394922 + 0.918715i \(0.370772\pi\)
\(282\) 0 0
\(283\) 15.5612 + 6.44566i 0.925017 + 0.383155i 0.793786 0.608197i \(-0.208107\pi\)
0.131231 + 0.991352i \(0.458107\pi\)
\(284\) 0.175889 + 0.424633i 0.0104371 + 0.0251973i
\(285\) 0 0
\(286\) −3.82626 + 1.58489i −0.226252 + 0.0937165i
\(287\) −21.9171 21.9171i −1.29372 1.29372i
\(288\) 0 0
\(289\) −1.75231 16.9094i −0.103077 0.994673i
\(290\) 1.13176 0.0664591
\(291\) 0 0
\(292\) −11.3888 + 4.71741i −0.666482 + 0.276066i
\(293\) 20.8806i 1.21986i 0.792456 + 0.609930i \(0.208802\pi\)
−0.792456 + 0.609930i \(0.791198\pi\)
\(294\) 0 0
\(295\) 6.87521 + 2.84781i 0.400290 + 0.165806i
\(296\) −2.30412 + 5.56263i −0.133924 + 0.323321i
\(297\) 0 0
\(298\) −1.28371 + 1.28371i −0.0743635 + 0.0743635i
\(299\) 1.84913 4.46419i 0.106938 0.258171i
\(300\) 0 0
\(301\) −2.51657 6.07554i −0.145053 0.350188i
\(302\) 3.14306i 0.180863i
\(303\) 0 0
\(304\) 17.4579 + 17.4579i 1.00128 + 1.00128i
\(305\) −0.906291 −0.0518941
\(306\) 0 0
\(307\) −29.9529 −1.70950 −0.854751 0.519038i \(-0.826290\pi\)
−0.854751 + 0.519038i \(0.826290\pi\)
\(308\) −8.28541 8.28541i −0.472105 0.472105i
\(309\) 0 0
\(310\) 0.677989i 0.0385072i
\(311\) −0.0804873 0.194314i −0.00456402 0.0110185i 0.921581 0.388186i \(-0.126898\pi\)
−0.926145 + 0.377167i \(0.876898\pi\)
\(312\) 0 0
\(313\) −12.4082 + 29.9561i −0.701354 + 1.69322i 0.0191979 + 0.999816i \(0.493889\pi\)
−0.720551 + 0.693402i \(0.756111\pi\)
\(314\) 2.86010 2.86010i 0.161405 0.161405i
\(315\) 0 0
\(316\) 10.7459 25.9429i 0.604504 1.45940i
\(317\) 30.8937 + 12.7966i 1.73516 + 0.718728i 0.999127 + 0.0417842i \(0.0133042\pi\)
0.736035 + 0.676943i \(0.236696\pi\)
\(318\) 0 0
\(319\) 9.17441i 0.513668i
\(320\) −5.44879 + 2.25696i −0.304596 + 0.126168i
\(321\) 0 0
\(322\) −0.651789 −0.0363228
\(323\) 29.3630 1.51736i 1.63380 0.0844283i
\(324\) 0 0
\(325\) −3.96924 3.96924i −0.220174 0.220174i
\(326\) −0.439025 + 0.181850i −0.0243153 + 0.0100717i
\(327\) 0 0
\(328\) −5.57330 13.4551i −0.307734 0.742935i
\(329\) 5.33585 + 2.21018i 0.294175 + 0.121851i
\(330\) 0 0
\(331\) 0.626030 0.626030i 0.0344097 0.0344097i −0.689693 0.724102i \(-0.742254\pi\)
0.724102 + 0.689693i \(0.242254\pi\)
\(332\) 18.7609 18.7609i 1.02964 1.02964i
\(333\) 0 0
\(334\) −4.90688 2.03250i −0.268493 0.111213i
\(335\) −2.56355 6.18896i −0.140062 0.338139i
\(336\) 0 0
\(337\) 15.8506 6.56551i 0.863434 0.357646i 0.0933847 0.995630i \(-0.470231\pi\)
0.770050 + 0.637984i \(0.220231\pi\)
\(338\) 3.94859 + 3.94859i 0.214775 + 0.214775i
\(339\) 0 0
\(340\) −2.63279 + 7.41756i −0.142783 + 0.402274i
\(341\) 5.49600 0.297625
\(342\) 0 0
\(343\) −17.8563 + 7.39633i −0.964151 + 0.399364i
\(344\) 3.08990i 0.166596i
\(345\) 0 0
\(346\) −5.25194 2.17542i −0.282346 0.116951i
\(347\) −11.8288 + 28.5572i −0.635003 + 1.53303i 0.198257 + 0.980150i \(0.436472\pi\)
−0.833260 + 0.552882i \(0.813528\pi\)
\(348\) 0 0
\(349\) 2.38415 2.38415i 0.127621 0.127621i −0.640411 0.768032i \(-0.721236\pi\)
0.768032 + 0.640411i \(0.221236\pi\)
\(350\) −0.289762 + 0.699548i −0.0154884 + 0.0373924i
\(351\) 0 0
\(352\) −3.18487 7.68896i −0.169754 0.409823i
\(353\) 23.7918i 1.26631i 0.774025 + 0.633155i \(0.218240\pi\)
−0.774025 + 0.633155i \(0.781760\pi\)
\(354\) 0 0
\(355\) −0.170247 0.170247i −0.00903579 0.00903579i
\(356\) 0.754360 0.0399810
\(357\) 0 0
\(358\) 0.999743 0.0528381
\(359\) −22.4244 22.4244i −1.18351 1.18351i −0.978827 0.204688i \(-0.934382\pi\)
−0.204688 0.978827i \(-0.565618\pi\)
\(360\) 0 0
\(361\) 31.8521i 1.67643i
\(362\) 1.83164 + 4.42197i 0.0962689 + 0.232414i
\(363\) 0 0
\(364\) −10.2923 + 24.8477i −0.539461 + 1.30237i
\(365\) 4.56611 4.56611i 0.239001 0.239001i
\(366\) 0 0
\(367\) −1.72853 + 4.17304i −0.0902286 + 0.217831i −0.962551 0.271099i \(-0.912613\pi\)
0.872323 + 0.488930i \(0.162613\pi\)
\(368\) 2.75341 + 1.14050i 0.143532 + 0.0594528i
\(369\) 0 0
\(370\) 1.54028i 0.0800755i
\(371\) 6.43405 2.66507i 0.334039 0.138364i
\(372\) 0 0
\(373\) −5.12748 −0.265491 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(374\) −2.86679 1.01754i −0.148238 0.0526156i
\(375\) 0 0
\(376\) 1.91888 + 1.91888i 0.0989586 + 0.0989586i
\(377\) −19.4552 + 8.05860i −1.00199 + 0.415039i
\(378\) 0 0
\(379\) 2.11629 + 5.10917i 0.108706 + 0.262441i 0.968867 0.247584i \(-0.0796365\pi\)
−0.860160 + 0.510024i \(0.829636\pi\)
\(380\) −12.5769 5.20951i −0.645180 0.267242i
\(381\) 0 0
\(382\) −5.86521 + 5.86521i −0.300090 + 0.300090i
\(383\) −14.4493 + 14.4493i −0.738326 + 0.738326i −0.972254 0.233928i \(-0.924842\pi\)
0.233928 + 0.972254i \(0.424842\pi\)
\(384\) 0 0
\(385\) 5.67077 + 2.34891i 0.289009 + 0.119711i
\(386\) −1.70420 4.11429i −0.0867413 0.209412i
\(387\) 0 0
\(388\) 15.8011 6.54505i 0.802181 0.332274i
\(389\) 3.66726 + 3.66726i 0.185937 + 0.185937i 0.793937 0.608000i \(-0.208028\pi\)
−0.608000 + 0.793937i \(0.708028\pi\)
\(390\) 0 0
\(391\) 3.20456 1.52563i 0.162062 0.0771543i
\(392\) −0.826343 −0.0417366
\(393\) 0 0
\(394\) −0.104913 + 0.0434563i −0.00528543 + 0.00218930i
\(395\) 14.7096i 0.740120i
\(396\) 0 0
\(397\) −5.70360 2.36251i −0.286255 0.118571i 0.234936 0.972011i \(-0.424512\pi\)
−0.521191 + 0.853440i \(0.674512\pi\)
\(398\) 0.869348 2.09879i 0.0435765 0.105203i
\(399\) 0 0
\(400\) 2.44814 2.44814i 0.122407 0.122407i
\(401\) 3.63413 8.77356i 0.181480 0.438131i −0.806792 0.590835i \(-0.798798\pi\)
0.988272 + 0.152705i \(0.0487983\pi\)
\(402\) 0 0
\(403\) −4.82757 11.6548i −0.240478 0.580566i
\(404\) 29.1850i 1.45201i
\(405\) 0 0
\(406\) 2.00856 + 2.00856i 0.0996831 + 0.0996831i
\(407\) −12.4860 −0.618910
\(408\) 0 0
\(409\) 14.3886 0.711469 0.355734 0.934587i \(-0.384231\pi\)
0.355734 + 0.934587i \(0.384231\pi\)
\(410\) 2.63447 + 2.63447i 0.130107 + 0.130107i
\(411\) 0 0
\(412\) 28.2046i 1.38954i
\(413\) 7.14753 + 17.2557i 0.351707 + 0.849096i
\(414\) 0 0
\(415\) −5.31870 + 12.8405i −0.261085 + 0.630314i
\(416\) −13.5076 + 13.5076i −0.662266 + 0.662266i
\(417\) 0 0
\(418\) 2.01340 4.86079i 0.0984789 0.237749i
\(419\) −19.6078 8.12181i −0.957903 0.396776i −0.151707 0.988425i \(-0.548477\pi\)
−0.806196 + 0.591649i \(0.798477\pi\)
\(420\) 0 0
\(421\) 20.1672i 0.982887i 0.870909 + 0.491444i \(0.163531\pi\)
−0.870909 + 0.491444i \(0.836469\pi\)
\(422\) −2.42279 + 1.00355i −0.117939 + 0.0488521i
\(423\) 0 0
\(424\) 3.27223 0.158914
\(425\) −0.212782 4.11761i −0.0103214 0.199733i
\(426\) 0 0
\(427\) −1.60842 1.60842i −0.0778367 0.0778367i
\(428\) −2.59397 + 1.07446i −0.125384 + 0.0519358i
\(429\) 0 0
\(430\) 0.302496 + 0.730290i 0.0145877 + 0.0352177i
\(431\) 18.4485 + 7.64163i 0.888635 + 0.368085i 0.779839 0.625980i \(-0.215301\pi\)
0.108795 + 0.994064i \(0.465301\pi\)
\(432\) 0 0
\(433\) 12.8860 12.8860i 0.619263 0.619263i −0.326080 0.945342i \(-0.605728\pi\)
0.945342 + 0.326080i \(0.105728\pi\)
\(434\) −1.20324 + 1.20324i −0.0577575 + 0.0577575i
\(435\) 0 0
\(436\) −16.6450 6.89460i −0.797152 0.330191i
\(437\) 2.34909 + 5.67120i 0.112372 + 0.271290i
\(438\) 0 0
\(439\) 13.6117 5.63815i 0.649651 0.269094i −0.0334251 0.999441i \(-0.510642\pi\)
0.683077 + 0.730347i \(0.260642\pi\)
\(440\) 2.03932 + 2.03932i 0.0972209 + 0.0972209i
\(441\) 0 0
\(442\) 0.360341 + 6.97307i 0.0171397 + 0.331675i
\(443\) 23.3335 1.10861 0.554305 0.832314i \(-0.312984\pi\)
0.554305 + 0.832314i \(0.312984\pi\)
\(444\) 0 0
\(445\) −0.365083 + 0.151222i −0.0173066 + 0.00716862i
\(446\) 1.94983i 0.0923272i
\(447\) 0 0
\(448\) −13.6756 5.66461i −0.646110 0.267628i
\(449\) 0.655009 1.58133i 0.0309118 0.0746277i −0.907670 0.419685i \(-0.862141\pi\)
0.938582 + 0.345057i \(0.112141\pi\)
\(450\) 0 0
\(451\) 21.3559 21.3559i 1.00561 1.00561i
\(452\) −10.9296 + 26.3864i −0.514085 + 1.24111i
\(453\) 0 0
\(454\) 0.353348 + 0.853058i 0.0165835 + 0.0400360i
\(455\) 14.0886i 0.660484i
\(456\) 0 0
\(457\) 9.34572 + 9.34572i 0.437174 + 0.437174i 0.891060 0.453886i \(-0.149963\pi\)
−0.453886 + 0.891060i \(0.649963\pi\)
\(458\) −2.28052 −0.106562
\(459\) 0 0
\(460\) −1.64326 −0.0766176
\(461\) 20.7116 + 20.7116i 0.964634 + 0.964634i 0.999396 0.0347616i \(-0.0110672\pi\)
−0.0347616 + 0.999396i \(0.511067\pi\)
\(462\) 0 0
\(463\) 9.80371i 0.455617i 0.973706 + 0.227808i \(0.0731560\pi\)
−0.973706 + 0.227808i \(0.926844\pi\)
\(464\) −4.97037 11.9995i −0.230744 0.557064i
\(465\) 0 0
\(466\) −2.58007 + 6.22884i −0.119519 + 0.288545i
\(467\) 9.67459 9.67459i 0.447687 0.447687i −0.446898 0.894585i \(-0.647471\pi\)
0.894585 + 0.446898i \(0.147471\pi\)
\(468\) 0 0
\(469\) 6.43410 15.5333i 0.297099 0.717261i
\(470\) −0.641378 0.265667i −0.0295846 0.0122543i
\(471\) 0 0
\(472\) 8.77589i 0.403943i
\(473\) 5.91997 2.45213i 0.272201 0.112749i
\(474\) 0 0
\(475\) 7.13107 0.327196
\(476\) −17.8366 + 8.49165i −0.817539 + 0.389214i
\(477\) 0 0
\(478\) −0.738063 0.738063i −0.0337582 0.0337582i
\(479\) 10.1719 4.21334i 0.464766 0.192513i −0.137997 0.990433i \(-0.544066\pi\)
0.602763 + 0.797920i \(0.294066\pi\)
\(480\) 0 0
\(481\) 10.9675 + 26.4778i 0.500074 + 1.20728i
\(482\) 5.02431 + 2.08114i 0.228851 + 0.0947932i
\(483\) 0 0
\(484\) −6.77516 + 6.77516i −0.307962 + 0.307962i
\(485\) −6.33513 + 6.33513i −0.287663 + 0.287663i
\(486\) 0 0
\(487\) 9.32586 + 3.86290i 0.422595 + 0.175045i 0.583838 0.811870i \(-0.301550\pi\)
−0.161243 + 0.986915i \(0.551550\pi\)
\(488\) −0.409004 0.987423i −0.0185147 0.0446985i
\(489\) 0 0
\(490\) 0.195304 0.0808976i 0.00882294 0.00365458i
\(491\) 12.0793 + 12.0793i 0.545132 + 0.545132i 0.925029 0.379897i \(-0.124041\pi\)
−0.379897 + 0.925029i \(0.624041\pi\)
\(492\) 0 0
\(493\) −14.5766 5.17382i −0.656497 0.233017i
\(494\) −12.0763 −0.543338
\(495\) 0 0
\(496\) 7.18841 2.97754i 0.322769 0.133695i
\(497\) 0.604284i 0.0271059i
\(498\) 0 0
\(499\) −28.9724 12.0008i −1.29698 0.537227i −0.375923 0.926651i \(-0.622674\pi\)
−0.921059 + 0.389424i \(0.872674\pi\)
\(500\) −0.730537 + 1.76367i −0.0326706 + 0.0788738i
\(501\) 0 0
\(502\) 5.12999 5.12999i 0.228963 0.228963i
\(503\) 3.31991 8.01498i 0.148028 0.357370i −0.832422 0.554143i \(-0.813046\pi\)
0.980449 + 0.196773i \(0.0630461\pi\)
\(504\) 0 0
\(505\) −5.85056 14.1245i −0.260346 0.628532i
\(506\) 0.635099i 0.0282336i
\(507\) 0 0
\(508\) −8.03817 8.03817i −0.356636 0.356636i
\(509\) 14.1196 0.625840 0.312920 0.949780i \(-0.398693\pi\)
0.312920 + 0.949780i \(0.398693\pi\)
\(510\) 0 0
\(511\) 16.2072 0.716963
\(512\) −14.1053 14.1053i −0.623374 0.623374i
\(513\) 0 0
\(514\) 4.46546i 0.196963i
\(515\) −5.65401 13.6500i −0.249145 0.601490i
\(516\) 0 0
\(517\) −2.15359 + 5.19922i −0.0947147 + 0.228662i
\(518\) 2.73358 2.73358i 0.120106 0.120106i
\(519\) 0 0
\(520\) 2.53328 6.11587i 0.111091 0.268199i
\(521\) 16.2808 + 6.74373i 0.713275 + 0.295448i 0.709659 0.704545i \(-0.248849\pi\)
0.00361608 + 0.999993i \(0.498849\pi\)
\(522\) 0 0
\(523\) 26.3853i 1.15375i 0.816833 + 0.576875i \(0.195728\pi\)
−0.816833 + 0.576875i \(0.804272\pi\)
\(524\) 7.38502 3.05898i 0.322616 0.133632i
\(525\) 0 0
\(526\) 7.39626 0.322492
\(527\) 3.09942 8.73223i 0.135013 0.380382i
\(528\) 0 0
\(529\) −15.7395 15.7395i −0.684326 0.684326i
\(530\) −0.773384 + 0.320346i −0.0335937 + 0.0139150i
\(531\) 0 0
\(532\) −13.0750 31.5659i −0.566874 1.36856i
\(533\) −64.0457 26.5286i −2.77413 1.14908i
\(534\) 0 0
\(535\) 1.04000 1.04000i 0.0449629 0.0449629i
\(536\) 5.58609 5.58609i 0.241282 0.241282i
\(537\) 0 0
\(538\) 1.83808 + 0.761359i 0.0792454 + 0.0328245i
\(539\) −0.655783 1.58320i −0.0282466 0.0681932i
\(540\) 0 0
\(541\) −4.07266 + 1.68695i −0.175097 + 0.0725277i −0.468510 0.883458i \(-0.655209\pi\)
0.293413 + 0.955986i \(0.405209\pi\)
\(542\) 5.58816 + 5.58816i 0.240032 + 0.240032i
\(543\) 0 0
\(544\) −14.0125 + 0.724113i −0.600783 + 0.0310461i
\(545\) 9.43771 0.404267
\(546\) 0 0
\(547\) −20.9386 + 8.67306i −0.895271 + 0.370833i −0.782400 0.622776i \(-0.786005\pi\)
−0.112871 + 0.993610i \(0.536005\pi\)
\(548\) 13.8592i 0.592035i
\(549\) 0 0
\(550\) −0.681636 0.282343i −0.0290650 0.0120391i
\(551\) 10.2374 24.7154i 0.436130 1.05291i
\(552\) 0 0
\(553\) −26.1055 + 26.1055i −1.11012 + 1.11012i
\(554\) 1.10429 2.66599i 0.0469167 0.113267i
\(555\) 0 0
\(556\) −7.59262 18.3302i −0.321999 0.777374i
\(557\) 11.4954i 0.487076i 0.969891 + 0.243538i \(0.0783080\pi\)
−0.969891 + 0.243538i \(0.921692\pi\)
\(558\) 0 0
\(559\) −10.4000 10.4000i −0.439871 0.439871i
\(560\) 8.68955 0.367200
\(561\) 0 0
\(562\) 3.74614 0.158021
\(563\) −9.57715 9.57715i −0.403629 0.403629i 0.475881 0.879510i \(-0.342129\pi\)
−0.879510 + 0.475881i \(0.842129\pi\)
\(564\) 0 0
\(565\) 14.9610i 0.629415i
\(566\) −1.94457 4.69461i −0.0817364 0.197329i
\(567\) 0 0
\(568\) 0.108656 0.262320i 0.00455912 0.0110067i
\(569\) 11.2263 11.2263i 0.470632 0.470632i −0.431487 0.902119i \(-0.642011\pi\)
0.902119 + 0.431487i \(0.142011\pi\)
\(570\) 0 0
\(571\) 1.35486 3.27093i 0.0566993 0.136884i −0.892991 0.450074i \(-0.851398\pi\)
0.949691 + 0.313190i \(0.101398\pi\)
\(572\) −24.2115 10.0287i −1.01233 0.419322i
\(573\) 0 0
\(574\) 9.35092i 0.390300i
\(575\) 0.795280 0.329416i 0.0331655 0.0137376i
\(576\) 0 0
\(577\) 18.5078 0.770492 0.385246 0.922814i \(-0.374117\pi\)
0.385246 + 0.922814i \(0.374117\pi\)
\(578\) −3.23339 + 3.98101i −0.134491 + 0.165588i
\(579\) 0 0
\(580\) 5.06390 + 5.06390i 0.210267 + 0.210267i
\(581\) −32.2275 + 13.3491i −1.33702 + 0.553813i
\(582\) 0 0
\(583\) 2.59683 + 6.26931i 0.107550 + 0.259648i
\(584\) 7.03554 + 2.91422i 0.291133 + 0.120591i
\(585\) 0 0
\(586\) 4.45436 4.45436i 0.184008 0.184008i
\(587\) 9.70579 9.70579i 0.400601 0.400601i −0.477844 0.878445i \(-0.658582\pi\)
0.878445 + 0.477844i \(0.158582\pi\)
\(588\) 0 0
\(589\) 14.8059 + 6.13282i 0.610068 + 0.252699i
\(590\) −0.859145 2.07416i −0.0353705 0.0853918i
\(591\) 0 0
\(592\) −16.3309 + 6.76450i −0.671197 + 0.278019i
\(593\) 14.3711 + 14.3711i 0.590150 + 0.590150i 0.937672 0.347522i \(-0.112977\pi\)
−0.347522 + 0.937672i \(0.612977\pi\)
\(594\) 0 0
\(595\) 6.92999 7.68525i 0.284102 0.315065i
\(596\) −11.4876 −0.470550
\(597\) 0 0
\(598\) −1.34679 + 0.557858i −0.0550742 + 0.0228125i
\(599\) 26.7277i 1.09206i 0.837764 + 0.546032i \(0.183862\pi\)
−0.837764 + 0.546032i \(0.816138\pi\)
\(600\) 0 0
\(601\) 25.5537 + 10.5847i 1.04236 + 0.431758i 0.837157 0.546962i \(-0.184216\pi\)
0.205199 + 0.978720i \(0.434216\pi\)
\(602\) −0.759216 + 1.83291i −0.0309433 + 0.0747038i
\(603\) 0 0
\(604\) 14.0632 14.0632i 0.572223 0.572223i
\(605\) 1.92075 4.63711i 0.0780898 0.188525i
\(606\) 0 0
\(607\) −9.03844 21.8207i −0.366859 0.885676i −0.994261 0.106981i \(-0.965882\pi\)
0.627402 0.778696i \(-0.284118\pi\)
\(608\) 24.2676i 0.984180i
\(609\) 0 0
\(610\) 0.193334 + 0.193334i 0.00782788 + 0.00782788i
\(611\) 12.9171 0.522570
\(612\) 0 0
\(613\) 12.0396 0.486275 0.243137 0.969992i \(-0.421823\pi\)
0.243137 + 0.969992i \(0.421823\pi\)
\(614\) 6.38969 + 6.38969i 0.257867 + 0.257867i
\(615\) 0 0
\(616\) 7.23847i 0.291646i
\(617\) −5.94989 14.3643i −0.239534 0.578285i 0.757701 0.652602i \(-0.226322\pi\)
−0.997235 + 0.0743165i \(0.976322\pi\)
\(618\) 0 0
\(619\) 12.8172 30.9434i 0.515166 1.24372i −0.425676 0.904876i \(-0.639964\pi\)
0.940842 0.338845i \(-0.110036\pi\)
\(620\) −3.03357 + 3.03357i −0.121831 + 0.121831i
\(621\) 0 0
\(622\) −0.0242820 + 0.0586218i −0.000973618 + 0.00235052i
\(623\) −0.916299 0.379543i −0.0367107 0.0152061i
\(624\) 0 0
\(625\) 1.00000i 0.0400000i
\(626\) 9.03735 3.74339i 0.361205 0.149616i
\(627\) 0 0
\(628\) 25.5942 1.02132
\(629\) −7.04138 + 19.8382i −0.280758 + 0.791002i
\(630\) 0 0
\(631\) −0.385100 0.385100i −0.0153306 0.0153306i 0.699400 0.714731i \(-0.253451\pi\)
−0.714731 + 0.699400i \(0.753451\pi\)
\(632\) −16.0264 + 6.63836i −0.637496 + 0.264060i
\(633\) 0 0
\(634\) −3.86056 9.32021i −0.153322 0.370153i
\(635\) 5.50155 + 2.27882i 0.218322 + 0.0904321i
\(636\) 0 0
\(637\) −2.78130 + 2.78130i −0.110199 + 0.110199i
\(638\) −1.95713 + 1.95713i −0.0774835 + 0.0774835i
\(639\) 0 0
\(640\) 7.93189 + 3.28550i 0.313536 + 0.129871i
\(641\) −4.75450 11.4784i −0.187792 0.453369i 0.801742 0.597670i \(-0.203907\pi\)
−0.989534 + 0.144301i \(0.953907\pi\)
\(642\) 0 0
\(643\) 35.4438 14.6813i 1.39777 0.578975i 0.448597 0.893734i \(-0.351924\pi\)
0.949171 + 0.314760i \(0.101924\pi\)
\(644\) −2.91634 2.91634i −0.114920 0.114920i
\(645\) 0 0
\(646\) −6.58754 5.94016i −0.259183 0.233712i
\(647\) −19.6602 −0.772923 −0.386462 0.922305i \(-0.626303\pi\)
−0.386462 + 0.922305i \(0.626303\pi\)
\(648\) 0 0
\(649\) −16.8138 + 6.96452i −0.660001 + 0.273381i
\(650\) 1.69348i 0.0664236i
\(651\) 0 0
\(652\) −2.77802 1.15069i −0.108796 0.0450646i
\(653\) −11.9119 + 28.7578i −0.466147 + 1.12538i 0.499684 + 0.866208i \(0.333449\pi\)
−0.965831 + 0.259171i \(0.916551\pi\)
\(654\) 0 0
\(655\) −2.96087 + 2.96087i −0.115691 + 0.115691i
\(656\) 16.3623 39.5020i 0.638839 1.54229i
\(657\) 0 0
\(658\) −0.666782 1.60975i −0.0259939 0.0627548i
\(659\) 4.15956i 0.162033i −0.996713 0.0810167i \(-0.974183\pi\)
0.996713 0.0810167i \(-0.0258167\pi\)
\(660\) 0 0
\(661\) 4.85106 + 4.85106i 0.188685 + 0.188685i 0.795127 0.606443i \(-0.207404\pi\)
−0.606443 + 0.795127i \(0.707404\pi\)
\(662\) −0.267095 −0.0103810
\(663\) 0 0
\(664\) −16.3903 −0.636066
\(665\) 12.6557 + 12.6557i 0.490766 + 0.490766i
\(666\) 0 0
\(667\) 3.22925i 0.125037i
\(668\) −12.8610 31.0493i −0.497608 1.20133i
\(669\) 0 0
\(670\) −0.773390 + 1.86713i −0.0298787 + 0.0721335i
\(671\) 1.56723 1.56723i 0.0605023 0.0605023i
\(672\) 0 0
\(673\) −6.61298 + 15.9651i −0.254912 + 0.615411i −0.998588 0.0531290i \(-0.983081\pi\)
0.743676 + 0.668540i \(0.233081\pi\)
\(674\) −4.78190 1.98073i −0.184192 0.0762948i
\(675\) 0 0
\(676\) 35.3348i 1.35903i
\(677\) −7.51469 + 3.11269i −0.288813 + 0.119630i −0.522386 0.852709i \(-0.674958\pi\)
0.233573 + 0.972339i \(0.424958\pi\)
\(678\) 0 0
\(679\) −22.4862 −0.862942
\(680\) 4.39020 2.09009i 0.168356 0.0801511i
\(681\) 0 0
\(682\) −1.17243 1.17243i −0.0448948 0.0448948i
\(683\) 26.9190 11.1502i 1.03003 0.426652i 0.197306 0.980342i \(-0.436781\pi\)
0.832723 + 0.553690i \(0.186781\pi\)
\(684\) 0 0
\(685\) −2.77827 6.70735i −0.106152 0.256275i
\(686\) 5.38702 + 2.23138i 0.205677 + 0.0851943i
\(687\) 0 0
\(688\) 6.41446 6.41446i 0.244549 0.244549i
\(689\) 11.0136 11.0136i 0.419587 0.419587i
\(690\) 0 0
\(691\) 34.5393 + 14.3066i 1.31394 + 0.544250i 0.926031 0.377448i \(-0.123198\pi\)
0.387906 + 0.921699i \(0.373198\pi\)
\(692\) −13.7654 33.2327i −0.523283 1.26332i
\(693\) 0 0
\(694\) 8.61534 3.56859i 0.327034 0.135462i
\(695\) 7.34910 + 7.34910i 0.278767 + 0.278767i
\(696\) 0 0
\(697\) −21.8875 45.9744i −0.829048 1.74140i
\(698\) −1.01720 −0.0385015
\(699\) 0 0
\(700\) −4.42653 + 1.83353i −0.167307 + 0.0693009i
\(701\) 14.6423i 0.553031i −0.961009 0.276515i \(-0.910820\pi\)
0.961009 0.276515i \(-0.0891797\pi\)
\(702\) 0 0
\(703\) −33.6368 13.9328i −1.26863 0.525486i
\(704\) 5.51956 13.3254i 0.208026 0.502220i
\(705\) 0 0
\(706\) 5.07538 5.07538i 0.191014 0.191014i
\(707\) 14.6840 35.4502i 0.552247 1.33324i
\(708\) 0 0
\(709\) −10.8526 26.2006i −0.407579 0.983983i −0.985773 0.168083i \(-0.946242\pi\)
0.578194 0.815899i \(-0.303758\pi\)
\(710\) 0.0726360i 0.00272598i
\(711\) 0 0
\(712\) −0.329520 0.329520i −0.0123493 0.0123493i
\(713\) 1.93451 0.0724480
\(714\) 0 0
\(715\) 13.7279 0.513393
\(716\) 4.47321 + 4.47321i 0.167172 + 0.167172i
\(717\) 0 0
\(718\) 9.56736i 0.357051i
\(719\) 4.83536 + 11.6736i 0.180329 + 0.435352i 0.988034 0.154234i \(-0.0492910\pi\)
−0.807706 + 0.589586i \(0.799291\pi\)
\(720\) 0 0
\(721\) 14.1906 34.2593i 0.528487 1.27588i
\(722\) 6.79485 6.79485i 0.252878 0.252878i
\(723\) 0 0
\(724\) −11.5901 + 27.9809i −0.430742 + 1.03990i
\(725\) −3.46587 1.43561i −0.128719 0.0533173i
\(726\) 0 0
\(727\) 15.0242i 0.557218i 0.960405 + 0.278609i \(0.0898734\pi\)
−0.960405 + 0.278609i \(0.910127\pi\)
\(728\) 15.3498 6.35811i 0.568903 0.235647i
\(729\) 0 0
\(730\) −1.94813 −0.0721035
\(731\) −0.557517 10.7887i −0.0206205 0.399035i
\(732\) 0 0
\(733\) −1.24931 1.24931i −0.0461442 0.0461442i 0.683658 0.729802i \(-0.260388\pi\)
−0.729802 + 0.683658i \(0.760388\pi\)
\(734\) 1.25895 0.521475i 0.0464688 0.0192480i
\(735\) 0 0
\(736\) −1.12103 2.70640i −0.0413216 0.0997592i
\(737\) 15.1356 + 6.26935i 0.557526 + 0.230935i
\(738\) 0 0
\(739\) −13.9406 + 13.9406i −0.512812 + 0.512812i −0.915387 0.402575i \(-0.868115\pi\)
0.402575 + 0.915387i \(0.368115\pi\)
\(740\) 6.89179 6.89179i 0.253347 0.253347i
\(741\) 0 0
\(742\) −1.94107 0.804017i −0.0712589 0.0295164i
\(743\) 10.8535 + 26.2027i 0.398176 + 0.961282i 0.988099 + 0.153822i \(0.0491583\pi\)
−0.589922 + 0.807460i \(0.700842\pi\)
\(744\) 0 0
\(745\) 5.55958 2.30285i 0.203687 0.0843700i
\(746\) 1.09382 + 1.09382i 0.0400475 + 0.0400475i
\(747\) 0 0
\(748\) −8.27422 17.3799i −0.302535 0.635472i
\(749\) 3.69141 0.134881
\(750\) 0 0
\(751\) 16.5853 6.86987i 0.605207 0.250685i −0.0589704 0.998260i \(-0.518782\pi\)
0.664178 + 0.747575i \(0.268782\pi\)
\(752\) 7.96698i 0.290526i
\(753\) 0 0
\(754\) 5.86937 + 2.43117i 0.213750 + 0.0885381i
\(755\) −3.98690 + 9.62524i −0.145098 + 0.350298i
\(756\) 0 0
\(757\) −31.0649 + 31.0649i −1.12907 + 1.12907i −0.138743 + 0.990328i \(0.544306\pi\)
−0.990328 + 0.138743i \(0.955694\pi\)
\(758\) 0.638456 1.54137i 0.0231898 0.0559851i
\(759\) 0 0
\(760\) 3.21821 + 7.76945i 0.116737 + 0.281828i
\(761\) 13.2781i 0.481331i 0.970608 + 0.240666i \(0.0773657\pi\)
−0.970608 + 0.240666i \(0.922634\pi\)
\(762\) 0 0
\(763\) 16.7493 + 16.7493i 0.606367 + 0.606367i
\(764\) −52.4861 −1.89888
\(765\) 0 0
\(766\) 6.16480 0.222743
\(767\) 29.5378 + 29.5378i 1.06655 + 1.06655i
\(768\) 0 0
\(769\) 24.8906i 0.897578i 0.893638 + 0.448789i \(0.148144\pi\)
−0.893638 + 0.448789i \(0.851856\pi\)
\(770\) −0.708635 1.71080i −0.0255374 0.0616528i
\(771\) 0 0
\(772\) 10.7836 26.0340i 0.388112 0.936985i
\(773\) 37.9750 37.9750i 1.36587 1.36587i 0.499624 0.866242i \(-0.333471\pi\)
0.866242 0.499624i \(-0.166529\pi\)
\(774\) 0 0
\(775\) 0.860015 2.07626i 0.0308926 0.0745814i
\(776\) −9.76127 4.04325i −0.350409 0.145144i
\(777\) 0 0
\(778\) 1.56463i 0.0560949i
\(779\) 81.3621 33.7013i 2.91510 1.20747i
\(780\) 0 0
\(781\) 0.588811 0.0210693
\(782\) −1.00907 0.358158i −0.0360841 0.0128077i
\(783\) 0 0
\(784\) −1.71544 1.71544i −0.0612658 0.0612658i
\(785\) −12.3867 + 5.13073i −0.442100 + 0.183124i
\(786\) 0 0
\(787\) 19.6997 + 47.5592i 0.702217 + 1.69530i 0.718588 + 0.695436i \(0.244789\pi\)
−0.0163714 + 0.999866i \(0.505211\pi\)
\(788\) −0.663857 0.274979i −0.0236489 0.00979571i
\(789\) 0 0
\(790\) 3.13792 3.13792i 0.111642 0.111642i
\(791\) 26.5517 26.5517i 0.944070 0.944070i
\(792\) 0 0
\(793\) −4.70008 1.94684i −0.166905 0.0691342i
\(794\) 0.712737 + 1.72070i 0.0252941 + 0.0610654i
\(795\) 0 0
\(796\) 13.2805 5.50097i 0.470716 0.194977i
\(797\) −13.3772 13.3772i −0.473846 0.473846i 0.429311 0.903157i \(-0.358756\pi\)
−0.903157 + 0.429311i \(0.858756\pi\)
\(798\) 0 0
\(799\) 7.04620 + 6.35374i 0.249276 + 0.224779i
\(800\) −3.40308 −0.120317
\(801\) 0 0
\(802\) −2.64687 + 1.09637i −0.0934642 + 0.0387141i
\(803\) 15.7922i 0.557294i
\(804\) 0 0
\(805\) 1.99602 + 0.826780i 0.0703506 + 0.0291402i
\(806\) −1.45641 + 3.51609i −0.0513000 + 0.123849i
\(807\) 0 0
\(808\) 12.7486 12.7486i 0.448495 0.448495i
\(809\) −11.5703 + 27.9333i −0.406791 + 0.982081i 0.579185 + 0.815196i \(0.303371\pi\)
−0.985976 + 0.166885i \(0.946629\pi\)
\(810\) 0 0
\(811\) −6.57121 15.8643i −0.230746 0.557071i 0.765519 0.643413i \(-0.222482\pi\)
−0.996266 + 0.0863422i \(0.972482\pi\)
\(812\) 17.9740i 0.630765i
\(813\) 0 0
\(814\) 2.66358 + 2.66358i 0.0933586 + 0.0933586i
\(815\) 1.57513 0.0551745
\(816\) 0 0
\(817\) 18.6844 0.653683
\(818\) −3.06944 3.06944i −0.107320 0.107320i
\(819\) 0 0
\(820\) 23.5752i 0.823280i
\(821\) 16.7555 + 40.4514i 0.584771 + 1.41176i 0.888443 + 0.458986i \(0.151787\pi\)
−0.303672 + 0.952777i \(0.598213\pi\)
\(822\) 0 0
\(823\) 9.67025 23.3460i 0.337084 0.813792i −0.660909 0.750466i \(-0.729829\pi\)
0.997993 0.0633260i \(-0.0201708\pi\)
\(824\) 12.3203 12.3203i 0.429199 0.429199i
\(825\) 0 0
\(826\) 2.15632 5.20581i 0.0750278 0.181133i
\(827\) 20.3879 + 8.44496i 0.708958 + 0.293660i 0.707874 0.706339i \(-0.249655\pi\)
0.00108492 + 0.999999i \(0.499655\pi\)
\(828\) 0 0
\(829\) 20.9555i 0.727816i 0.931435 + 0.363908i \(0.118558\pi\)
−0.931435 + 0.363908i \(0.881442\pi\)
\(830\) 3.87380 1.60458i 0.134462 0.0556958i
\(831\) 0 0
\(832\) −33.1060 −1.14774
\(833\) −2.88526 + 0.149099i −0.0999684 + 0.00516597i
\(834\) 0 0
\(835\) 12.4486 + 12.4486i 0.430800 + 0.430800i
\(836\) 30.7576 12.7402i 1.06378 0.440630i
\(837\) 0 0
\(838\) 2.45024 + 5.91541i 0.0846422 + 0.204344i
\(839\) −18.6855 7.73980i −0.645096 0.267207i 0.0360558 0.999350i \(-0.488521\pi\)
−0.681152 + 0.732142i \(0.738521\pi\)
\(840\) 0 0
\(841\) 10.5548 10.5548i 0.363958 0.363958i
\(842\) 4.30216 4.30216i 0.148262 0.148262i
\(843\) 0 0
\(844\) −15.3307 6.35018i −0.527704 0.218582i
\(845\) −7.08338 17.1008i −0.243676 0.588285i
\(846\) 0 0
\(847\) 11.6384 4.82078i 0.399900 0.165644i
\(848\) 6.79298 + 6.79298i 0.233272 + 0.233272i
\(849\) 0 0
\(850\) −0.832997 + 0.923780i −0.0285716 + 0.0316854i
\(851\) −4.39490 −0.150655
\(852\) 0 0
\(853\) 10.6192 4.39863i 0.363595 0.150606i −0.193404 0.981119i \(-0.561953\pi\)
0.556999 + 0.830513i \(0.311953\pi\)
\(854\) 0.686230i 0.0234823i
\(855\) 0 0
\(856\) 1.60244 + 0.663753i 0.0547703 + 0.0226866i
\(857\) 10.7482 25.9484i 0.367151 0.886380i −0.627064 0.778968i \(-0.715744\pi\)
0.994215 0.107412i \(-0.0342565\pi\)
\(858\) 0 0
\(859\) −2.22749 + 2.22749i −0.0760011 + 0.0760011i −0.744086 0.668084i \(-0.767115\pi\)
0.668084 + 0.744086i \(0.267115\pi\)
\(860\) −1.91411 + 4.62106i −0.0652705 + 0.157577i
\(861\) 0 0
\(862\) −2.30538 5.56568i −0.0785216 0.189568i
\(863\) 34.5368i 1.17565i −0.808989 0.587823i \(-0.799985\pi\)
0.808989 0.587823i \(-0.200015\pi\)
\(864\) 0 0
\(865\) 13.3239 + 13.3239i 0.453028 + 0.453028i
\(866\) −5.49781 −0.186823
\(867\) 0 0
\(868\) −10.7675 −0.365473
\(869\) −25.4370 25.4370i −0.862892 0.862892i
\(870\) 0 0
\(871\) 37.6032i 1.27414i
\(872\) 4.25919 + 10.2826i 0.144234 + 0.348212i
\(873\) 0 0
\(874\) 0.708688 1.71093i 0.0239717 0.0578729i
\(875\) 1.77472 1.77472i 0.0599966 0.0599966i
\(876\) 0 0
\(877\) −6.05591 + 14.6203i −0.204493 + 0.493691i −0.992539 0.121926i \(-0.961093\pi\)
0.788046 + 0.615617i \(0.211093\pi\)
\(878\) −4.10647 1.70096i −0.138587 0.0574045i
\(879\) 0 0
\(880\) 8.46705i 0.285424i
\(881\) −29.1623 + 12.0794i −0.982504 + 0.406967i −0.815353 0.578965i \(-0.803457\pi\)
−0.167152 + 0.985931i \(0.553457\pi\)
\(882\) 0 0
\(883\) −20.2779 −0.682406 −0.341203 0.939990i \(-0.610834\pi\)
−0.341203 + 0.939990i \(0.610834\pi\)
\(884\) −29.5878 + 32.8124i −0.995144 + 1.10360i
\(885\) 0 0
\(886\) −4.97762 4.97762i −0.167226 0.167226i
\(887\) −45.1215 + 18.6899i −1.51503 + 0.627547i −0.976589 0.215115i \(-0.930987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(888\) 0 0
\(889\) 5.71946 + 13.8080i 0.191825 + 0.463106i
\(890\) 0.110141 + 0.0456218i 0.00369192 + 0.00152925i
\(891\) 0 0
\(892\) 8.72426 8.72426i 0.292110 0.292110i
\(893\) −11.6033 + 11.6033i −0.388290 + 0.388290i
\(894\) 0 0
\(895\) −3.06159 1.26815i −0.102338 0.0423897i
\(896\) 8.24607 + 19.9078i 0.275482 + 0.665072i
\(897\) 0 0
\(898\) −0.477067 + 0.197608i −0.0159199 + 0.00659425i
\(899\) −5.96141 5.96141i −0.198824 0.198824i
\(900\) 0 0
\(901\) 11.4253 0.590416i 0.380633 0.0196696i
\(902\) −9.11148 −0.303379
\(903\) 0 0
\(904\) 16.3004 6.75183i 0.542142 0.224563i
\(905\) 15.8652i 0.527375i
\(906\) 0 0
\(907\) −38.5317 15.9603i −1.27942 0.529955i −0.363608 0.931552i \(-0.618455\pi\)
−0.915816 + 0.401598i \(0.868455\pi\)
\(908\) −2.23588 + 5.39790i −0.0742004 + 0.179136i
\(909\) 0 0
\(910\) −3.00545 + 3.00545i −0.0996297 + 0.0996297i
\(911\) −2.44973 + 5.91417i −0.0811632 + 0.195945i −0.959252 0.282553i \(-0.908819\pi\)
0.878088 + 0.478498i \(0.158819\pi\)
\(912\) 0 0
\(913\) −13.0073 31.4023i −0.430478 1.03926i
\(914\) 3.98735i 0.131890i
\(915\) 0 0
\(916\) −10.2039 10.2039i −0.337145 0.337145i
\(917\) −10.5094 −0.347052
\(918\) 0 0
\(919\) −23.6812 −0.781170 −0.390585 0.920567i \(-0.627727\pi\)
−0.390585 + 0.920567i \(0.627727\pi\)
\(920\) 0.717811 + 0.717811i 0.0236655 + 0.0236655i
\(921\) 0 0
\(922\) 8.83658i 0.291017i
\(923\) −0.517199 1.24863i −0.0170238 0.0410991i
\(924\) 0 0
\(925\) −1.95382 + 4.71693i −0.0642411 + 0.155092i
\(926\) 2.09137 2.09137i 0.0687268 0.0687268i
\(927\) 0 0
\(928\) −4.88550 + 11.7946i −0.160374 + 0.387178i
\(929\) −50.7164 21.0074i −1.66395 0.689232i −0.665583 0.746324i \(-0.731817\pi\)
−0.998369 + 0.0570920i \(0.981817\pi\)
\(930\) 0 0
\(931\) 4.99683i 0.163764i
\(932\) −39.4142 + 16.3259i −1.29106 + 0.534773i
\(933\) 0 0
\(934\) −4.12766 −0.135061
\(935\) 7.48847 + 6.75255i 0.244899 + 0.220832i
\(936\) 0 0
\(937\) 4.78966 + 4.78966i 0.156471 + 0.156471i 0.781001 0.624530i \(-0.214709\pi\)
−0.624530 + 0.781001i \(0.714709\pi\)
\(938\) −4.68619 + 1.94108i −0.153010 + 0.0633786i
\(939\) 0 0
\(940\) −1.68107 4.05845i −0.0548303 0.132372i
\(941\) 23.2992 + 9.65084i 0.759532 + 0.314608i 0.728624 0.684914i \(-0.240160\pi\)
0.0309078 + 0.999522i \(0.490160\pi\)
\(942\) 0 0
\(943\) 7.51696 7.51696i 0.244786 0.244786i
\(944\) −18.2183 + 18.2183i −0.592954 + 0.592954i
\(945\) 0 0
\(946\) −1.78598 0.739776i −0.0580671 0.0240522i
\(947\) −9.37621 22.6362i −0.304686 0.735577i −0.999860 0.0167354i \(-0.994673\pi\)
0.695174 0.718841i \(-0.255327\pi\)
\(948\) 0 0
\(949\) 33.4888 13.8715i 1.08709 0.450288i
\(950\) −1.52123 1.52123i −0.0493553 0.0493553i
\(951\) 0 0
\(952\) 11.5007 + 4.08206i 0.372740 + 0.132300i
\(953\) −30.3936 −0.984545 −0.492272 0.870441i \(-0.663834\pi\)
−0.492272 + 0.870441i \(0.663834\pi\)
\(954\) 0 0
\(955\) 25.4014 10.5216i 0.821969 0.340471i
\(956\) 6.60473i 0.213612i
\(957\) 0 0
\(958\) −3.06873 1.27111i −0.0991462 0.0410677i
\(959\) 6.97302 16.8344i 0.225171 0.543610i
\(960\) 0 0
\(961\) −18.3491 + 18.3491i −0.591906 + 0.591906i
\(962\) 3.30874 7.98801i 0.106678 0.257544i
\(963\) 0 0
\(964\) 13.1688 + 31.7923i 0.424139 + 1.02396i
\(965\) 14.7613i 0.475182i
\(966\) 0 0
\(967\) −31.0785 31.0785i −0.999416 0.999416i 0.000584066 1.00000i \(-0.499814\pi\)
−1.00000 0.000584066i \(0.999814\pi\)
\(968\) 5.91906 0.190246
\(969\) 0 0
\(970\) 2.70288 0.0867843
\(971\) −29.9769 29.9769i −0.962005 0.962005i 0.0372988 0.999304i \(-0.488125\pi\)
−0.999304 + 0.0372988i \(0.988125\pi\)
\(972\) 0 0
\(973\) 26.0853i 0.836255i
\(974\) −1.16538 2.81349i −0.0373413 0.0901500i
\(975\) 0 0
\(976\) 1.20077 2.89891i 0.0384356 0.0927918i
\(977\) −16.7792 + 16.7792i −0.536813 + 0.536813i −0.922591 0.385778i \(-0.873933\pi\)
0.385778 + 0.922591i \(0.373933\pi\)
\(978\) 0 0
\(979\) 0.369825 0.892837i 0.0118197 0.0285352i
\(980\) 1.23583 + 0.511896i 0.0394770 + 0.0163519i
\(981\) 0 0
\(982\) 5.15363i 0.164459i
\(983\) 25.9264 10.7391i 0.826925 0.342524i 0.0712405 0.997459i \(-0.477304\pi\)
0.755685 + 0.654935i \(0.227304\pi\)
\(984\) 0 0
\(985\) 0.376406 0.0119933
\(986\) 2.00585 + 4.21325i 0.0638791 + 0.134177i
\(987\) 0 0
\(988\) −54.0337 54.0337i −1.71904 1.71904i
\(989\) 2.08374 0.863114i 0.0662591 0.0274454i
\(990\) 0 0
\(991\) 17.0472 + 41.1557i 0.541523 + 1.30735i 0.923648 + 0.383242i \(0.125193\pi\)
−0.382124 + 0.924111i \(0.624807\pi\)
\(992\) −7.06567 2.92670i −0.224335 0.0929227i
\(993\) 0 0
\(994\) −0.128909 + 0.128909i −0.00408874 + 0.00408874i
\(995\) −5.32454 + 5.32454i −0.168799 + 0.168799i
\(996\) 0 0
\(997\) −18.9837 7.86332i −0.601221 0.249034i 0.0612487 0.998123i \(-0.480492\pi\)
−0.662470 + 0.749089i \(0.730492\pi\)
\(998\) 3.62047 + 8.74058i 0.114604 + 0.276678i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.be.b.631.3 24
3.2 odd 2 85.2.l.a.36.4 yes 24
15.2 even 4 425.2.n.c.274.3 24
15.8 even 4 425.2.n.f.274.4 24
15.14 odd 2 425.2.m.b.376.3 24
17.9 even 8 inner 765.2.be.b.451.3 24
51.5 even 16 1445.2.d.j.866.12 24
51.14 even 16 1445.2.a.q.1.7 12
51.20 even 16 1445.2.a.p.1.7 12
51.26 odd 8 85.2.l.a.26.4 24
51.29 even 16 1445.2.d.j.866.11 24
255.14 even 16 7225.2.a.bq.1.6 12
255.77 even 8 425.2.n.f.349.4 24
255.128 even 8 425.2.n.c.349.3 24
255.179 odd 8 425.2.m.b.26.3 24
255.224 even 16 7225.2.a.bs.1.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.4 24 51.26 odd 8
85.2.l.a.36.4 yes 24 3.2 odd 2
425.2.m.b.26.3 24 255.179 odd 8
425.2.m.b.376.3 24 15.14 odd 2
425.2.n.c.274.3 24 15.2 even 4
425.2.n.c.349.3 24 255.128 even 8
425.2.n.f.274.4 24 15.8 even 4
425.2.n.f.349.4 24 255.77 even 8
765.2.be.b.451.3 24 17.9 even 8 inner
765.2.be.b.631.3 24 1.1 even 1 trivial
1445.2.a.p.1.7 12 51.20 even 16
1445.2.a.q.1.7 12 51.14 even 16
1445.2.d.j.866.11 24 51.29 even 16
1445.2.d.j.866.12 24 51.5 even 16
7225.2.a.bq.1.6 12 255.14 even 16
7225.2.a.bs.1.6 12 255.224 even 16