Properties

Label 7623.2.a.dc.1.4
Level 7623
Weight 2
Character 7623.1
Self dual yes
Analytic conductor 60.870
Analytic rank 0
Dimension 16
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 7623 = 3^{2} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 7623.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(60.8699614608\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 693)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.08213\)
Character \(\chi\) = 7623.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.08213 q^{2} +2.33525 q^{4} -1.33222 q^{5} +1.00000 q^{7} -0.698024 q^{8} +O(q^{10})\) \(q-2.08213 q^{2} +2.33525 q^{4} -1.33222 q^{5} +1.00000 q^{7} -0.698024 q^{8} +2.77386 q^{10} +5.74691 q^{13} -2.08213 q^{14} -3.21712 q^{16} -4.27240 q^{17} +0.162553 q^{19} -3.11107 q^{20} -1.12680 q^{23} -3.22518 q^{25} -11.9658 q^{26} +2.33525 q^{28} -9.83547 q^{29} +9.09480 q^{31} +8.09449 q^{32} +8.89567 q^{34} -1.33222 q^{35} -8.42718 q^{37} -0.338455 q^{38} +0.929924 q^{40} -4.50712 q^{41} -8.02855 q^{43} +2.34613 q^{46} +2.79374 q^{47} +1.00000 q^{49} +6.71523 q^{50} +13.4204 q^{52} +10.4883 q^{53} -0.698024 q^{56} +20.4787 q^{58} +13.6125 q^{59} +8.06786 q^{61} -18.9365 q^{62} -10.4195 q^{64} -7.65617 q^{65} +9.10333 q^{67} -9.97710 q^{68} +2.77386 q^{70} -1.01904 q^{71} -7.64824 q^{73} +17.5464 q^{74} +0.379601 q^{76} -0.00547271 q^{79} +4.28592 q^{80} +9.38438 q^{82} -2.83233 q^{83} +5.69179 q^{85} +16.7165 q^{86} -10.5254 q^{89} +5.74691 q^{91} -2.63135 q^{92} -5.81693 q^{94} -0.216557 q^{95} +12.1613 q^{97} -2.08213 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 20q^{4} + 16q^{7} + O(q^{10}) \) \( 16q + 20q^{4} + 16q^{7} - 6q^{10} + 32q^{16} + 10q^{19} + 44q^{25} + 20q^{28} + 30q^{31} + 12q^{34} + 38q^{37} - 68q^{40} + 16q^{43} + 80q^{46} + 16q^{49} + 2q^{52} + 18q^{58} - 28q^{61} + 34q^{64} + 52q^{67} - 6q^{70} - 14q^{73} - 14q^{76} + 54q^{79} + 64q^{82} + 30q^{85} - 60q^{94} + 108q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08213 −1.47228 −0.736142 0.676827i \(-0.763355\pi\)
−0.736142 + 0.676827i \(0.763355\pi\)
\(3\) 0 0
\(4\) 2.33525 1.16762
\(5\) −1.33222 −0.595789 −0.297894 0.954599i \(-0.596284\pi\)
−0.297894 + 0.954599i \(0.596284\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −0.698024 −0.246789
\(9\) 0 0
\(10\) 2.77386 0.877171
\(11\) 0 0
\(12\) 0 0
\(13\) 5.74691 1.59391 0.796953 0.604041i \(-0.206444\pi\)
0.796953 + 0.604041i \(0.206444\pi\)
\(14\) −2.08213 −0.556471
\(15\) 0 0
\(16\) −3.21712 −0.804280
\(17\) −4.27240 −1.03621 −0.518105 0.855317i \(-0.673362\pi\)
−0.518105 + 0.855317i \(0.673362\pi\)
\(18\) 0 0
\(19\) 0.162553 0.0372922 0.0186461 0.999826i \(-0.494064\pi\)
0.0186461 + 0.999826i \(0.494064\pi\)
\(20\) −3.11107 −0.695657
\(21\) 0 0
\(22\) 0 0
\(23\) −1.12680 −0.234954 −0.117477 0.993076i \(-0.537481\pi\)
−0.117477 + 0.993076i \(0.537481\pi\)
\(24\) 0 0
\(25\) −3.22518 −0.645036
\(26\) −11.9658 −2.34668
\(27\) 0 0
\(28\) 2.33525 0.441320
\(29\) −9.83547 −1.82640 −0.913201 0.407510i \(-0.866397\pi\)
−0.913201 + 0.407510i \(0.866397\pi\)
\(30\) 0 0
\(31\) 9.09480 1.63347 0.816737 0.577009i \(-0.195780\pi\)
0.816737 + 0.577009i \(0.195780\pi\)
\(32\) 8.09449 1.43092
\(33\) 0 0
\(34\) 8.89567 1.52559
\(35\) −1.33222 −0.225187
\(36\) 0 0
\(37\) −8.42718 −1.38542 −0.692710 0.721217i \(-0.743583\pi\)
−0.692710 + 0.721217i \(0.743583\pi\)
\(38\) −0.338455 −0.0549047
\(39\) 0 0
\(40\) 0.929924 0.147034
\(41\) −4.50712 −0.703894 −0.351947 0.936020i \(-0.614480\pi\)
−0.351947 + 0.936020i \(0.614480\pi\)
\(42\) 0 0
\(43\) −8.02855 −1.22434 −0.612172 0.790725i \(-0.709704\pi\)
−0.612172 + 0.790725i \(0.709704\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.34613 0.345919
\(47\) 2.79374 0.407510 0.203755 0.979022i \(-0.434685\pi\)
0.203755 + 0.979022i \(0.434685\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 6.71523 0.949677
\(51\) 0 0
\(52\) 13.4204 1.86108
\(53\) 10.4883 1.44067 0.720336 0.693625i \(-0.243987\pi\)
0.720336 + 0.693625i \(0.243987\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.698024 −0.0932774
\(57\) 0 0
\(58\) 20.4787 2.68898
\(59\) 13.6125 1.77220 0.886099 0.463497i \(-0.153405\pi\)
0.886099 + 0.463497i \(0.153405\pi\)
\(60\) 0 0
\(61\) 8.06786 1.03298 0.516492 0.856292i \(-0.327238\pi\)
0.516492 + 0.856292i \(0.327238\pi\)
\(62\) −18.9365 −2.40494
\(63\) 0 0
\(64\) −10.4195 −1.30244
\(65\) −7.65617 −0.949631
\(66\) 0 0
\(67\) 9.10333 1.11215 0.556074 0.831133i \(-0.312307\pi\)
0.556074 + 0.831133i \(0.312307\pi\)
\(68\) −9.97710 −1.20990
\(69\) 0 0
\(70\) 2.77386 0.331539
\(71\) −1.01904 −0.120938 −0.0604689 0.998170i \(-0.519260\pi\)
−0.0604689 + 0.998170i \(0.519260\pi\)
\(72\) 0 0
\(73\) −7.64824 −0.895159 −0.447579 0.894244i \(-0.647714\pi\)
−0.447579 + 0.894244i \(0.647714\pi\)
\(74\) 17.5464 2.03973
\(75\) 0 0
\(76\) 0.379601 0.0435432
\(77\) 0 0
\(78\) 0 0
\(79\) −0.00547271 −0.000615728 0 −0.000307864 1.00000i \(-0.500098\pi\)
−0.000307864 1.00000i \(0.500098\pi\)
\(80\) 4.28592 0.479181
\(81\) 0 0
\(82\) 9.38438 1.03633
\(83\) −2.83233 −0.310888 −0.155444 0.987845i \(-0.549681\pi\)
−0.155444 + 0.987845i \(0.549681\pi\)
\(84\) 0 0
\(85\) 5.69179 0.617362
\(86\) 16.7165 1.80258
\(87\) 0 0
\(88\) 0 0
\(89\) −10.5254 −1.11569 −0.557845 0.829945i \(-0.688372\pi\)
−0.557845 + 0.829945i \(0.688372\pi\)
\(90\) 0 0
\(91\) 5.74691 0.602440
\(92\) −2.63135 −0.274337
\(93\) 0 0
\(94\) −5.81693 −0.599970
\(95\) −0.216557 −0.0222182
\(96\) 0 0
\(97\) 12.1613 1.23479 0.617396 0.786652i \(-0.288188\pi\)
0.617396 + 0.786652i \(0.288188\pi\)
\(98\) −2.08213 −0.210326
\(99\) 0 0
\(100\) −7.53159 −0.753159
\(101\) −1.52188 −0.151433 −0.0757164 0.997129i \(-0.524124\pi\)
−0.0757164 + 0.997129i \(0.524124\pi\)
\(102\) 0 0
\(103\) 15.4665 1.52396 0.761979 0.647602i \(-0.224228\pi\)
0.761979 + 0.647602i \(0.224228\pi\)
\(104\) −4.01148 −0.393358
\(105\) 0 0
\(106\) −21.8379 −2.12108
\(107\) 8.25043 0.797599 0.398799 0.917038i \(-0.369427\pi\)
0.398799 + 0.917038i \(0.369427\pi\)
\(108\) 0 0
\(109\) 0.305943 0.0293040 0.0146520 0.999893i \(-0.495336\pi\)
0.0146520 + 0.999893i \(0.495336\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.21712 −0.303989
\(113\) −10.1503 −0.954857 −0.477428 0.878671i \(-0.658431\pi\)
−0.477428 + 0.878671i \(0.658431\pi\)
\(114\) 0 0
\(115\) 1.50115 0.139983
\(116\) −22.9682 −2.13255
\(117\) 0 0
\(118\) −28.3429 −2.60918
\(119\) −4.27240 −0.391650
\(120\) 0 0
\(121\) 0 0
\(122\) −16.7983 −1.52085
\(123\) 0 0
\(124\) 21.2386 1.90728
\(125\) 10.9578 0.980094
\(126\) 0 0
\(127\) 3.80774 0.337882 0.168941 0.985626i \(-0.445965\pi\)
0.168941 + 0.985626i \(0.445965\pi\)
\(128\) 5.50574 0.486643
\(129\) 0 0
\(130\) 15.9411 1.39813
\(131\) 14.6612 1.28096 0.640479 0.767976i \(-0.278736\pi\)
0.640479 + 0.767976i \(0.278736\pi\)
\(132\) 0 0
\(133\) 0.162553 0.0140951
\(134\) −18.9543 −1.63740
\(135\) 0 0
\(136\) 2.98224 0.255725
\(137\) −16.8306 −1.43794 −0.718968 0.695043i \(-0.755385\pi\)
−0.718968 + 0.695043i \(0.755385\pi\)
\(138\) 0 0
\(139\) −7.79467 −0.661135 −0.330568 0.943782i \(-0.607240\pi\)
−0.330568 + 0.943782i \(0.607240\pi\)
\(140\) −3.11107 −0.262933
\(141\) 0 0
\(142\) 2.12177 0.178055
\(143\) 0 0
\(144\) 0 0
\(145\) 13.1031 1.08815
\(146\) 15.9246 1.31793
\(147\) 0 0
\(148\) −19.6795 −1.61765
\(149\) −9.71989 −0.796284 −0.398142 0.917324i \(-0.630345\pi\)
−0.398142 + 0.917324i \(0.630345\pi\)
\(150\) 0 0
\(151\) 10.1015 0.822051 0.411026 0.911624i \(-0.365171\pi\)
0.411026 + 0.911624i \(0.365171\pi\)
\(152\) −0.113466 −0.00920328
\(153\) 0 0
\(154\) 0 0
\(155\) −12.1163 −0.973206
\(156\) 0 0
\(157\) −4.94915 −0.394985 −0.197493 0.980304i \(-0.563280\pi\)
−0.197493 + 0.980304i \(0.563280\pi\)
\(158\) 0.0113949 0.000906526 0
\(159\) 0 0
\(160\) −10.7837 −0.852524
\(161\) −1.12680 −0.0888041
\(162\) 0 0
\(163\) 6.73297 0.527367 0.263683 0.964609i \(-0.415063\pi\)
0.263683 + 0.964609i \(0.415063\pi\)
\(164\) −10.5252 −0.821882
\(165\) 0 0
\(166\) 5.89726 0.457716
\(167\) −13.9874 −1.08238 −0.541188 0.840902i \(-0.682025\pi\)
−0.541188 + 0.840902i \(0.682025\pi\)
\(168\) 0 0
\(169\) 20.0270 1.54054
\(170\) −11.8510 −0.908932
\(171\) 0 0
\(172\) −18.7486 −1.42957
\(173\) 3.50877 0.266767 0.133383 0.991065i \(-0.457416\pi\)
0.133383 + 0.991065i \(0.457416\pi\)
\(174\) 0 0
\(175\) −3.22518 −0.243801
\(176\) 0 0
\(177\) 0 0
\(178\) 21.9152 1.64261
\(179\) −2.22735 −0.166480 −0.0832399 0.996530i \(-0.526527\pi\)
−0.0832399 + 0.996530i \(0.526527\pi\)
\(180\) 0 0
\(181\) 1.11432 0.0828265 0.0414132 0.999142i \(-0.486814\pi\)
0.0414132 + 0.999142i \(0.486814\pi\)
\(182\) −11.9658 −0.886963
\(183\) 0 0
\(184\) 0.786532 0.0579839
\(185\) 11.2269 0.825417
\(186\) 0 0
\(187\) 0 0
\(188\) 6.52408 0.475818
\(189\) 0 0
\(190\) 0.450898 0.0327116
\(191\) −10.2314 −0.740320 −0.370160 0.928968i \(-0.620697\pi\)
−0.370160 + 0.928968i \(0.620697\pi\)
\(192\) 0 0
\(193\) −17.9336 −1.29089 −0.645443 0.763808i \(-0.723327\pi\)
−0.645443 + 0.763808i \(0.723327\pi\)
\(194\) −25.3213 −1.81797
\(195\) 0 0
\(196\) 2.33525 0.166803
\(197\) −4.30284 −0.306564 −0.153282 0.988182i \(-0.548984\pi\)
−0.153282 + 0.988182i \(0.548984\pi\)
\(198\) 0 0
\(199\) 22.0560 1.56351 0.781753 0.623588i \(-0.214326\pi\)
0.781753 + 0.623588i \(0.214326\pi\)
\(200\) 2.25125 0.159188
\(201\) 0 0
\(202\) 3.16875 0.222952
\(203\) −9.83547 −0.690315
\(204\) 0 0
\(205\) 6.00449 0.419372
\(206\) −32.2031 −2.24370
\(207\) 0 0
\(208\) −18.4885 −1.28195
\(209\) 0 0
\(210\) 0 0
\(211\) −14.8525 −1.02249 −0.511244 0.859435i \(-0.670815\pi\)
−0.511244 + 0.859435i \(0.670815\pi\)
\(212\) 24.4927 1.68216
\(213\) 0 0
\(214\) −17.1784 −1.17429
\(215\) 10.6958 0.729450
\(216\) 0 0
\(217\) 9.09480 0.617395
\(218\) −0.637011 −0.0431438
\(219\) 0 0
\(220\) 0 0
\(221\) −24.5531 −1.65162
\(222\) 0 0
\(223\) 5.59782 0.374857 0.187429 0.982278i \(-0.439985\pi\)
0.187429 + 0.982278i \(0.439985\pi\)
\(224\) 8.09449 0.540836
\(225\) 0 0
\(226\) 21.1341 1.40582
\(227\) 7.52880 0.499704 0.249852 0.968284i \(-0.419618\pi\)
0.249852 + 0.968284i \(0.419618\pi\)
\(228\) 0 0
\(229\) −27.2330 −1.79961 −0.899805 0.436292i \(-0.856292\pi\)
−0.899805 + 0.436292i \(0.856292\pi\)
\(230\) −3.12558 −0.206094
\(231\) 0 0
\(232\) 6.86539 0.450735
\(233\) 5.48986 0.359653 0.179826 0.983698i \(-0.442446\pi\)
0.179826 + 0.983698i \(0.442446\pi\)
\(234\) 0 0
\(235\) −3.72189 −0.242790
\(236\) 31.7885 2.06926
\(237\) 0 0
\(238\) 8.89567 0.576621
\(239\) 24.8413 1.60685 0.803426 0.595405i \(-0.203008\pi\)
0.803426 + 0.595405i \(0.203008\pi\)
\(240\) 0 0
\(241\) 17.3238 1.11592 0.557961 0.829867i \(-0.311584\pi\)
0.557961 + 0.829867i \(0.311584\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 18.8404 1.20613
\(245\) −1.33222 −0.0851127
\(246\) 0 0
\(247\) 0.934176 0.0594402
\(248\) −6.34839 −0.403123
\(249\) 0 0
\(250\) −22.8155 −1.44298
\(251\) 24.6655 1.55687 0.778436 0.627724i \(-0.216013\pi\)
0.778436 + 0.627724i \(0.216013\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −7.92819 −0.497459
\(255\) 0 0
\(256\) 9.37538 0.585961
\(257\) −3.87897 −0.241964 −0.120982 0.992655i \(-0.538604\pi\)
−0.120982 + 0.992655i \(0.538604\pi\)
\(258\) 0 0
\(259\) −8.42718 −0.523639
\(260\) −17.8790 −1.10881
\(261\) 0 0
\(262\) −30.5265 −1.88593
\(263\) 5.19075 0.320075 0.160038 0.987111i \(-0.448838\pi\)
0.160038 + 0.987111i \(0.448838\pi\)
\(264\) 0 0
\(265\) −13.9727 −0.858336
\(266\) −0.338455 −0.0207520
\(267\) 0 0
\(268\) 21.2585 1.29857
\(269\) 16.8397 1.02673 0.513366 0.858170i \(-0.328398\pi\)
0.513366 + 0.858170i \(0.328398\pi\)
\(270\) 0 0
\(271\) −14.0214 −0.851739 −0.425870 0.904785i \(-0.640032\pi\)
−0.425870 + 0.904785i \(0.640032\pi\)
\(272\) 13.7448 0.833402
\(273\) 0 0
\(274\) 35.0434 2.11705
\(275\) 0 0
\(276\) 0 0
\(277\) 0.945328 0.0567992 0.0283996 0.999597i \(-0.490959\pi\)
0.0283996 + 0.999597i \(0.490959\pi\)
\(278\) 16.2295 0.973380
\(279\) 0 0
\(280\) 0.929924 0.0555736
\(281\) −4.03539 −0.240731 −0.120366 0.992730i \(-0.538407\pi\)
−0.120366 + 0.992730i \(0.538407\pi\)
\(282\) 0 0
\(283\) 4.80601 0.285688 0.142844 0.989745i \(-0.454375\pi\)
0.142844 + 0.989745i \(0.454375\pi\)
\(284\) −2.37971 −0.141210
\(285\) 0 0
\(286\) 0 0
\(287\) −4.50712 −0.266047
\(288\) 0 0
\(289\) 1.25340 0.0737292
\(290\) −27.2822 −1.60207
\(291\) 0 0
\(292\) −17.8605 −1.04521
\(293\) 1.04668 0.0611474 0.0305737 0.999533i \(-0.490267\pi\)
0.0305737 + 0.999533i \(0.490267\pi\)
\(294\) 0 0
\(295\) −18.1349 −1.05585
\(296\) 5.88237 0.341906
\(297\) 0 0
\(298\) 20.2380 1.17236
\(299\) −6.47561 −0.374494
\(300\) 0 0
\(301\) −8.02855 −0.462758
\(302\) −21.0327 −1.21029
\(303\) 0 0
\(304\) −0.522952 −0.0299933
\(305\) −10.7482 −0.615440
\(306\) 0 0
\(307\) −26.1929 −1.49491 −0.747455 0.664313i \(-0.768724\pi\)
−0.747455 + 0.664313i \(0.768724\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 25.2277 1.43284
\(311\) 22.0318 1.24931 0.624655 0.780901i \(-0.285240\pi\)
0.624655 + 0.780901i \(0.285240\pi\)
\(312\) 0 0
\(313\) 30.4119 1.71898 0.859491 0.511151i \(-0.170781\pi\)
0.859491 + 0.511151i \(0.170781\pi\)
\(314\) 10.3047 0.581531
\(315\) 0 0
\(316\) −0.0127801 −0.000718938 0
\(317\) 19.0776 1.07151 0.535753 0.844374i \(-0.320028\pi\)
0.535753 + 0.844374i \(0.320028\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 13.8811 0.775978
\(321\) 0 0
\(322\) 2.34613 0.130745
\(323\) −0.694490 −0.0386425
\(324\) 0 0
\(325\) −18.5348 −1.02813
\(326\) −14.0189 −0.776434
\(327\) 0 0
\(328\) 3.14608 0.173713
\(329\) 2.79374 0.154024
\(330\) 0 0
\(331\) 3.61239 0.198555 0.0992774 0.995060i \(-0.468347\pi\)
0.0992774 + 0.995060i \(0.468347\pi\)
\(332\) −6.61418 −0.363000
\(333\) 0 0
\(334\) 29.1235 1.59357
\(335\) −12.1277 −0.662605
\(336\) 0 0
\(337\) −2.67839 −0.145901 −0.0729507 0.997336i \(-0.523242\pi\)
−0.0729507 + 0.997336i \(0.523242\pi\)
\(338\) −41.6987 −2.26811
\(339\) 0 0
\(340\) 13.2917 0.720846
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 5.60412 0.302154
\(345\) 0 0
\(346\) −7.30570 −0.392757
\(347\) 18.4546 0.990696 0.495348 0.868695i \(-0.335041\pi\)
0.495348 + 0.868695i \(0.335041\pi\)
\(348\) 0 0
\(349\) 20.3015 1.08672 0.543358 0.839501i \(-0.317153\pi\)
0.543358 + 0.839501i \(0.317153\pi\)
\(350\) 6.71523 0.358944
\(351\) 0 0
\(352\) 0 0
\(353\) 12.7771 0.680054 0.340027 0.940416i \(-0.389564\pi\)
0.340027 + 0.940416i \(0.389564\pi\)
\(354\) 0 0
\(355\) 1.35759 0.0720533
\(356\) −24.5794 −1.30270
\(357\) 0 0
\(358\) 4.63762 0.245106
\(359\) −10.2976 −0.543486 −0.271743 0.962370i \(-0.587600\pi\)
−0.271743 + 0.962370i \(0.587600\pi\)
\(360\) 0 0
\(361\) −18.9736 −0.998609
\(362\) −2.32015 −0.121944
\(363\) 0 0
\(364\) 13.4204 0.703423
\(365\) 10.1892 0.533325
\(366\) 0 0
\(367\) 2.65025 0.138342 0.0691710 0.997605i \(-0.477965\pi\)
0.0691710 + 0.997605i \(0.477965\pi\)
\(368\) 3.62504 0.188968
\(369\) 0 0
\(370\) −23.3758 −1.21525
\(371\) 10.4883 0.544523
\(372\) 0 0
\(373\) 32.9030 1.70365 0.851827 0.523824i \(-0.175495\pi\)
0.851827 + 0.523824i \(0.175495\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.95010 −0.100569
\(377\) −56.5236 −2.91111
\(378\) 0 0
\(379\) −22.2324 −1.14200 −0.571000 0.820950i \(-0.693444\pi\)
−0.571000 + 0.820950i \(0.693444\pi\)
\(380\) −0.505713 −0.0259425
\(381\) 0 0
\(382\) 21.3031 1.08996
\(383\) −25.1289 −1.28402 −0.642012 0.766694i \(-0.721900\pi\)
−0.642012 + 0.766694i \(0.721900\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 37.3399 1.90055
\(387\) 0 0
\(388\) 28.3996 1.44177
\(389\) 23.0628 1.16933 0.584665 0.811275i \(-0.301226\pi\)
0.584665 + 0.811275i \(0.301226\pi\)
\(390\) 0 0
\(391\) 4.81413 0.243461
\(392\) −0.698024 −0.0352555
\(393\) 0 0
\(394\) 8.95905 0.451350
\(395\) 0.00729087 0.000366844 0
\(396\) 0 0
\(397\) −3.78504 −0.189966 −0.0949828 0.995479i \(-0.530280\pi\)
−0.0949828 + 0.995479i \(0.530280\pi\)
\(398\) −45.9233 −2.30193
\(399\) 0 0
\(400\) 10.3758 0.518789
\(401\) 39.0596 1.95054 0.975271 0.221011i \(-0.0709356\pi\)
0.975271 + 0.221011i \(0.0709356\pi\)
\(402\) 0 0
\(403\) 52.2670 2.60361
\(404\) −3.55396 −0.176816
\(405\) 0 0
\(406\) 20.4787 1.01634
\(407\) 0 0
\(408\) 0 0
\(409\) −29.4034 −1.45390 −0.726952 0.686689i \(-0.759064\pi\)
−0.726952 + 0.686689i \(0.759064\pi\)
\(410\) −12.5021 −0.617435
\(411\) 0 0
\(412\) 36.1180 1.77941
\(413\) 13.6125 0.669828
\(414\) 0 0
\(415\) 3.77329 0.185224
\(416\) 46.5183 2.28075
\(417\) 0 0
\(418\) 0 0
\(419\) −14.5510 −0.710863 −0.355431 0.934702i \(-0.615666\pi\)
−0.355431 + 0.934702i \(0.615666\pi\)
\(420\) 0 0
\(421\) 17.7574 0.865443 0.432722 0.901528i \(-0.357553\pi\)
0.432722 + 0.901528i \(0.357553\pi\)
\(422\) 30.9248 1.50539
\(423\) 0 0
\(424\) −7.32105 −0.355542
\(425\) 13.7793 0.668392
\(426\) 0 0
\(427\) 8.06786 0.390431
\(428\) 19.2668 0.931295
\(429\) 0 0
\(430\) −22.2701 −1.07396
\(431\) 17.8382 0.859234 0.429617 0.903011i \(-0.358649\pi\)
0.429617 + 0.903011i \(0.358649\pi\)
\(432\) 0 0
\(433\) 12.4405 0.597851 0.298925 0.954276i \(-0.403372\pi\)
0.298925 + 0.954276i \(0.403372\pi\)
\(434\) −18.9365 −0.908982
\(435\) 0 0
\(436\) 0.714451 0.0342160
\(437\) −0.183164 −0.00876193
\(438\) 0 0
\(439\) 16.3740 0.781489 0.390744 0.920499i \(-0.372218\pi\)
0.390744 + 0.920499i \(0.372218\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 51.1226 2.43165
\(443\) −2.22725 −0.105820 −0.0529100 0.998599i \(-0.516850\pi\)
−0.0529100 + 0.998599i \(0.516850\pi\)
\(444\) 0 0
\(445\) 14.0222 0.664715
\(446\) −11.6554 −0.551897
\(447\) 0 0
\(448\) −10.4195 −0.492276
\(449\) −31.9494 −1.50779 −0.753893 0.656997i \(-0.771826\pi\)
−0.753893 + 0.656997i \(0.771826\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −23.7034 −1.11491
\(453\) 0 0
\(454\) −15.6759 −0.735707
\(455\) −7.65617 −0.358927
\(456\) 0 0
\(457\) −22.1342 −1.03539 −0.517697 0.855564i \(-0.673210\pi\)
−0.517697 + 0.855564i \(0.673210\pi\)
\(458\) 56.7026 2.64954
\(459\) 0 0
\(460\) 3.50555 0.163447
\(461\) 14.9408 0.695865 0.347932 0.937520i \(-0.386884\pi\)
0.347932 + 0.937520i \(0.386884\pi\)
\(462\) 0 0
\(463\) 5.02953 0.233742 0.116871 0.993147i \(-0.462714\pi\)
0.116871 + 0.993147i \(0.462714\pi\)
\(464\) 31.6419 1.46894
\(465\) 0 0
\(466\) −11.4306 −0.529512
\(467\) 32.1377 1.48716 0.743579 0.668649i \(-0.233127\pi\)
0.743579 + 0.668649i \(0.233127\pi\)
\(468\) 0 0
\(469\) 9.10333 0.420353
\(470\) 7.74945 0.357455
\(471\) 0 0
\(472\) −9.50185 −0.437358
\(473\) 0 0
\(474\) 0 0
\(475\) −0.524262 −0.0240548
\(476\) −9.97710 −0.457300
\(477\) 0 0
\(478\) −51.7228 −2.36574
\(479\) 13.1491 0.600798 0.300399 0.953814i \(-0.402880\pi\)
0.300399 + 0.953814i \(0.402880\pi\)
\(480\) 0 0
\(481\) −48.4302 −2.20823
\(482\) −36.0703 −1.64296
\(483\) 0 0
\(484\) 0 0
\(485\) −16.2016 −0.735675
\(486\) 0 0
\(487\) 1.05225 0.0476821 0.0238411 0.999716i \(-0.492410\pi\)
0.0238411 + 0.999716i \(0.492410\pi\)
\(488\) −5.63156 −0.254929
\(489\) 0 0
\(490\) 2.77386 0.125310
\(491\) −27.3208 −1.23297 −0.616485 0.787367i \(-0.711444\pi\)
−0.616485 + 0.787367i \(0.711444\pi\)
\(492\) 0 0
\(493\) 42.0211 1.89253
\(494\) −1.94507 −0.0875129
\(495\) 0 0
\(496\) −29.2591 −1.31377
\(497\) −1.01904 −0.0457102
\(498\) 0 0
\(499\) −23.4585 −1.05015 −0.525073 0.851057i \(-0.675962\pi\)
−0.525073 + 0.851057i \(0.675962\pi\)
\(500\) 25.5891 1.14438
\(501\) 0 0
\(502\) −51.3567 −2.29216
\(503\) 11.4795 0.511846 0.255923 0.966697i \(-0.417621\pi\)
0.255923 + 0.966697i \(0.417621\pi\)
\(504\) 0 0
\(505\) 2.02749 0.0902219
\(506\) 0 0
\(507\) 0 0
\(508\) 8.89201 0.394519
\(509\) −1.40656 −0.0623446 −0.0311723 0.999514i \(-0.509924\pi\)
−0.0311723 + 0.999514i \(0.509924\pi\)
\(510\) 0 0
\(511\) −7.64824 −0.338338
\(512\) −30.5322 −1.34934
\(513\) 0 0
\(514\) 8.07651 0.356239
\(515\) −20.6048 −0.907956
\(516\) 0 0
\(517\) 0 0
\(518\) 17.5464 0.770946
\(519\) 0 0
\(520\) 5.34419 0.234358
\(521\) 18.5352 0.812041 0.406020 0.913864i \(-0.366916\pi\)
0.406020 + 0.913864i \(0.366916\pi\)
\(522\) 0 0
\(523\) −36.4670 −1.59459 −0.797295 0.603589i \(-0.793737\pi\)
−0.797295 + 0.603589i \(0.793737\pi\)
\(524\) 34.2376 1.49568
\(525\) 0 0
\(526\) −10.8078 −0.471242
\(527\) −38.8566 −1.69262
\(528\) 0 0
\(529\) −21.7303 −0.944797
\(530\) 29.0929 1.26372
\(531\) 0 0
\(532\) 0.379601 0.0164578
\(533\) −25.9020 −1.12194
\(534\) 0 0
\(535\) −10.9914 −0.475200
\(536\) −6.35434 −0.274466
\(537\) 0 0
\(538\) −35.0623 −1.51164
\(539\) 0 0
\(540\) 0 0
\(541\) 22.1641 0.952910 0.476455 0.879199i \(-0.341921\pi\)
0.476455 + 0.879199i \(0.341921\pi\)
\(542\) 29.1943 1.25400
\(543\) 0 0
\(544\) −34.5829 −1.48273
\(545\) −0.407584 −0.0174590
\(546\) 0 0
\(547\) −40.5974 −1.73582 −0.867909 0.496723i \(-0.834537\pi\)
−0.867909 + 0.496723i \(0.834537\pi\)
\(548\) −39.3036 −1.67897
\(549\) 0 0
\(550\) 0 0
\(551\) −1.59878 −0.0681105
\(552\) 0 0
\(553\) −0.00547271 −0.000232723 0
\(554\) −1.96829 −0.0836246
\(555\) 0 0
\(556\) −18.2025 −0.771957
\(557\) −39.9780 −1.69392 −0.846961 0.531655i \(-0.821570\pi\)
−0.846961 + 0.531655i \(0.821570\pi\)
\(558\) 0 0
\(559\) −46.1394 −1.95149
\(560\) 4.28592 0.181113
\(561\) 0 0
\(562\) 8.40219 0.354425
\(563\) 28.8313 1.21509 0.607546 0.794284i \(-0.292154\pi\)
0.607546 + 0.794284i \(0.292154\pi\)
\(564\) 0 0
\(565\) 13.5224 0.568893
\(566\) −10.0067 −0.420613
\(567\) 0 0
\(568\) 0.711314 0.0298461
\(569\) 18.0183 0.755365 0.377683 0.925935i \(-0.376721\pi\)
0.377683 + 0.925935i \(0.376721\pi\)
\(570\) 0 0
\(571\) 18.2208 0.762515 0.381258 0.924469i \(-0.375491\pi\)
0.381258 + 0.924469i \(0.375491\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 9.38438 0.391697
\(575\) 3.63413 0.151554
\(576\) 0 0
\(577\) 10.5299 0.438364 0.219182 0.975684i \(-0.429661\pi\)
0.219182 + 0.975684i \(0.429661\pi\)
\(578\) −2.60973 −0.108550
\(579\) 0 0
\(580\) 30.5988 1.27055
\(581\) −2.83233 −0.117505
\(582\) 0 0
\(583\) 0 0
\(584\) 5.33865 0.220915
\(585\) 0 0
\(586\) −2.17931 −0.0900264
\(587\) 2.45140 0.101180 0.0505900 0.998720i \(-0.483890\pi\)
0.0505900 + 0.998720i \(0.483890\pi\)
\(588\) 0 0
\(589\) 1.47839 0.0609158
\(590\) 37.7591 1.55452
\(591\) 0 0
\(592\) 27.1112 1.11426
\(593\) −27.7941 −1.14137 −0.570684 0.821170i \(-0.693322\pi\)
−0.570684 + 0.821170i \(0.693322\pi\)
\(594\) 0 0
\(595\) 5.69179 0.233341
\(596\) −22.6983 −0.929760
\(597\) 0 0
\(598\) 13.4830 0.551362
\(599\) −0.747037 −0.0305231 −0.0152616 0.999884i \(-0.504858\pi\)
−0.0152616 + 0.999884i \(0.504858\pi\)
\(600\) 0 0
\(601\) −15.0794 −0.615103 −0.307551 0.951531i \(-0.599510\pi\)
−0.307551 + 0.951531i \(0.599510\pi\)
\(602\) 16.7165 0.681312
\(603\) 0 0
\(604\) 23.5896 0.959846
\(605\) 0 0
\(606\) 0 0
\(607\) −4.16609 −0.169096 −0.0845481 0.996419i \(-0.526945\pi\)
−0.0845481 + 0.996419i \(0.526945\pi\)
\(608\) 1.31578 0.0533620
\(609\) 0 0
\(610\) 22.3791 0.906102
\(611\) 16.0554 0.649532
\(612\) 0 0
\(613\) 36.7033 1.48243 0.741216 0.671266i \(-0.234249\pi\)
0.741216 + 0.671266i \(0.234249\pi\)
\(614\) 54.5370 2.20093
\(615\) 0 0
\(616\) 0 0
\(617\) 22.8780 0.921035 0.460518 0.887651i \(-0.347664\pi\)
0.460518 + 0.887651i \(0.347664\pi\)
\(618\) 0 0
\(619\) −2.59442 −0.104279 −0.0521393 0.998640i \(-0.516604\pi\)
−0.0521393 + 0.998640i \(0.516604\pi\)
\(620\) −28.2946 −1.13634
\(621\) 0 0
\(622\) −45.8730 −1.83934
\(623\) −10.5254 −0.421691
\(624\) 0 0
\(625\) 1.52768 0.0611071
\(626\) −63.3214 −2.53083
\(627\) 0 0
\(628\) −11.5575 −0.461194
\(629\) 36.0043 1.43558
\(630\) 0 0
\(631\) 29.7938 1.18607 0.593036 0.805176i \(-0.297929\pi\)
0.593036 + 0.805176i \(0.297929\pi\)
\(632\) 0.00382008 0.000151955 0
\(633\) 0 0
\(634\) −39.7220 −1.57756
\(635\) −5.07276 −0.201306
\(636\) 0 0
\(637\) 5.74691 0.227701
\(638\) 0 0
\(639\) 0 0
\(640\) −7.33488 −0.289937
\(641\) −32.9695 −1.30222 −0.651108 0.758985i \(-0.725695\pi\)
−0.651108 + 0.758985i \(0.725695\pi\)
\(642\) 0 0
\(643\) 20.9257 0.825229 0.412614 0.910906i \(-0.364616\pi\)
0.412614 + 0.910906i \(0.364616\pi\)
\(644\) −2.63135 −0.103690
\(645\) 0 0
\(646\) 1.44602 0.0568927
\(647\) 12.9654 0.509722 0.254861 0.966978i \(-0.417970\pi\)
0.254861 + 0.966978i \(0.417970\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 38.5918 1.51370
\(651\) 0 0
\(652\) 15.7231 0.615765
\(653\) −4.59805 −0.179936 −0.0899678 0.995945i \(-0.528676\pi\)
−0.0899678 + 0.995945i \(0.528676\pi\)
\(654\) 0 0
\(655\) −19.5320 −0.763180
\(656\) 14.4999 0.566127
\(657\) 0 0
\(658\) −5.81693 −0.226767
\(659\) 27.8639 1.08542 0.542712 0.839919i \(-0.317398\pi\)
0.542712 + 0.839919i \(0.317398\pi\)
\(660\) 0 0
\(661\) 36.2151 1.40861 0.704303 0.709900i \(-0.251260\pi\)
0.704303 + 0.709900i \(0.251260\pi\)
\(662\) −7.52144 −0.292329
\(663\) 0 0
\(664\) 1.97703 0.0767237
\(665\) −0.216557 −0.00839771
\(666\) 0 0
\(667\) 11.0826 0.429120
\(668\) −32.6640 −1.26381
\(669\) 0 0
\(670\) 25.2513 0.975544
\(671\) 0 0
\(672\) 0 0
\(673\) −6.97277 −0.268781 −0.134390 0.990928i \(-0.542908\pi\)
−0.134390 + 0.990928i \(0.542908\pi\)
\(674\) 5.57675 0.214808
\(675\) 0 0
\(676\) 46.7679 1.79876
\(677\) 21.9071 0.841958 0.420979 0.907070i \(-0.361687\pi\)
0.420979 + 0.907070i \(0.361687\pi\)
\(678\) 0 0
\(679\) 12.1613 0.466708
\(680\) −3.97301 −0.152358
\(681\) 0 0
\(682\) 0 0
\(683\) 48.9585 1.87334 0.936672 0.350208i \(-0.113889\pi\)
0.936672 + 0.350208i \(0.113889\pi\)
\(684\) 0 0
\(685\) 22.4221 0.856706
\(686\) −2.08213 −0.0794959
\(687\) 0 0
\(688\) 25.8288 0.984714
\(689\) 60.2751 2.29630
\(690\) 0 0
\(691\) −47.8751 −1.82126 −0.910628 0.413227i \(-0.864402\pi\)
−0.910628 + 0.413227i \(0.864402\pi\)
\(692\) 8.19384 0.311483
\(693\) 0 0
\(694\) −38.4248 −1.45859
\(695\) 10.3842 0.393897
\(696\) 0 0
\(697\) 19.2562 0.729381
\(698\) −42.2703 −1.59995
\(699\) 0 0
\(700\) −7.53159 −0.284667
\(701\) −6.95807 −0.262803 −0.131401 0.991329i \(-0.541948\pi\)
−0.131401 + 0.991329i \(0.541948\pi\)
\(702\) 0 0
\(703\) −1.36986 −0.0516653
\(704\) 0 0
\(705\) 0 0
\(706\) −26.6034 −1.00123
\(707\) −1.52188 −0.0572362
\(708\) 0 0
\(709\) −20.3838 −0.765531 −0.382766 0.923845i \(-0.625028\pi\)
−0.382766 + 0.923845i \(0.625028\pi\)
\(710\) −2.82667 −0.106083
\(711\) 0 0
\(712\) 7.34698 0.275340
\(713\) −10.2480 −0.383791
\(714\) 0 0
\(715\) 0 0
\(716\) −5.20141 −0.194386
\(717\) 0 0
\(718\) 21.4409 0.800166
\(719\) 36.9536 1.37814 0.689068 0.724697i \(-0.258020\pi\)
0.689068 + 0.724697i \(0.258020\pi\)
\(720\) 0 0
\(721\) 15.4665 0.576002
\(722\) 39.5054 1.47024
\(723\) 0 0
\(724\) 2.60220 0.0967101
\(725\) 31.7212 1.17809
\(726\) 0 0
\(727\) 40.8565 1.51528 0.757641 0.652671i \(-0.226352\pi\)
0.757641 + 0.652671i \(0.226352\pi\)
\(728\) −4.01148 −0.148675
\(729\) 0 0
\(730\) −21.2151 −0.785207
\(731\) 34.3012 1.26868
\(732\) 0 0
\(733\) −17.9728 −0.663839 −0.331920 0.943308i \(-0.607696\pi\)
−0.331920 + 0.943308i \(0.607696\pi\)
\(734\) −5.51815 −0.203679
\(735\) 0 0
\(736\) −9.12086 −0.336199
\(737\) 0 0
\(738\) 0 0
\(739\) −2.34892 −0.0864064 −0.0432032 0.999066i \(-0.513756\pi\)
−0.0432032 + 0.999066i \(0.513756\pi\)
\(740\) 26.2175 0.963776
\(741\) 0 0
\(742\) −21.8379 −0.801693
\(743\) 38.2722 1.40407 0.702036 0.712141i \(-0.252274\pi\)
0.702036 + 0.712141i \(0.252274\pi\)
\(744\) 0 0
\(745\) 12.9491 0.474417
\(746\) −68.5082 −2.50826
\(747\) 0 0
\(748\) 0 0
\(749\) 8.25043 0.301464
\(750\) 0 0
\(751\) −2.89080 −0.105487 −0.0527434 0.998608i \(-0.516797\pi\)
−0.0527434 + 0.998608i \(0.516797\pi\)
\(752\) −8.98781 −0.327752
\(753\) 0 0
\(754\) 117.689 4.28599
\(755\) −13.4575 −0.489769
\(756\) 0 0
\(757\) 24.1721 0.878551 0.439275 0.898353i \(-0.355235\pi\)
0.439275 + 0.898353i \(0.355235\pi\)
\(758\) 46.2906 1.68135
\(759\) 0 0
\(760\) 0.151162 0.00548321
\(761\) 24.7044 0.895533 0.447766 0.894151i \(-0.352220\pi\)
0.447766 + 0.894151i \(0.352220\pi\)
\(762\) 0 0
\(763\) 0.305943 0.0110759
\(764\) −23.8929 −0.864415
\(765\) 0 0
\(766\) 52.3214 1.89045
\(767\) 78.2298 2.82472
\(768\) 0 0
\(769\) −12.8939 −0.464967 −0.232483 0.972600i \(-0.574685\pi\)
−0.232483 + 0.972600i \(0.574685\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −41.8793 −1.50727
\(773\) 32.4616 1.16756 0.583780 0.811912i \(-0.301573\pi\)
0.583780 + 0.811912i \(0.301573\pi\)
\(774\) 0 0
\(775\) −29.3324 −1.05365
\(776\) −8.48887 −0.304733
\(777\) 0 0
\(778\) −48.0196 −1.72159
\(779\) −0.732645 −0.0262497
\(780\) 0 0
\(781\) 0 0
\(782\) −10.0236 −0.358444
\(783\) 0 0
\(784\) −3.21712 −0.114897
\(785\) 6.59338 0.235328
\(786\) 0 0
\(787\) 28.1909 1.00490 0.502448 0.864607i \(-0.332433\pi\)
0.502448 + 0.864607i \(0.332433\pi\)
\(788\) −10.0482 −0.357952
\(789\) 0 0
\(790\) −0.0151805 −0.000540098 0
\(791\) −10.1503 −0.360902
\(792\) 0 0
\(793\) 46.3652 1.64648
\(794\) 7.88093 0.279684
\(795\) 0 0
\(796\) 51.5061 1.82559
\(797\) −42.5723 −1.50799 −0.753995 0.656881i \(-0.771876\pi\)
−0.753995 + 0.656881i \(0.771876\pi\)
\(798\) 0 0
\(799\) −11.9360 −0.422265
\(800\) −26.1062 −0.922993
\(801\) 0 0
\(802\) −81.3270 −2.87175
\(803\) 0 0
\(804\) 0 0
\(805\) 1.50115 0.0529085
\(806\) −108.826 −3.83325
\(807\) 0 0
\(808\) 1.06231 0.0373719
\(809\) 14.1894 0.498873 0.249437 0.968391i \(-0.419755\pi\)
0.249437 + 0.968391i \(0.419755\pi\)
\(810\) 0 0
\(811\) 2.58292 0.0906987 0.0453494 0.998971i \(-0.485560\pi\)
0.0453494 + 0.998971i \(0.485560\pi\)
\(812\) −22.9682 −0.806027
\(813\) 0 0
\(814\) 0 0
\(815\) −8.96982 −0.314199
\(816\) 0 0
\(817\) −1.30506 −0.0456584
\(818\) 61.2215 2.14056
\(819\) 0 0
\(820\) 14.0220 0.489668
\(821\) 52.5523 1.83409 0.917043 0.398787i \(-0.130569\pi\)
0.917043 + 0.398787i \(0.130569\pi\)
\(822\) 0 0
\(823\) 14.6509 0.510699 0.255349 0.966849i \(-0.417809\pi\)
0.255349 + 0.966849i \(0.417809\pi\)
\(824\) −10.7960 −0.376095
\(825\) 0 0
\(826\) −28.3429 −0.986177
\(827\) −15.1928 −0.528304 −0.264152 0.964481i \(-0.585092\pi\)
−0.264152 + 0.964481i \(0.585092\pi\)
\(828\) 0 0
\(829\) −41.6162 −1.44539 −0.722695 0.691167i \(-0.757097\pi\)
−0.722695 + 0.691167i \(0.757097\pi\)
\(830\) −7.85647 −0.272702
\(831\) 0 0
\(832\) −59.8800 −2.07596
\(833\) −4.27240 −0.148030
\(834\) 0 0
\(835\) 18.6343 0.644867
\(836\) 0 0
\(837\) 0 0
\(838\) 30.2970 1.04659
\(839\) −21.8835 −0.755503 −0.377752 0.925907i \(-0.623303\pi\)
−0.377752 + 0.925907i \(0.623303\pi\)
\(840\) 0 0
\(841\) 67.7365 2.33574
\(842\) −36.9732 −1.27418
\(843\) 0 0
\(844\) −34.6842 −1.19388
\(845\) −26.6804 −0.917834
\(846\) 0 0
\(847\) 0 0
\(848\) −33.7420 −1.15870
\(849\) 0 0
\(850\) −28.6901 −0.984063
\(851\) 9.49572 0.325509
\(852\) 0 0
\(853\) −22.2054 −0.760299 −0.380149 0.924925i \(-0.624127\pi\)
−0.380149 + 0.924925i \(0.624127\pi\)
\(854\) −16.7983 −0.574826
\(855\) 0 0
\(856\) −5.75899 −0.196838
\(857\) −24.6876 −0.843311 −0.421656 0.906756i \(-0.638551\pi\)
−0.421656 + 0.906756i \(0.638551\pi\)
\(858\) 0 0
\(859\) 10.3940 0.354639 0.177320 0.984153i \(-0.443257\pi\)
0.177320 + 0.984153i \(0.443257\pi\)
\(860\) 24.9774 0.851722
\(861\) 0 0
\(862\) −37.1413 −1.26504
\(863\) 45.9179 1.56306 0.781532 0.623865i \(-0.214439\pi\)
0.781532 + 0.623865i \(0.214439\pi\)
\(864\) 0 0
\(865\) −4.67447 −0.158937
\(866\) −25.9026 −0.880207
\(867\) 0 0
\(868\) 21.2386 0.720885
\(869\) 0 0
\(870\) 0 0
\(871\) 52.3160 1.77266
\(872\) −0.213555 −0.00723189
\(873\) 0 0
\(874\) 0.381371 0.0129001
\(875\) 10.9578 0.370441
\(876\) 0 0
\(877\) 34.8872 1.17806 0.589029 0.808112i \(-0.299510\pi\)
0.589029 + 0.808112i \(0.299510\pi\)
\(878\) −34.0927 −1.15057
\(879\) 0 0
\(880\) 0 0
\(881\) 8.85305 0.298267 0.149133 0.988817i \(-0.452352\pi\)
0.149133 + 0.988817i \(0.452352\pi\)
\(882\) 0 0
\(883\) 17.3511 0.583910 0.291955 0.956432i \(-0.405694\pi\)
0.291955 + 0.956432i \(0.405694\pi\)
\(884\) −57.3375 −1.92847
\(885\) 0 0
\(886\) 4.63742 0.155797
\(887\) 38.0505 1.27761 0.638806 0.769368i \(-0.279429\pi\)
0.638806 + 0.769368i \(0.279429\pi\)
\(888\) 0 0
\(889\) 3.80774 0.127707
\(890\) −29.1959 −0.978650
\(891\) 0 0
\(892\) 13.0723 0.437692
\(893\) 0.454131 0.0151969
\(894\) 0 0
\(895\) 2.96733 0.0991868
\(896\) 5.50574 0.183934
\(897\) 0 0
\(898\) 66.5227 2.21989
\(899\) −89.4517 −2.98338
\(900\) 0 0
\(901\) −44.8100 −1.49284
\(902\) 0 0
\(903\) 0 0
\(904\) 7.08513 0.235648
\(905\) −1.48452 −0.0493471
\(906\) 0 0
\(907\) −14.1082 −0.468455 −0.234227 0.972182i \(-0.575256\pi\)
−0.234227 + 0.972182i \(0.575256\pi\)
\(908\) 17.5816 0.583466
\(909\) 0 0
\(910\) 15.9411 0.528443
\(911\) −29.1703 −0.966457 −0.483228 0.875494i \(-0.660536\pi\)
−0.483228 + 0.875494i \(0.660536\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 46.0861 1.52439
\(915\) 0 0
\(916\) −63.5959 −2.10127
\(917\) 14.6612 0.484156
\(918\) 0 0
\(919\) 3.84247 0.126751 0.0633757 0.997990i \(-0.479813\pi\)
0.0633757 + 0.997990i \(0.479813\pi\)
\(920\) −1.04784 −0.0345461
\(921\) 0 0
\(922\) −31.1087 −1.02451
\(923\) −5.85633 −0.192763
\(924\) 0 0
\(925\) 27.1792 0.893645
\(926\) −10.4721 −0.344135
\(927\) 0 0
\(928\) −79.6131 −2.61343
\(929\) −11.2254 −0.368295 −0.184147 0.982899i \(-0.558952\pi\)
−0.184147 + 0.982899i \(0.558952\pi\)
\(930\) 0 0
\(931\) 0.162553 0.00532745
\(932\) 12.8202 0.419939
\(933\) 0 0
\(934\) −66.9148 −2.18952
\(935\) 0 0
\(936\) 0 0
\(937\) 10.9651 0.358213 0.179106 0.983830i \(-0.442679\pi\)
0.179106 + 0.983830i \(0.442679\pi\)
\(938\) −18.9543 −0.618879
\(939\) 0 0
\(940\) −8.69154 −0.283487
\(941\) 60.7290 1.97971 0.989855 0.142083i \(-0.0453801\pi\)
0.989855 + 0.142083i \(0.0453801\pi\)
\(942\) 0 0
\(943\) 5.07861 0.165382
\(944\) −43.7930 −1.42534
\(945\) 0 0
\(946\) 0 0
\(947\) 45.2278 1.46971 0.734854 0.678226i \(-0.237251\pi\)
0.734854 + 0.678226i \(0.237251\pi\)
\(948\) 0 0
\(949\) −43.9537 −1.42680
\(950\) 1.09158 0.0354155
\(951\) 0 0
\(952\) 2.98224 0.0966548
\(953\) 1.48140 0.0479872 0.0239936 0.999712i \(-0.492362\pi\)
0.0239936 + 0.999712i \(0.492362\pi\)
\(954\) 0 0
\(955\) 13.6306 0.441074
\(956\) 58.0106 1.87620
\(957\) 0 0
\(958\) −27.3781 −0.884545
\(959\) −16.8306 −0.543489
\(960\) 0 0
\(961\) 51.7155 1.66824
\(962\) 100.838 3.25114
\(963\) 0 0
\(964\) 40.4553 1.30298
\(965\) 23.8915 0.769095
\(966\) 0 0
\(967\) −18.8504 −0.606187 −0.303094 0.952961i \(-0.598019\pi\)
−0.303094 + 0.952961i \(0.598019\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 33.7337 1.08312
\(971\) −58.9217 −1.89089 −0.945444 0.325785i \(-0.894371\pi\)
−0.945444 + 0.325785i \(0.894371\pi\)
\(972\) 0 0
\(973\) −7.79467 −0.249886
\(974\) −2.19092 −0.0702017
\(975\) 0 0
\(976\) −25.9552 −0.830807
\(977\) 43.0633 1.37772 0.688858 0.724896i \(-0.258112\pi\)
0.688858 + 0.724896i \(0.258112\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −3.11107 −0.0993795
\(981\) 0 0
\(982\) 56.8853 1.81528
\(983\) −13.2499 −0.422605 −0.211303 0.977421i \(-0.567771\pi\)
−0.211303 + 0.977421i \(0.567771\pi\)
\(984\) 0 0
\(985\) 5.73234 0.182648
\(986\) −87.4931 −2.78635
\(987\) 0 0
\(988\) 2.18153 0.0694037
\(989\) 9.04656 0.287664
\(990\) 0 0
\(991\) 14.1260 0.448728 0.224364 0.974505i \(-0.427970\pi\)
0.224364 + 0.974505i \(0.427970\pi\)
\(992\) 73.6178 2.33737
\(993\) 0 0
\(994\) 2.12177 0.0672984
\(995\) −29.3835 −0.931519
\(996\) 0 0
\(997\) 13.3911 0.424100 0.212050 0.977259i \(-0.431986\pi\)
0.212050 + 0.977259i \(0.431986\pi\)
\(998\) 48.8435 1.54611
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7623.2.a.dc.1.4 16
3.2 odd 2 inner 7623.2.a.dc.1.13 16
11.3 even 5 693.2.m.k.64.2 32
11.4 even 5 693.2.m.k.379.2 yes 32
11.10 odd 2 7623.2.a.db.1.13 16
33.14 odd 10 693.2.m.k.64.7 yes 32
33.26 odd 10 693.2.m.k.379.7 yes 32
33.32 even 2 7623.2.a.db.1.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
693.2.m.k.64.2 32 11.3 even 5
693.2.m.k.64.7 yes 32 33.14 odd 10
693.2.m.k.379.2 yes 32 11.4 even 5
693.2.m.k.379.7 yes 32 33.26 odd 10
7623.2.a.db.1.4 16 33.32 even 2
7623.2.a.db.1.13 16 11.10 odd 2
7623.2.a.dc.1.4 16 1.1 even 1 trivial
7623.2.a.dc.1.13 16 3.2 odd 2 inner