Properties

Label 7623.2.a.f
Level 7623
Weight 2
Character orbit 7623.a
Self dual yes
Analytic conductor 60.870
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 7623 = 3^{2} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 7623.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(60.8699614608\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{4} + 2q^{5} - q^{7} + 3q^{8} + O(q^{10}) \) \( q - q^{2} - q^{4} + 2q^{5} - q^{7} + 3q^{8} - 2q^{10} - 6q^{13} + q^{14} - q^{16} + 2q^{17} - 4q^{19} - 2q^{20} - q^{25} + 6q^{26} + q^{28} - 2q^{29} + 8q^{31} - 5q^{32} - 2q^{34} - 2q^{35} + 6q^{37} + 4q^{38} + 6q^{40} + 10q^{41} + 4q^{43} + 8q^{47} + q^{49} + q^{50} + 6q^{52} - 6q^{53} - 3q^{56} + 2q^{58} - 4q^{59} + 10q^{61} - 8q^{62} + 7q^{64} - 12q^{65} - 12q^{67} - 2q^{68} + 2q^{70} - 2q^{73} - 6q^{74} + 4q^{76} - 16q^{79} - 2q^{80} - 10q^{82} + 4q^{83} + 4q^{85} - 4q^{86} - 18q^{89} + 6q^{91} - 8q^{94} - 8q^{95} + 2q^{97} - q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 −1.00000 2.00000 0 −1.00000 3.00000 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7623.2.a.f 1
3.b odd 2 1 2541.2.a.h 1
11.b odd 2 1 693.2.a.d 1
33.d even 2 1 231.2.a.a 1
77.b even 2 1 4851.2.a.p 1
132.d odd 2 1 3696.2.a.t 1
165.d even 2 1 5775.2.a.t 1
231.h odd 2 1 1617.2.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.2.a.a 1 33.d even 2 1
693.2.a.d 1 11.b odd 2 1
1617.2.a.e 1 231.h odd 2 1
2541.2.a.h 1 3.b odd 2 1
3696.2.a.t 1 132.d odd 2 1
4851.2.a.p 1 77.b even 2 1
5775.2.a.t 1 165.d even 2 1
7623.2.a.f 1 1.a even 1 1 trivial

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(1\)
\(11\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7623))\):

\( T_{2} + 1 \)
\( T_{5} - 2 \)
\( T_{13} + 6 \)