Properties

Label 7623.2.a.ch
Level 7623
Weight 2
Character orbit 7623.a
Self dual yes
Analytic conductor 60.870
Analytic rank 0
Dimension 4
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 7623 = 3^{2} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 7623.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(60.8699614608\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.2525.1
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{2} + ( 1 + \beta_{1} + \beta_{2} ) q^{4} + ( 1 + \beta_{1} ) q^{5} - q^{7} + ( -3 - \beta_{2} - \beta_{3} ) q^{8} +O(q^{10})\) \( q -\beta_{1} q^{2} + ( 1 + \beta_{1} + \beta_{2} ) q^{4} + ( 1 + \beta_{1} ) q^{5} - q^{7} + ( -3 - \beta_{2} - \beta_{3} ) q^{8} + ( -3 - 2 \beta_{1} - \beta_{2} ) q^{10} + ( -\beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{13} + \beta_{1} q^{14} + ( -1 + \beta_{1} + 2 \beta_{3} ) q^{16} + ( -1 + \beta_{1} - 3 \beta_{2} + \beta_{3} ) q^{17} + ( 1 - 2 \beta_{1} - \beta_{2} - \beta_{3} ) q^{19} + ( 4 + 3 \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{20} + ( 3 + \beta_{2} + 2 \beta_{3} ) q^{23} + ( -1 + 3 \beta_{1} + \beta_{2} ) q^{25} + ( 1 + \beta_{1} - 3 \beta_{2} ) q^{26} + ( -1 - \beta_{1} - \beta_{2} ) q^{28} + 3 \beta_{3} q^{29} + ( \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{31} + ( 1 - 3 \beta_{2} ) q^{32} + ( -4 - 3 \beta_{2} + 2 \beta_{3} ) q^{34} + ( -1 - \beta_{1} ) q^{35} + ( -2 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{37} + ( 7 + \beta_{1} + 4 \beta_{2} + 2 \beta_{3} ) q^{38} + ( -4 - 3 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{40} + ( 1 + 3 \beta_{2} + 2 \beta_{3} ) q^{41} + ( 5 + 6 \beta_{2} ) q^{43} + ( -2 - 3 \beta_{1} - 4 \beta_{2} - 3 \beta_{3} ) q^{46} + ( 3 + \beta_{1} + 2 \beta_{2} - 4 \beta_{3} ) q^{47} + q^{49} + ( -9 - 2 \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{50} + ( -3 + 3 \beta_{2} - \beta_{3} ) q^{52} + ( 4 - 4 \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{53} + ( 3 + \beta_{2} + \beta_{3} ) q^{56} + ( -3 - 6 \beta_{2} - 3 \beta_{3} ) q^{58} + ( 6 - 2 \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{59} + ( -7 + 5 \beta_{1} + \beta_{3} ) q^{61} + ( -2 - \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{62} + ( 2 - 3 \beta_{1} - \beta_{3} ) q^{64} + ( -1 - 2 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{65} + ( -4 - \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{67} + ( 2 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{68} + ( 3 + 2 \beta_{1} + \beta_{2} ) q^{70} + ( -1 + 2 \beta_{1} - 5 \beta_{2} + 3 \beta_{3} ) q^{71} + ( -4 + 2 \beta_{1} - 3 \beta_{2} + 5 \beta_{3} ) q^{73} + ( -2 + \beta_{1} + \beta_{2} ) q^{74} + ( -7 - 4 \beta_{1} - 3 \beta_{2} - 4 \beta_{3} ) q^{76} + ( 2 + \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{79} + ( 4 + \beta_{1} + 5 \beta_{2} + 4 \beta_{3} ) q^{80} + ( -2 - \beta_{1} - 4 \beta_{2} - 5 \beta_{3} ) q^{82} + ( 4 - 3 \beta_{1} + 7 \beta_{2} - 5 \beta_{3} ) q^{83} + ( 3 + \beta_{1} - \beta_{3} ) q^{85} + ( -5 \beta_{1} - 6 \beta_{3} ) q^{86} + ( 4 + \beta_{1} + 3 \beta_{2} - 5 \beta_{3} ) q^{89} + ( \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{91} + ( 6 + 5 \beta_{1} + 7 \beta_{2} + 3 \beta_{3} ) q^{92} + ( 1 - 4 \beta_{1} + 7 \beta_{2} + 2 \beta_{3} ) q^{94} + ( -6 - 3 \beta_{1} - 5 \beta_{2} - 3 \beta_{3} ) q^{95} + ( -6 - 2 \beta_{2} - 5 \beta_{3} ) q^{97} -\beta_{1} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} + 4q^{4} + 6q^{5} - 4q^{7} - 9q^{8} + O(q^{10}) \) \( 4q - 2q^{2} + 4q^{4} + 6q^{5} - 4q^{7} - 9q^{8} - 14q^{10} + 2q^{14} - 4q^{16} + 3q^{17} + 3q^{19} + 17q^{20} + 8q^{23} + 12q^{26} - 4q^{28} - 3q^{29} - 3q^{31} + 10q^{32} - 12q^{34} - 6q^{35} - 7q^{37} + 20q^{38} - 13q^{40} - 4q^{41} + 8q^{43} - 3q^{46} + 14q^{47} + 4q^{49} - 33q^{50} - 17q^{52} + 9q^{53} + 9q^{56} + 3q^{58} + 25q^{59} - 19q^{61} - 10q^{62} + 3q^{64} - 12q^{65} - 15q^{67} + q^{68} + 14q^{70} + 7q^{71} - 11q^{73} - 8q^{74} - 26q^{76} + 8q^{79} + 4q^{80} + 3q^{82} + q^{83} + 15q^{85} - 4q^{86} + 17q^{89} + 17q^{92} - 20q^{94} - 17q^{95} - 15q^{97} - 2q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 2 x^{3} - 4 x^{2} + 5 x + 5\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 3 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - \nu^{2} - 3 \nu \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + \beta_{1} + 3\)
\(\nu^{3}\)\(=\)\(\beta_{3} + \beta_{2} + 4 \beta_{1} + 3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.46673
1.77748
−0.777484
−1.46673
−2.46673 0 4.08477 3.46673 0 −1.00000 −5.14256 0 −8.55150
1.2 −1.77748 0 1.15945 2.77748 0 −1.00000 1.49406 0 −4.93693
1.3 0.777484 0 −1.39552 0.222516 0 −1.00000 −2.63996 0 0.173002
1.4 1.46673 0 0.151302 −0.466732 0 −1.00000 −2.71154 0 −0.684570
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7623.2.a.ch 4
3.b odd 2 1 847.2.a.l 4
11.b odd 2 1 7623.2.a.co 4
11.c even 5 2 693.2.m.g 8
21.c even 2 1 5929.2.a.bi 4
33.d even 2 1 847.2.a.k 4
33.f even 10 2 847.2.f.q 8
33.f even 10 2 847.2.f.s 8
33.h odd 10 2 77.2.f.a 8
33.h odd 10 2 847.2.f.p 8
231.h odd 2 1 5929.2.a.bb 4
231.u even 10 2 539.2.f.d 8
231.z odd 30 4 539.2.q.c 16
231.bc even 30 4 539.2.q.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.2.f.a 8 33.h odd 10 2
539.2.f.d 8 231.u even 10 2
539.2.q.b 16 231.bc even 30 4
539.2.q.c 16 231.z odd 30 4
693.2.m.g 8 11.c even 5 2
847.2.a.k 4 33.d even 2 1
847.2.a.l 4 3.b odd 2 1
847.2.f.p 8 33.h odd 10 2
847.2.f.q 8 33.f even 10 2
847.2.f.s 8 33.f even 10 2
5929.2.a.bb 4 231.h odd 2 1
5929.2.a.bi 4 21.c even 2 1
7623.2.a.ch 4 1.a even 1 1 trivial
7623.2.a.co 4 11.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(1\)
\(11\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7623))\):

\( T_{2}^{4} + 2 T_{2}^{3} - 4 T_{2}^{2} - 5 T_{2} + 5 \)
\( T_{5}^{4} - 6 T_{5}^{3} + 8 T_{5}^{2} + 3 T_{5} - 1 \)
\( T_{13}^{4} - 32 T_{13}^{2} - 65 T_{13} - 29 \)