Properties

Label 765.2.a.g.1.2
Level $765$
Weight $2$
Character 765.1
Self dual yes
Analytic conductor $6.109$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(1,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.10855575463\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 765.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{2} +1.00000 q^{4} -1.00000 q^{5} -2.73205 q^{7} -1.73205 q^{8} -1.73205 q^{10} -4.73205 q^{11} -4.00000 q^{13} -4.73205 q^{14} -5.00000 q^{16} +1.00000 q^{17} -1.46410 q^{19} -1.00000 q^{20} -8.19615 q^{22} +8.19615 q^{23} +1.00000 q^{25} -6.92820 q^{26} -2.73205 q^{28} +3.46410 q^{29} +3.26795 q^{31} -5.19615 q^{32} +1.73205 q^{34} +2.73205 q^{35} -0.535898 q^{37} -2.53590 q^{38} +1.73205 q^{40} +3.46410 q^{41} -0.535898 q^{43} -4.73205 q^{44} +14.1962 q^{46} -12.9282 q^{47} +0.464102 q^{49} +1.73205 q^{50} -4.00000 q^{52} -6.00000 q^{53} +4.73205 q^{55} +4.73205 q^{56} +6.00000 q^{58} -2.53590 q^{59} -4.92820 q^{61} +5.66025 q^{62} +1.00000 q^{64} +4.00000 q^{65} -10.0000 q^{67} +1.00000 q^{68} +4.73205 q^{70} -11.6603 q^{71} +6.39230 q^{73} -0.928203 q^{74} -1.46410 q^{76} +12.9282 q^{77} +14.5885 q^{79} +5.00000 q^{80} +6.00000 q^{82} -8.53590 q^{83} -1.00000 q^{85} -0.928203 q^{86} +8.19615 q^{88} -4.39230 q^{89} +10.9282 q^{91} +8.19615 q^{92} -22.3923 q^{94} +1.46410 q^{95} -4.92820 q^{97} +0.803848 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 2 q^{5} - 2 q^{7} - 6 q^{11} - 8 q^{13} - 6 q^{14} - 10 q^{16} + 2 q^{17} + 4 q^{19} - 2 q^{20} - 6 q^{22} + 6 q^{23} + 2 q^{25} - 2 q^{28} + 10 q^{31} + 2 q^{35} - 8 q^{37} - 12 q^{38}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.22474 0.612372 0.790569i \(-0.290215\pi\)
0.612372 + 0.790569i \(0.290215\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) −1.73205 −0.612372
\(9\) 0 0
\(10\) −1.73205 −0.547723
\(11\) −4.73205 −1.42677 −0.713384 0.700774i \(-0.752838\pi\)
−0.713384 + 0.700774i \(0.752838\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −4.73205 −1.26469
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −1.46410 −0.335888 −0.167944 0.985797i \(-0.553713\pi\)
−0.167944 + 0.985797i \(0.553713\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −8.19615 −1.74743
\(23\) 8.19615 1.70902 0.854508 0.519438i \(-0.173859\pi\)
0.854508 + 0.519438i \(0.173859\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −6.92820 −1.35873
\(27\) 0 0
\(28\) −2.73205 −0.516309
\(29\) 3.46410 0.643268 0.321634 0.946864i \(-0.395768\pi\)
0.321634 + 0.946864i \(0.395768\pi\)
\(30\) 0 0
\(31\) 3.26795 0.586941 0.293471 0.955968i \(-0.405190\pi\)
0.293471 + 0.955968i \(0.405190\pi\)
\(32\) −5.19615 −0.918559
\(33\) 0 0
\(34\) 1.73205 0.297044
\(35\) 2.73205 0.461801
\(36\) 0 0
\(37\) −0.535898 −0.0881012 −0.0440506 0.999029i \(-0.514026\pi\)
−0.0440506 + 0.999029i \(0.514026\pi\)
\(38\) −2.53590 −0.411377
\(39\) 0 0
\(40\) 1.73205 0.273861
\(41\) 3.46410 0.541002 0.270501 0.962720i \(-0.412811\pi\)
0.270501 + 0.962720i \(0.412811\pi\)
\(42\) 0 0
\(43\) −0.535898 −0.0817237 −0.0408619 0.999165i \(-0.513010\pi\)
−0.0408619 + 0.999165i \(0.513010\pi\)
\(44\) −4.73205 −0.713384
\(45\) 0 0
\(46\) 14.1962 2.09311
\(47\) −12.9282 −1.88577 −0.942886 0.333115i \(-0.891900\pi\)
−0.942886 + 0.333115i \(0.891900\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 1.73205 0.244949
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 4.73205 0.638070
\(56\) 4.73205 0.632347
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) −2.53590 −0.330146 −0.165073 0.986281i \(-0.552786\pi\)
−0.165073 + 0.986281i \(0.552786\pi\)
\(60\) 0 0
\(61\) −4.92820 −0.630992 −0.315496 0.948927i \(-0.602171\pi\)
−0.315496 + 0.948927i \(0.602171\pi\)
\(62\) 5.66025 0.718853
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 4.73205 0.565588
\(71\) −11.6603 −1.38382 −0.691909 0.721985i \(-0.743230\pi\)
−0.691909 + 0.721985i \(0.743230\pi\)
\(72\) 0 0
\(73\) 6.39230 0.748163 0.374081 0.927396i \(-0.377958\pi\)
0.374081 + 0.927396i \(0.377958\pi\)
\(74\) −0.928203 −0.107901
\(75\) 0 0
\(76\) −1.46410 −0.167944
\(77\) 12.9282 1.47331
\(78\) 0 0
\(79\) 14.5885 1.64133 0.820665 0.571410i \(-0.193603\pi\)
0.820665 + 0.571410i \(0.193603\pi\)
\(80\) 5.00000 0.559017
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −8.53590 −0.936937 −0.468468 0.883480i \(-0.655194\pi\)
−0.468468 + 0.883480i \(0.655194\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) −0.928203 −0.100091
\(87\) 0 0
\(88\) 8.19615 0.873713
\(89\) −4.39230 −0.465583 −0.232792 0.972527i \(-0.574786\pi\)
−0.232792 + 0.972527i \(0.574786\pi\)
\(90\) 0 0
\(91\) 10.9282 1.14559
\(92\) 8.19615 0.854508
\(93\) 0 0
\(94\) −22.3923 −2.30959
\(95\) 1.46410 0.150214
\(96\) 0 0
\(97\) −4.92820 −0.500383 −0.250192 0.968196i \(-0.580494\pi\)
−0.250192 + 0.968196i \(0.580494\pi\)
\(98\) 0.803848 0.0812009
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 9.46410 0.941713 0.470857 0.882210i \(-0.343945\pi\)
0.470857 + 0.882210i \(0.343945\pi\)
\(102\) 0 0
\(103\) 8.92820 0.879722 0.439861 0.898066i \(-0.355028\pi\)
0.439861 + 0.898066i \(0.355028\pi\)
\(104\) 6.92820 0.679366
\(105\) 0 0
\(106\) −10.3923 −1.00939
\(107\) −17.6603 −1.70728 −0.853641 0.520862i \(-0.825610\pi\)
−0.853641 + 0.520862i \(0.825610\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 8.19615 0.781472
\(111\) 0 0
\(112\) 13.6603 1.29077
\(113\) 17.3205 1.62938 0.814688 0.579899i \(-0.196908\pi\)
0.814688 + 0.579899i \(0.196908\pi\)
\(114\) 0 0
\(115\) −8.19615 −0.764295
\(116\) 3.46410 0.321634
\(117\) 0 0
\(118\) −4.39230 −0.404344
\(119\) −2.73205 −0.250447
\(120\) 0 0
\(121\) 11.3923 1.03566
\(122\) −8.53590 −0.772804
\(123\) 0 0
\(124\) 3.26795 0.293471
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −14.3923 −1.27711 −0.638555 0.769576i \(-0.720468\pi\)
−0.638555 + 0.769576i \(0.720468\pi\)
\(128\) 12.1244 1.07165
\(129\) 0 0
\(130\) 6.92820 0.607644
\(131\) 2.19615 0.191879 0.0959394 0.995387i \(-0.469415\pi\)
0.0959394 + 0.995387i \(0.469415\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) −17.3205 −1.49626
\(135\) 0 0
\(136\) −1.73205 −0.148522
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −3.66025 −0.310459 −0.155229 0.987878i \(-0.549612\pi\)
−0.155229 + 0.987878i \(0.549612\pi\)
\(140\) 2.73205 0.230900
\(141\) 0 0
\(142\) −20.1962 −1.69482
\(143\) 18.9282 1.58286
\(144\) 0 0
\(145\) −3.46410 −0.287678
\(146\) 11.0718 0.916308
\(147\) 0 0
\(148\) −0.535898 −0.0440506
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −1.46410 −0.119147 −0.0595734 0.998224i \(-0.518974\pi\)
−0.0595734 + 0.998224i \(0.518974\pi\)
\(152\) 2.53590 0.205689
\(153\) 0 0
\(154\) 22.3923 1.80442
\(155\) −3.26795 −0.262488
\(156\) 0 0
\(157\) 8.92820 0.712548 0.356274 0.934381i \(-0.384047\pi\)
0.356274 + 0.934381i \(0.384047\pi\)
\(158\) 25.2679 2.01021
\(159\) 0 0
\(160\) 5.19615 0.410792
\(161\) −22.3923 −1.76476
\(162\) 0 0
\(163\) −0.196152 −0.0153638 −0.00768192 0.999970i \(-0.502445\pi\)
−0.00768192 + 0.999970i \(0.502445\pi\)
\(164\) 3.46410 0.270501
\(165\) 0 0
\(166\) −14.7846 −1.14751
\(167\) −12.5885 −0.974124 −0.487062 0.873367i \(-0.661931\pi\)
−0.487062 + 0.873367i \(0.661931\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −1.73205 −0.132842
\(171\) 0 0
\(172\) −0.535898 −0.0408619
\(173\) −3.46410 −0.263371 −0.131685 0.991292i \(-0.542039\pi\)
−0.131685 + 0.991292i \(0.542039\pi\)
\(174\) 0 0
\(175\) −2.73205 −0.206524
\(176\) 23.6603 1.78346
\(177\) 0 0
\(178\) −7.60770 −0.570221
\(179\) 11.3205 0.846135 0.423067 0.906098i \(-0.360953\pi\)
0.423067 + 0.906098i \(0.360953\pi\)
\(180\) 0 0
\(181\) −2.39230 −0.177819 −0.0889093 0.996040i \(-0.528338\pi\)
−0.0889093 + 0.996040i \(0.528338\pi\)
\(182\) 18.9282 1.40305
\(183\) 0 0
\(184\) −14.1962 −1.04655
\(185\) 0.535898 0.0394000
\(186\) 0 0
\(187\) −4.73205 −0.346042
\(188\) −12.9282 −0.942886
\(189\) 0 0
\(190\) 2.53590 0.183973
\(191\) −1.85641 −0.134325 −0.0671624 0.997742i \(-0.521395\pi\)
−0.0671624 + 0.997742i \(0.521395\pi\)
\(192\) 0 0
\(193\) 16.5359 1.19028 0.595140 0.803622i \(-0.297097\pi\)
0.595140 + 0.803622i \(0.297097\pi\)
\(194\) −8.53590 −0.612842
\(195\) 0 0
\(196\) 0.464102 0.0331501
\(197\) −17.3205 −1.23404 −0.617018 0.786949i \(-0.711659\pi\)
−0.617018 + 0.786949i \(0.711659\pi\)
\(198\) 0 0
\(199\) 10.1962 0.722786 0.361393 0.932414i \(-0.382301\pi\)
0.361393 + 0.932414i \(0.382301\pi\)
\(200\) −1.73205 −0.122474
\(201\) 0 0
\(202\) 16.3923 1.15336
\(203\) −9.46410 −0.664250
\(204\) 0 0
\(205\) −3.46410 −0.241943
\(206\) 15.4641 1.07744
\(207\) 0 0
\(208\) 20.0000 1.38675
\(209\) 6.92820 0.479234
\(210\) 0 0
\(211\) 10.1962 0.701932 0.350966 0.936388i \(-0.385853\pi\)
0.350966 + 0.936388i \(0.385853\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) −30.5885 −2.09098
\(215\) 0.535898 0.0365480
\(216\) 0 0
\(217\) −8.92820 −0.606086
\(218\) −17.3205 −1.17309
\(219\) 0 0
\(220\) 4.73205 0.319035
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −26.3923 −1.76736 −0.883680 0.468092i \(-0.844942\pi\)
−0.883680 + 0.468092i \(0.844942\pi\)
\(224\) 14.1962 0.948520
\(225\) 0 0
\(226\) 30.0000 1.99557
\(227\) −22.7321 −1.50878 −0.754390 0.656427i \(-0.772067\pi\)
−0.754390 + 0.656427i \(0.772067\pi\)
\(228\) 0 0
\(229\) −8.39230 −0.554579 −0.277290 0.960786i \(-0.589436\pi\)
−0.277290 + 0.960786i \(0.589436\pi\)
\(230\) −14.1962 −0.936067
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 12.9282 0.843343
\(236\) −2.53590 −0.165073
\(237\) 0 0
\(238\) −4.73205 −0.306733
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 0 0
\(241\) −5.60770 −0.361223 −0.180612 0.983554i \(-0.557808\pi\)
−0.180612 + 0.983554i \(0.557808\pi\)
\(242\) 19.7321 1.26842
\(243\) 0 0
\(244\) −4.92820 −0.315496
\(245\) −0.464102 −0.0296504
\(246\) 0 0
\(247\) 5.85641 0.372634
\(248\) −5.66025 −0.359426
\(249\) 0 0
\(250\) −1.73205 −0.109545
\(251\) −6.92820 −0.437304 −0.218652 0.975803i \(-0.570166\pi\)
−0.218652 + 0.975803i \(0.570166\pi\)
\(252\) 0 0
\(253\) −38.7846 −2.43837
\(254\) −24.9282 −1.56413
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 6.92820 0.432169 0.216085 0.976375i \(-0.430671\pi\)
0.216085 + 0.976375i \(0.430671\pi\)
\(258\) 0 0
\(259\) 1.46410 0.0909748
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) 3.80385 0.235002
\(263\) 1.60770 0.0991347 0.0495674 0.998771i \(-0.484216\pi\)
0.0495674 + 0.998771i \(0.484216\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 6.92820 0.424795
\(267\) 0 0
\(268\) −10.0000 −0.610847
\(269\) −0.928203 −0.0565935 −0.0282968 0.999600i \(-0.509008\pi\)
−0.0282968 + 0.999600i \(0.509008\pi\)
\(270\) 0 0
\(271\) 2.92820 0.177876 0.0889378 0.996037i \(-0.471653\pi\)
0.0889378 + 0.996037i \(0.471653\pi\)
\(272\) −5.00000 −0.303170
\(273\) 0 0
\(274\) 0 0
\(275\) −4.73205 −0.285353
\(276\) 0 0
\(277\) 20.9282 1.25745 0.628727 0.777626i \(-0.283576\pi\)
0.628727 + 0.777626i \(0.283576\pi\)
\(278\) −6.33975 −0.380233
\(279\) 0 0
\(280\) −4.73205 −0.282794
\(281\) 12.9282 0.771232 0.385616 0.922659i \(-0.373989\pi\)
0.385616 + 0.922659i \(0.373989\pi\)
\(282\) 0 0
\(283\) −5.26795 −0.313147 −0.156574 0.987666i \(-0.550045\pi\)
−0.156574 + 0.987666i \(0.550045\pi\)
\(284\) −11.6603 −0.691909
\(285\) 0 0
\(286\) 32.7846 1.93859
\(287\) −9.46410 −0.558648
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −6.00000 −0.352332
\(291\) 0 0
\(292\) 6.39230 0.374081
\(293\) 0.928203 0.0542262 0.0271131 0.999632i \(-0.491369\pi\)
0.0271131 + 0.999632i \(0.491369\pi\)
\(294\) 0 0
\(295\) 2.53590 0.147646
\(296\) 0.928203 0.0539507
\(297\) 0 0
\(298\) 10.3923 0.602010
\(299\) −32.7846 −1.89598
\(300\) 0 0
\(301\) 1.46410 0.0843894
\(302\) −2.53590 −0.145925
\(303\) 0 0
\(304\) 7.32051 0.419860
\(305\) 4.92820 0.282188
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 12.9282 0.736653
\(309\) 0 0
\(310\) −5.66025 −0.321481
\(311\) 16.0526 0.910257 0.455129 0.890426i \(-0.349593\pi\)
0.455129 + 0.890426i \(0.349593\pi\)
\(312\) 0 0
\(313\) −26.3923 −1.49178 −0.745891 0.666068i \(-0.767976\pi\)
−0.745891 + 0.666068i \(0.767976\pi\)
\(314\) 15.4641 0.872690
\(315\) 0 0
\(316\) 14.5885 0.820665
\(317\) 24.9282 1.40011 0.700054 0.714090i \(-0.253159\pi\)
0.700054 + 0.714090i \(0.253159\pi\)
\(318\) 0 0
\(319\) −16.3923 −0.917793
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) −38.7846 −2.16138
\(323\) −1.46410 −0.0814648
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) −0.339746 −0.0188168
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) 35.3205 1.94728
\(330\) 0 0
\(331\) −6.53590 −0.359245 −0.179623 0.983736i \(-0.557488\pi\)
−0.179623 + 0.983736i \(0.557488\pi\)
\(332\) −8.53590 −0.468468
\(333\) 0 0
\(334\) −21.8038 −1.19305
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) −6.78461 −0.369581 −0.184791 0.982778i \(-0.559161\pi\)
−0.184791 + 0.982778i \(0.559161\pi\)
\(338\) 5.19615 0.282633
\(339\) 0 0
\(340\) −1.00000 −0.0542326
\(341\) −15.4641 −0.837428
\(342\) 0 0
\(343\) 17.8564 0.964155
\(344\) 0.928203 0.0500454
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −3.80385 −0.204201 −0.102101 0.994774i \(-0.532556\pi\)
−0.102101 + 0.994774i \(0.532556\pi\)
\(348\) 0 0
\(349\) 10.7846 0.577287 0.288643 0.957437i \(-0.406796\pi\)
0.288643 + 0.957437i \(0.406796\pi\)
\(350\) −4.73205 −0.252939
\(351\) 0 0
\(352\) 24.5885 1.31057
\(353\) −26.7846 −1.42560 −0.712800 0.701367i \(-0.752573\pi\)
−0.712800 + 0.701367i \(0.752573\pi\)
\(354\) 0 0
\(355\) 11.6603 0.618862
\(356\) −4.39230 −0.232792
\(357\) 0 0
\(358\) 19.6077 1.03630
\(359\) 21.4641 1.13283 0.566416 0.824119i \(-0.308330\pi\)
0.566416 + 0.824119i \(0.308330\pi\)
\(360\) 0 0
\(361\) −16.8564 −0.887179
\(362\) −4.14359 −0.217782
\(363\) 0 0
\(364\) 10.9282 0.572793
\(365\) −6.39230 −0.334589
\(366\) 0 0
\(367\) −7.80385 −0.407358 −0.203679 0.979038i \(-0.565290\pi\)
−0.203679 + 0.979038i \(0.565290\pi\)
\(368\) −40.9808 −2.13627
\(369\) 0 0
\(370\) 0.928203 0.0482550
\(371\) 16.3923 0.851046
\(372\) 0 0
\(373\) 20.0000 1.03556 0.517780 0.855514i \(-0.326758\pi\)
0.517780 + 0.855514i \(0.326758\pi\)
\(374\) −8.19615 −0.423813
\(375\) 0 0
\(376\) 22.3923 1.15479
\(377\) −13.8564 −0.713641
\(378\) 0 0
\(379\) 17.8038 0.914522 0.457261 0.889332i \(-0.348830\pi\)
0.457261 + 0.889332i \(0.348830\pi\)
\(380\) 1.46410 0.0751068
\(381\) 0 0
\(382\) −3.21539 −0.164514
\(383\) −15.4641 −0.790179 −0.395089 0.918643i \(-0.629286\pi\)
−0.395089 + 0.918643i \(0.629286\pi\)
\(384\) 0 0
\(385\) −12.9282 −0.658882
\(386\) 28.6410 1.45779
\(387\) 0 0
\(388\) −4.92820 −0.250192
\(389\) 4.39230 0.222699 0.111349 0.993781i \(-0.464483\pi\)
0.111349 + 0.993781i \(0.464483\pi\)
\(390\) 0 0
\(391\) 8.19615 0.414497
\(392\) −0.803848 −0.0406004
\(393\) 0 0
\(394\) −30.0000 −1.51138
\(395\) −14.5885 −0.734025
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 17.6603 0.885229
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) −12.9282 −0.645604 −0.322802 0.946467i \(-0.604625\pi\)
−0.322802 + 0.946467i \(0.604625\pi\)
\(402\) 0 0
\(403\) −13.0718 −0.651153
\(404\) 9.46410 0.470857
\(405\) 0 0
\(406\) −16.3923 −0.813536
\(407\) 2.53590 0.125700
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) 8.92820 0.439861
\(413\) 6.92820 0.340915
\(414\) 0 0
\(415\) 8.53590 0.419011
\(416\) 20.7846 1.01905
\(417\) 0 0
\(418\) 12.0000 0.586939
\(419\) −38.1962 −1.86600 −0.933002 0.359871i \(-0.882821\pi\)
−0.933002 + 0.359871i \(0.882821\pi\)
\(420\) 0 0
\(421\) 5.46410 0.266304 0.133152 0.991096i \(-0.457490\pi\)
0.133152 + 0.991096i \(0.457490\pi\)
\(422\) 17.6603 0.859688
\(423\) 0 0
\(424\) 10.3923 0.504695
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) 13.4641 0.651574
\(428\) −17.6603 −0.853641
\(429\) 0 0
\(430\) 0.928203 0.0447619
\(431\) −9.80385 −0.472235 −0.236117 0.971725i \(-0.575875\pi\)
−0.236117 + 0.971725i \(0.575875\pi\)
\(432\) 0 0
\(433\) −17.8564 −0.858124 −0.429062 0.903275i \(-0.641156\pi\)
−0.429062 + 0.903275i \(0.641156\pi\)
\(434\) −15.4641 −0.742301
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) −20.0526 −0.957056 −0.478528 0.878072i \(-0.658830\pi\)
−0.478528 + 0.878072i \(0.658830\pi\)
\(440\) −8.19615 −0.390736
\(441\) 0 0
\(442\) −6.92820 −0.329541
\(443\) 12.9282 0.614237 0.307119 0.951671i \(-0.400635\pi\)
0.307119 + 0.951671i \(0.400635\pi\)
\(444\) 0 0
\(445\) 4.39230 0.208215
\(446\) −45.7128 −2.16456
\(447\) 0 0
\(448\) −2.73205 −0.129077
\(449\) 34.3923 1.62307 0.811537 0.584302i \(-0.198631\pi\)
0.811537 + 0.584302i \(0.198631\pi\)
\(450\) 0 0
\(451\) −16.3923 −0.771883
\(452\) 17.3205 0.814688
\(453\) 0 0
\(454\) −39.3731 −1.84787
\(455\) −10.9282 −0.512322
\(456\) 0 0
\(457\) −36.7846 −1.72071 −0.860356 0.509694i \(-0.829759\pi\)
−0.860356 + 0.509694i \(0.829759\pi\)
\(458\) −14.5359 −0.679218
\(459\) 0 0
\(460\) −8.19615 −0.382148
\(461\) 24.9282 1.16102 0.580511 0.814252i \(-0.302853\pi\)
0.580511 + 0.814252i \(0.302853\pi\)
\(462\) 0 0
\(463\) −23.8564 −1.10870 −0.554351 0.832283i \(-0.687033\pi\)
−0.554351 + 0.832283i \(0.687033\pi\)
\(464\) −17.3205 −0.804084
\(465\) 0 0
\(466\) −10.3923 −0.481414
\(467\) −1.60770 −0.0743953 −0.0371976 0.999308i \(-0.511843\pi\)
−0.0371976 + 0.999308i \(0.511843\pi\)
\(468\) 0 0
\(469\) 27.3205 1.26154
\(470\) 22.3923 1.03288
\(471\) 0 0
\(472\) 4.39230 0.202172
\(473\) 2.53590 0.116601
\(474\) 0 0
\(475\) −1.46410 −0.0671776
\(476\) −2.73205 −0.125223
\(477\) 0 0
\(478\) 36.0000 1.64660
\(479\) 11.6603 0.532771 0.266385 0.963867i \(-0.414171\pi\)
0.266385 + 0.963867i \(0.414171\pi\)
\(480\) 0 0
\(481\) 2.14359 0.0977395
\(482\) −9.71281 −0.442407
\(483\) 0 0
\(484\) 11.3923 0.517832
\(485\) 4.92820 0.223778
\(486\) 0 0
\(487\) 24.9808 1.13199 0.565993 0.824410i \(-0.308493\pi\)
0.565993 + 0.824410i \(0.308493\pi\)
\(488\) 8.53590 0.386402
\(489\) 0 0
\(490\) −0.803848 −0.0363141
\(491\) 19.6077 0.884883 0.442441 0.896797i \(-0.354112\pi\)
0.442441 + 0.896797i \(0.354112\pi\)
\(492\) 0 0
\(493\) 3.46410 0.156015
\(494\) 10.1436 0.456382
\(495\) 0 0
\(496\) −16.3397 −0.733676
\(497\) 31.8564 1.42896
\(498\) 0 0
\(499\) −15.6603 −0.701049 −0.350525 0.936554i \(-0.613997\pi\)
−0.350525 + 0.936554i \(0.613997\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) −15.1244 −0.674362 −0.337181 0.941440i \(-0.609473\pi\)
−0.337181 + 0.941440i \(0.609473\pi\)
\(504\) 0 0
\(505\) −9.46410 −0.421147
\(506\) −67.1769 −2.98638
\(507\) 0 0
\(508\) −14.3923 −0.638555
\(509\) −19.8564 −0.880120 −0.440060 0.897968i \(-0.645043\pi\)
−0.440060 + 0.897968i \(0.645043\pi\)
\(510\) 0 0
\(511\) −17.4641 −0.772566
\(512\) 8.66025 0.382733
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) −8.92820 −0.393424
\(516\) 0 0
\(517\) 61.1769 2.69056
\(518\) 2.53590 0.111421
\(519\) 0 0
\(520\) −6.92820 −0.303822
\(521\) −4.14359 −0.181534 −0.0907671 0.995872i \(-0.528932\pi\)
−0.0907671 + 0.995872i \(0.528932\pi\)
\(522\) 0 0
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) 2.19615 0.0959394
\(525\) 0 0
\(526\) 2.78461 0.121415
\(527\) 3.26795 0.142354
\(528\) 0 0
\(529\) 44.1769 1.92074
\(530\) 10.3923 0.451413
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) −13.8564 −0.600188
\(534\) 0 0
\(535\) 17.6603 0.763519
\(536\) 17.3205 0.748132
\(537\) 0 0
\(538\) −1.60770 −0.0693127
\(539\) −2.19615 −0.0945950
\(540\) 0 0
\(541\) 39.1769 1.68435 0.842174 0.539207i \(-0.181276\pi\)
0.842174 + 0.539207i \(0.181276\pi\)
\(542\) 5.07180 0.217852
\(543\) 0 0
\(544\) −5.19615 −0.222783
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) −39.9090 −1.70638 −0.853192 0.521597i \(-0.825337\pi\)
−0.853192 + 0.521597i \(0.825337\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −8.19615 −0.349485
\(551\) −5.07180 −0.216066
\(552\) 0 0
\(553\) −39.8564 −1.69487
\(554\) 36.2487 1.54006
\(555\) 0 0
\(556\) −3.66025 −0.155229
\(557\) 6.92820 0.293557 0.146779 0.989169i \(-0.453109\pi\)
0.146779 + 0.989169i \(0.453109\pi\)
\(558\) 0 0
\(559\) 2.14359 0.0906643
\(560\) −13.6603 −0.577251
\(561\) 0 0
\(562\) 22.3923 0.944562
\(563\) −27.4641 −1.15747 −0.578737 0.815514i \(-0.696454\pi\)
−0.578737 + 0.815514i \(0.696454\pi\)
\(564\) 0 0
\(565\) −17.3205 −0.728679
\(566\) −9.12436 −0.383525
\(567\) 0 0
\(568\) 20.1962 0.847412
\(569\) −40.6410 −1.70376 −0.851880 0.523737i \(-0.824537\pi\)
−0.851880 + 0.523737i \(0.824537\pi\)
\(570\) 0 0
\(571\) −36.4449 −1.52517 −0.762585 0.646888i \(-0.776070\pi\)
−0.762585 + 0.646888i \(0.776070\pi\)
\(572\) 18.9282 0.791428
\(573\) 0 0
\(574\) −16.3923 −0.684202
\(575\) 8.19615 0.341803
\(576\) 0 0
\(577\) −38.6410 −1.60865 −0.804323 0.594192i \(-0.797472\pi\)
−0.804323 + 0.594192i \(0.797472\pi\)
\(578\) 1.73205 0.0720438
\(579\) 0 0
\(580\) −3.46410 −0.143839
\(581\) 23.3205 0.967498
\(582\) 0 0
\(583\) 28.3923 1.17589
\(584\) −11.0718 −0.458154
\(585\) 0 0
\(586\) 1.60770 0.0664133
\(587\) −46.3923 −1.91482 −0.957408 0.288740i \(-0.906764\pi\)
−0.957408 + 0.288740i \(0.906764\pi\)
\(588\) 0 0
\(589\) −4.78461 −0.197146
\(590\) 4.39230 0.180828
\(591\) 0 0
\(592\) 2.67949 0.110126
\(593\) −19.8564 −0.815405 −0.407702 0.913115i \(-0.633670\pi\)
−0.407702 + 0.913115i \(0.633670\pi\)
\(594\) 0 0
\(595\) 2.73205 0.112003
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) −56.7846 −2.32210
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 8.24871 0.336472 0.168236 0.985747i \(-0.446193\pi\)
0.168236 + 0.985747i \(0.446193\pi\)
\(602\) 2.53590 0.103356
\(603\) 0 0
\(604\) −1.46410 −0.0595734
\(605\) −11.3923 −0.463163
\(606\) 0 0
\(607\) −21.6603 −0.879163 −0.439581 0.898203i \(-0.644873\pi\)
−0.439581 + 0.898203i \(0.644873\pi\)
\(608\) 7.60770 0.308533
\(609\) 0 0
\(610\) 8.53590 0.345608
\(611\) 51.7128 2.09208
\(612\) 0 0
\(613\) 15.8564 0.640434 0.320217 0.947344i \(-0.396244\pi\)
0.320217 + 0.947344i \(0.396244\pi\)
\(614\) −17.3205 −0.698999
\(615\) 0 0
\(616\) −22.3923 −0.902212
\(617\) 27.4641 1.10566 0.552832 0.833293i \(-0.313547\pi\)
0.552832 + 0.833293i \(0.313547\pi\)
\(618\) 0 0
\(619\) 38.5885 1.55100 0.775501 0.631347i \(-0.217498\pi\)
0.775501 + 0.631347i \(0.217498\pi\)
\(620\) −3.26795 −0.131244
\(621\) 0 0
\(622\) 27.8038 1.11483
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −45.7128 −1.82705
\(627\) 0 0
\(628\) 8.92820 0.356274
\(629\) −0.535898 −0.0213677
\(630\) 0 0
\(631\) −32.3923 −1.28952 −0.644759 0.764386i \(-0.723042\pi\)
−0.644759 + 0.764386i \(0.723042\pi\)
\(632\) −25.2679 −1.00511
\(633\) 0 0
\(634\) 43.1769 1.71477
\(635\) 14.3923 0.571141
\(636\) 0 0
\(637\) −1.85641 −0.0735535
\(638\) −28.3923 −1.12406
\(639\) 0 0
\(640\) −12.1244 −0.479257
\(641\) −31.1769 −1.23141 −0.615707 0.787975i \(-0.711130\pi\)
−0.615707 + 0.787975i \(0.711130\pi\)
\(642\) 0 0
\(643\) −24.1962 −0.954203 −0.477102 0.878848i \(-0.658313\pi\)
−0.477102 + 0.878848i \(0.658313\pi\)
\(644\) −22.3923 −0.882380
\(645\) 0 0
\(646\) −2.53590 −0.0997736
\(647\) 38.7846 1.52478 0.762390 0.647118i \(-0.224026\pi\)
0.762390 + 0.647118i \(0.224026\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) −6.92820 −0.271746
\(651\) 0 0
\(652\) −0.196152 −0.00768192
\(653\) 25.6077 1.00211 0.501053 0.865416i \(-0.332946\pi\)
0.501053 + 0.865416i \(0.332946\pi\)
\(654\) 0 0
\(655\) −2.19615 −0.0858108
\(656\) −17.3205 −0.676252
\(657\) 0 0
\(658\) 61.1769 2.38492
\(659\) 32.7846 1.27711 0.638554 0.769577i \(-0.279533\pi\)
0.638554 + 0.769577i \(0.279533\pi\)
\(660\) 0 0
\(661\) −8.14359 −0.316749 −0.158375 0.987379i \(-0.550625\pi\)
−0.158375 + 0.987379i \(0.550625\pi\)
\(662\) −11.3205 −0.439984
\(663\) 0 0
\(664\) 14.7846 0.573754
\(665\) −4.00000 −0.155113
\(666\) 0 0
\(667\) 28.3923 1.09935
\(668\) −12.5885 −0.487062
\(669\) 0 0
\(670\) 17.3205 0.669150
\(671\) 23.3205 0.900278
\(672\) 0 0
\(673\) 23.4641 0.904475 0.452237 0.891898i \(-0.350626\pi\)
0.452237 + 0.891898i \(0.350626\pi\)
\(674\) −11.7513 −0.452643
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −2.78461 −0.107021 −0.0535106 0.998567i \(-0.517041\pi\)
−0.0535106 + 0.998567i \(0.517041\pi\)
\(678\) 0 0
\(679\) 13.4641 0.516705
\(680\) 1.73205 0.0664211
\(681\) 0 0
\(682\) −26.7846 −1.02564
\(683\) 30.8372 1.17995 0.589976 0.807421i \(-0.299137\pi\)
0.589976 + 0.807421i \(0.299137\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 30.9282 1.18084
\(687\) 0 0
\(688\) 2.67949 0.102155
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) −38.9808 −1.48290 −0.741449 0.671009i \(-0.765861\pi\)
−0.741449 + 0.671009i \(0.765861\pi\)
\(692\) −3.46410 −0.131685
\(693\) 0 0
\(694\) −6.58846 −0.250094
\(695\) 3.66025 0.138841
\(696\) 0 0
\(697\) 3.46410 0.131212
\(698\) 18.6795 0.707029
\(699\) 0 0
\(700\) −2.73205 −0.103262
\(701\) −11.3205 −0.427570 −0.213785 0.976881i \(-0.568579\pi\)
−0.213785 + 0.976881i \(0.568579\pi\)
\(702\) 0 0
\(703\) 0.784610 0.0295921
\(704\) −4.73205 −0.178346
\(705\) 0 0
\(706\) −46.3923 −1.74600
\(707\) −25.8564 −0.972430
\(708\) 0 0
\(709\) 4.53590 0.170349 0.0851746 0.996366i \(-0.472855\pi\)
0.0851746 + 0.996366i \(0.472855\pi\)
\(710\) 20.1962 0.757948
\(711\) 0 0
\(712\) 7.60770 0.285110
\(713\) 26.7846 1.00309
\(714\) 0 0
\(715\) −18.9282 −0.707875
\(716\) 11.3205 0.423067
\(717\) 0 0
\(718\) 37.1769 1.38743
\(719\) 5.41154 0.201816 0.100908 0.994896i \(-0.467825\pi\)
0.100908 + 0.994896i \(0.467825\pi\)
\(720\) 0 0
\(721\) −24.3923 −0.908417
\(722\) −29.1962 −1.08657
\(723\) 0 0
\(724\) −2.39230 −0.0889093
\(725\) 3.46410 0.128654
\(726\) 0 0
\(727\) 0.143594 0.00532559 0.00266279 0.999996i \(-0.499152\pi\)
0.00266279 + 0.999996i \(0.499152\pi\)
\(728\) −18.9282 −0.701526
\(729\) 0 0
\(730\) −11.0718 −0.409786
\(731\) −0.535898 −0.0198209
\(732\) 0 0
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) −13.5167 −0.498909
\(735\) 0 0
\(736\) −42.5885 −1.56983
\(737\) 47.3205 1.74307
\(738\) 0 0
\(739\) −11.6077 −0.426996 −0.213498 0.976944i \(-0.568486\pi\)
−0.213498 + 0.976944i \(0.568486\pi\)
\(740\) 0.535898 0.0197000
\(741\) 0 0
\(742\) 28.3923 1.04231
\(743\) 22.7321 0.833958 0.416979 0.908916i \(-0.363089\pi\)
0.416979 + 0.908916i \(0.363089\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 34.6410 1.26830
\(747\) 0 0
\(748\) −4.73205 −0.173021
\(749\) 48.2487 1.76297
\(750\) 0 0
\(751\) 43.6603 1.59319 0.796593 0.604516i \(-0.206634\pi\)
0.796593 + 0.604516i \(0.206634\pi\)
\(752\) 64.6410 2.35722
\(753\) 0 0
\(754\) −24.0000 −0.874028
\(755\) 1.46410 0.0532841
\(756\) 0 0
\(757\) 30.6410 1.11367 0.556833 0.830624i \(-0.312016\pi\)
0.556833 + 0.830624i \(0.312016\pi\)
\(758\) 30.8372 1.12006
\(759\) 0 0
\(760\) −2.53590 −0.0919867
\(761\) 28.3923 1.02922 0.514610 0.857424i \(-0.327937\pi\)
0.514610 + 0.857424i \(0.327937\pi\)
\(762\) 0 0
\(763\) 27.3205 0.989069
\(764\) −1.85641 −0.0671624
\(765\) 0 0
\(766\) −26.7846 −0.967767
\(767\) 10.1436 0.366264
\(768\) 0 0
\(769\) 36.3923 1.31234 0.656170 0.754613i \(-0.272175\pi\)
0.656170 + 0.754613i \(0.272175\pi\)
\(770\) −22.3923 −0.806963
\(771\) 0 0
\(772\) 16.5359 0.595140
\(773\) 46.6410 1.67756 0.838780 0.544470i \(-0.183269\pi\)
0.838780 + 0.544470i \(0.183269\pi\)
\(774\) 0 0
\(775\) 3.26795 0.117388
\(776\) 8.53590 0.306421
\(777\) 0 0
\(778\) 7.60770 0.272749
\(779\) −5.07180 −0.181716
\(780\) 0 0
\(781\) 55.1769 1.97439
\(782\) 14.1962 0.507653
\(783\) 0 0
\(784\) −2.32051 −0.0828753
\(785\) −8.92820 −0.318661
\(786\) 0 0
\(787\) 43.9090 1.56519 0.782593 0.622534i \(-0.213897\pi\)
0.782593 + 0.622534i \(0.213897\pi\)
\(788\) −17.3205 −0.617018
\(789\) 0 0
\(790\) −25.2679 −0.898993
\(791\) −47.3205 −1.68252
\(792\) 0 0
\(793\) 19.7128 0.700023
\(794\) 24.2487 0.860555
\(795\) 0 0
\(796\) 10.1962 0.361393
\(797\) 24.9282 0.883002 0.441501 0.897261i \(-0.354446\pi\)
0.441501 + 0.897261i \(0.354446\pi\)
\(798\) 0 0
\(799\) −12.9282 −0.457367
\(800\) −5.19615 −0.183712
\(801\) 0 0
\(802\) −22.3923 −0.790700
\(803\) −30.2487 −1.06745
\(804\) 0 0
\(805\) 22.3923 0.789225
\(806\) −22.6410 −0.797496
\(807\) 0 0
\(808\) −16.3923 −0.576679
\(809\) 55.8564 1.96381 0.981903 0.189383i \(-0.0606487\pi\)
0.981903 + 0.189383i \(0.0606487\pi\)
\(810\) 0 0
\(811\) 44.8372 1.57445 0.787223 0.616668i \(-0.211518\pi\)
0.787223 + 0.616668i \(0.211518\pi\)
\(812\) −9.46410 −0.332125
\(813\) 0 0
\(814\) 4.39230 0.153950
\(815\) 0.196152 0.00687092
\(816\) 0 0
\(817\) 0.784610 0.0274500
\(818\) 45.0333 1.57455
\(819\) 0 0
\(820\) −3.46410 −0.120972
\(821\) 24.9282 0.870000 0.435000 0.900430i \(-0.356748\pi\)
0.435000 + 0.900430i \(0.356748\pi\)
\(822\) 0 0
\(823\) −8.98076 −0.313050 −0.156525 0.987674i \(-0.550029\pi\)
−0.156525 + 0.987674i \(0.550029\pi\)
\(824\) −15.4641 −0.538718
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) 15.8038 0.549554 0.274777 0.961508i \(-0.411396\pi\)
0.274777 + 0.961508i \(0.411396\pi\)
\(828\) 0 0
\(829\) 17.7128 0.615191 0.307596 0.951517i \(-0.400476\pi\)
0.307596 + 0.951517i \(0.400476\pi\)
\(830\) 14.7846 0.513181
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) 0.464102 0.0160802
\(834\) 0 0
\(835\) 12.5885 0.435642
\(836\) 6.92820 0.239617
\(837\) 0 0
\(838\) −66.1577 −2.28538
\(839\) −19.2679 −0.665203 −0.332602 0.943067i \(-0.607926\pi\)
−0.332602 + 0.943067i \(0.607926\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) 9.46410 0.326154
\(843\) 0 0
\(844\) 10.1962 0.350966
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −31.1244 −1.06945
\(848\) 30.0000 1.03020
\(849\) 0 0
\(850\) 1.73205 0.0594089
\(851\) −4.39230 −0.150566
\(852\) 0 0
\(853\) −23.1769 −0.793562 −0.396781 0.917913i \(-0.629873\pi\)
−0.396781 + 0.917913i \(0.629873\pi\)
\(854\) 23.3205 0.798011
\(855\) 0 0
\(856\) 30.5885 1.04549
\(857\) −31.1769 −1.06498 −0.532492 0.846435i \(-0.678744\pi\)
−0.532492 + 0.846435i \(0.678744\pi\)
\(858\) 0 0
\(859\) −25.4641 −0.868824 −0.434412 0.900714i \(-0.643044\pi\)
−0.434412 + 0.900714i \(0.643044\pi\)
\(860\) 0.535898 0.0182740
\(861\) 0 0
\(862\) −16.9808 −0.578367
\(863\) −23.0718 −0.785373 −0.392687 0.919672i \(-0.628454\pi\)
−0.392687 + 0.919672i \(0.628454\pi\)
\(864\) 0 0
\(865\) 3.46410 0.117783
\(866\) −30.9282 −1.05098
\(867\) 0 0
\(868\) −8.92820 −0.303043
\(869\) −69.0333 −2.34180
\(870\) 0 0
\(871\) 40.0000 1.35535
\(872\) 17.3205 0.586546
\(873\) 0 0
\(874\) −20.7846 −0.703050
\(875\) 2.73205 0.0923602
\(876\) 0 0
\(877\) −1.21539 −0.0410408 −0.0205204 0.999789i \(-0.506532\pi\)
−0.0205204 + 0.999789i \(0.506532\pi\)
\(878\) −34.7321 −1.17215
\(879\) 0 0
\(880\) −23.6603 −0.797587
\(881\) 41.3205 1.39212 0.696062 0.717982i \(-0.254934\pi\)
0.696062 + 0.717982i \(0.254934\pi\)
\(882\) 0 0
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 22.3923 0.752284
\(887\) −3.12436 −0.104906 −0.0524528 0.998623i \(-0.516704\pi\)
−0.0524528 + 0.998623i \(0.516704\pi\)
\(888\) 0 0
\(889\) 39.3205 1.31877
\(890\) 7.60770 0.255011
\(891\) 0 0
\(892\) −26.3923 −0.883680
\(893\) 18.9282 0.633408
\(894\) 0 0
\(895\) −11.3205 −0.378403
\(896\) −33.1244 −1.10661
\(897\) 0 0
\(898\) 59.5692 1.98785
\(899\) 11.3205 0.377560
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) −28.3923 −0.945360
\(903\) 0 0
\(904\) −30.0000 −0.997785
\(905\) 2.39230 0.0795229
\(906\) 0 0
\(907\) 30.7321 1.02044 0.510220 0.860044i \(-0.329564\pi\)
0.510220 + 0.860044i \(0.329564\pi\)
\(908\) −22.7321 −0.754390
\(909\) 0 0
\(910\) −18.9282 −0.627464
\(911\) −36.3397 −1.20399 −0.601995 0.798500i \(-0.705627\pi\)
−0.601995 + 0.798500i \(0.705627\pi\)
\(912\) 0 0
\(913\) 40.3923 1.33679
\(914\) −63.7128 −2.10743
\(915\) 0 0
\(916\) −8.39230 −0.277290
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 14.1962 0.468033
\(921\) 0 0
\(922\) 43.1769 1.42196
\(923\) 46.6410 1.53521
\(924\) 0 0
\(925\) −0.535898 −0.0176202
\(926\) −41.3205 −1.35788
\(927\) 0 0
\(928\) −18.0000 −0.590879
\(929\) 3.46410 0.113653 0.0568267 0.998384i \(-0.481902\pi\)
0.0568267 + 0.998384i \(0.481902\pi\)
\(930\) 0 0
\(931\) −0.679492 −0.0222694
\(932\) −6.00000 −0.196537
\(933\) 0 0
\(934\) −2.78461 −0.0911152
\(935\) 4.73205 0.154755
\(936\) 0 0
\(937\) −32.6410 −1.06634 −0.533168 0.846010i \(-0.678999\pi\)
−0.533168 + 0.846010i \(0.678999\pi\)
\(938\) 47.3205 1.54507
\(939\) 0 0
\(940\) 12.9282 0.421671
\(941\) −48.2487 −1.57286 −0.786432 0.617677i \(-0.788074\pi\)
−0.786432 + 0.617677i \(0.788074\pi\)
\(942\) 0 0
\(943\) 28.3923 0.924581
\(944\) 12.6795 0.412682
\(945\) 0 0
\(946\) 4.39230 0.142806
\(947\) −8.19615 −0.266339 −0.133170 0.991093i \(-0.542515\pi\)
−0.133170 + 0.991093i \(0.542515\pi\)
\(948\) 0 0
\(949\) −25.5692 −0.830012
\(950\) −2.53590 −0.0822754
\(951\) 0 0
\(952\) 4.73205 0.153367
\(953\) 8.78461 0.284561 0.142281 0.989826i \(-0.454556\pi\)
0.142281 + 0.989826i \(0.454556\pi\)
\(954\) 0 0
\(955\) 1.85641 0.0600719
\(956\) 20.7846 0.672222
\(957\) 0 0
\(958\) 20.1962 0.652508
\(959\) 0 0
\(960\) 0 0
\(961\) −20.3205 −0.655500
\(962\) 3.71281 0.119706
\(963\) 0 0
\(964\) −5.60770 −0.180612
\(965\) −16.5359 −0.532309
\(966\) 0 0
\(967\) 39.1769 1.25984 0.629922 0.776658i \(-0.283087\pi\)
0.629922 + 0.776658i \(0.283087\pi\)
\(968\) −19.7321 −0.634212
\(969\) 0 0
\(970\) 8.53590 0.274071
\(971\) −54.2487 −1.74092 −0.870462 0.492236i \(-0.836180\pi\)
−0.870462 + 0.492236i \(0.836180\pi\)
\(972\) 0 0
\(973\) 10.0000 0.320585
\(974\) 43.2679 1.38639
\(975\) 0 0
\(976\) 24.6410 0.788740
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) 20.7846 0.664279
\(980\) −0.464102 −0.0148252
\(981\) 0 0
\(982\) 33.9615 1.08376
\(983\) −58.7321 −1.87326 −0.936631 0.350318i \(-0.886073\pi\)
−0.936631 + 0.350318i \(0.886073\pi\)
\(984\) 0 0
\(985\) 17.3205 0.551877
\(986\) 6.00000 0.191079
\(987\) 0 0
\(988\) 5.85641 0.186317
\(989\) −4.39230 −0.139667
\(990\) 0 0
\(991\) −2.98076 −0.0946870 −0.0473435 0.998879i \(-0.515076\pi\)
−0.0473435 + 0.998879i \(0.515076\pi\)
\(992\) −16.9808 −0.539140
\(993\) 0 0
\(994\) 55.1769 1.75011
\(995\) −10.1962 −0.323240
\(996\) 0 0
\(997\) −2.39230 −0.0757651 −0.0378825 0.999282i \(-0.512061\pi\)
−0.0378825 + 0.999282i \(0.512061\pi\)
\(998\) −27.1244 −0.858606
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.a.g.1.2 2
3.2 odd 2 85.2.a.c.1.1 2
5.4 even 2 3825.2.a.v.1.1 2
12.11 even 2 1360.2.a.k.1.1 2
15.2 even 4 425.2.b.d.324.1 4
15.8 even 4 425.2.b.d.324.4 4
15.14 odd 2 425.2.a.e.1.2 2
21.20 even 2 4165.2.a.t.1.1 2
24.5 odd 2 5440.2.a.bb.1.1 2
24.11 even 2 5440.2.a.bl.1.2 2
51.38 odd 4 1445.2.d.e.866.3 4
51.47 odd 4 1445.2.d.e.866.4 4
51.50 odd 2 1445.2.a.g.1.1 2
60.59 even 2 6800.2.a.bg.1.2 2
255.254 odd 2 7225.2.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.c.1.1 2 3.2 odd 2
425.2.a.e.1.2 2 15.14 odd 2
425.2.b.d.324.1 4 15.2 even 4
425.2.b.d.324.4 4 15.8 even 4
765.2.a.g.1.2 2 1.1 even 1 trivial
1360.2.a.k.1.1 2 12.11 even 2
1445.2.a.g.1.1 2 51.50 odd 2
1445.2.d.e.866.3 4 51.38 odd 4
1445.2.d.e.866.4 4 51.47 odd 4
3825.2.a.v.1.1 2 5.4 even 2
4165.2.a.t.1.1 2 21.20 even 2
5440.2.a.bb.1.1 2 24.5 odd 2
5440.2.a.bl.1.2 2 24.11 even 2
6800.2.a.bg.1.2 2 60.59 even 2
7225.2.a.l.1.2 2 255.254 odd 2