Properties

Label 7623.2.a.ce.1.2
Level $7623$
Weight $2$
Character 7623.1
Self dual yes
Analytic conductor $60.870$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7623,2,Mod(1,7623)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7623.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7623, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7623 = 3^{2} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7623.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,2,0,8,-1,0,-3,6,0,4,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8699614608\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 847)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.363328\) of defining polynomial
Character \(\chi\) \(=\) 7623.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.36333 q^{2} -0.141336 q^{4} -3.14134 q^{5} -1.00000 q^{7} -2.91934 q^{8} -4.28267 q^{10} -4.77801 q^{13} -1.36333 q^{14} -3.69735 q^{16} +4.77801 q^{17} -7.00933 q^{19} +0.443984 q^{20} -5.14134 q^{23} +4.86799 q^{25} -6.51399 q^{26} +0.141336 q^{28} -7.00933 q^{29} -3.63667 q^{31} +0.797984 q^{32} +6.51399 q^{34} +3.14134 q^{35} -9.86799 q^{37} -9.55602 q^{38} +9.17064 q^{40} +3.22199 q^{41} +4.28267 q^{43} -7.00933 q^{46} +0.778008 q^{47} +1.00000 q^{49} +6.63667 q^{50} +0.675305 q^{52} -2.28267 q^{53} +2.91934 q^{56} -9.55602 q^{58} +0.363328 q^{59} +3.22199 q^{61} -4.95798 q^{62} +8.48262 q^{64} +15.0093 q^{65} -6.59465 q^{67} -0.675305 q^{68} +4.28267 q^{70} +15.1600 q^{71} -3.22199 q^{73} -13.4533 q^{74} +0.990671 q^{76} -3.71733 q^{79} +11.6146 q^{80} +4.39263 q^{82} -1.55602 q^{83} -15.0093 q^{85} +5.83869 q^{86} +5.58532 q^{89} +4.77801 q^{91} +0.726656 q^{92} +1.06068 q^{94} +22.0187 q^{95} +6.15066 q^{97} +1.36333 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 8 q^{4} - q^{5} - 3 q^{7} + 6 q^{8} + 4 q^{10} - 8 q^{13} - 2 q^{14} + 10 q^{16} + 8 q^{17} + 14 q^{20} - 7 q^{23} + 2 q^{25} + 12 q^{26} - 8 q^{28} - 13 q^{31} + 34 q^{32} - 12 q^{34}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36333 0.964019 0.482009 0.876166i \(-0.339907\pi\)
0.482009 + 0.876166i \(0.339907\pi\)
\(3\) 0 0
\(4\) −0.141336 −0.0706681
\(5\) −3.14134 −1.40485 −0.702424 0.711759i \(-0.747899\pi\)
−0.702424 + 0.711759i \(0.747899\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −2.91934 −1.03214
\(9\) 0 0
\(10\) −4.28267 −1.35430
\(11\) 0 0
\(12\) 0 0
\(13\) −4.77801 −1.32518 −0.662590 0.748982i \(-0.730543\pi\)
−0.662590 + 0.748982i \(0.730543\pi\)
\(14\) −1.36333 −0.364365
\(15\) 0 0
\(16\) −3.69735 −0.924338
\(17\) 4.77801 1.15884 0.579419 0.815030i \(-0.303280\pi\)
0.579419 + 0.815030i \(0.303280\pi\)
\(18\) 0 0
\(19\) −7.00933 −1.60805 −0.804025 0.594595i \(-0.797312\pi\)
−0.804025 + 0.594595i \(0.797312\pi\)
\(20\) 0.443984 0.0992779
\(21\) 0 0
\(22\) 0 0
\(23\) −5.14134 −1.07204 −0.536021 0.844204i \(-0.680073\pi\)
−0.536021 + 0.844204i \(0.680073\pi\)
\(24\) 0 0
\(25\) 4.86799 0.973599
\(26\) −6.51399 −1.27750
\(27\) 0 0
\(28\) 0.141336 0.0267100
\(29\) −7.00933 −1.30160 −0.650800 0.759249i \(-0.725566\pi\)
−0.650800 + 0.759249i \(0.725566\pi\)
\(30\) 0 0
\(31\) −3.63667 −0.653166 −0.326583 0.945169i \(-0.605897\pi\)
−0.326583 + 0.945169i \(0.605897\pi\)
\(32\) 0.797984 0.141065
\(33\) 0 0
\(34\) 6.51399 1.11714
\(35\) 3.14134 0.530983
\(36\) 0 0
\(37\) −9.86799 −1.62229 −0.811144 0.584846i \(-0.801155\pi\)
−0.811144 + 0.584846i \(0.801155\pi\)
\(38\) −9.55602 −1.55019
\(39\) 0 0
\(40\) 9.17064 1.45001
\(41\) 3.22199 0.503191 0.251595 0.967833i \(-0.419045\pi\)
0.251595 + 0.967833i \(0.419045\pi\)
\(42\) 0 0
\(43\) 4.28267 0.653101 0.326551 0.945180i \(-0.394114\pi\)
0.326551 + 0.945180i \(0.394114\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −7.00933 −1.03347
\(47\) 0.778008 0.113484 0.0567421 0.998389i \(-0.481929\pi\)
0.0567421 + 0.998389i \(0.481929\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 6.63667 0.938567
\(51\) 0 0
\(52\) 0.675305 0.0936480
\(53\) −2.28267 −0.313549 −0.156775 0.987634i \(-0.550110\pi\)
−0.156775 + 0.987634i \(0.550110\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.91934 0.390114
\(57\) 0 0
\(58\) −9.55602 −1.25477
\(59\) 0.363328 0.0473013 0.0236507 0.999720i \(-0.492471\pi\)
0.0236507 + 0.999720i \(0.492471\pi\)
\(60\) 0 0
\(61\) 3.22199 0.412534 0.206267 0.978496i \(-0.433868\pi\)
0.206267 + 0.978496i \(0.433868\pi\)
\(62\) −4.95798 −0.629664
\(63\) 0 0
\(64\) 8.48262 1.06033
\(65\) 15.0093 1.86168
\(66\) 0 0
\(67\) −6.59465 −0.805665 −0.402832 0.915274i \(-0.631974\pi\)
−0.402832 + 0.915274i \(0.631974\pi\)
\(68\) −0.675305 −0.0818928
\(69\) 0 0
\(70\) 4.28267 0.511877
\(71\) 15.1600 1.79916 0.899580 0.436756i \(-0.143873\pi\)
0.899580 + 0.436756i \(0.143873\pi\)
\(72\) 0 0
\(73\) −3.22199 −0.377106 −0.188553 0.982063i \(-0.560380\pi\)
−0.188553 + 0.982063i \(0.560380\pi\)
\(74\) −13.4533 −1.56392
\(75\) 0 0
\(76\) 0.990671 0.113638
\(77\) 0 0
\(78\) 0 0
\(79\) −3.71733 −0.418232 −0.209116 0.977891i \(-0.567059\pi\)
−0.209116 + 0.977891i \(0.567059\pi\)
\(80\) 11.6146 1.29855
\(81\) 0 0
\(82\) 4.39263 0.485085
\(83\) −1.55602 −0.170795 −0.0853975 0.996347i \(-0.527216\pi\)
−0.0853975 + 0.996347i \(0.527216\pi\)
\(84\) 0 0
\(85\) −15.0093 −1.62799
\(86\) 5.83869 0.629602
\(87\) 0 0
\(88\) 0 0
\(89\) 5.58532 0.592043 0.296021 0.955181i \(-0.404340\pi\)
0.296021 + 0.955181i \(0.404340\pi\)
\(90\) 0 0
\(91\) 4.77801 0.500871
\(92\) 0.726656 0.0757592
\(93\) 0 0
\(94\) 1.06068 0.109401
\(95\) 22.0187 2.25907
\(96\) 0 0
\(97\) 6.15066 0.624505 0.312253 0.949999i \(-0.398916\pi\)
0.312253 + 0.949999i \(0.398916\pi\)
\(98\) 1.36333 0.137717
\(99\) 0 0
\(100\) −0.688023 −0.0688023
\(101\) 10.7967 1.07431 0.537154 0.843484i \(-0.319499\pi\)
0.537154 + 0.843484i \(0.319499\pi\)
\(102\) 0 0
\(103\) −13.2406 −1.30464 −0.652320 0.757944i \(-0.726204\pi\)
−0.652320 + 0.757944i \(0.726204\pi\)
\(104\) 13.9486 1.36778
\(105\) 0 0
\(106\) −3.11203 −0.302267
\(107\) −14.0187 −1.35523 −0.677617 0.735415i \(-0.736987\pi\)
−0.677617 + 0.735415i \(0.736987\pi\)
\(108\) 0 0
\(109\) −15.5747 −1.49178 −0.745892 0.666067i \(-0.767976\pi\)
−0.745892 + 0.666067i \(0.767976\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 3.69735 0.349367
\(113\) −4.13201 −0.388707 −0.194353 0.980932i \(-0.562261\pi\)
−0.194353 + 0.980932i \(0.562261\pi\)
\(114\) 0 0
\(115\) 16.1507 1.50606
\(116\) 0.990671 0.0919815
\(117\) 0 0
\(118\) 0.495336 0.0455993
\(119\) −4.77801 −0.437999
\(120\) 0 0
\(121\) 0 0
\(122\) 4.39263 0.397690
\(123\) 0 0
\(124\) 0.513993 0.0461579
\(125\) 0.414680 0.0370901
\(126\) 0 0
\(127\) 22.0187 1.95384 0.976920 0.213606i \(-0.0685208\pi\)
0.976920 + 0.213606i \(0.0685208\pi\)
\(128\) 9.96862 0.881110
\(129\) 0 0
\(130\) 20.4626 1.79469
\(131\) −15.0093 −1.31137 −0.655686 0.755034i \(-0.727620\pi\)
−0.655686 + 0.755034i \(0.727620\pi\)
\(132\) 0 0
\(133\) 7.00933 0.607786
\(134\) −8.99067 −0.776676
\(135\) 0 0
\(136\) −13.9486 −1.19609
\(137\) 10.6974 0.913936 0.456968 0.889483i \(-0.348935\pi\)
0.456968 + 0.889483i \(0.348935\pi\)
\(138\) 0 0
\(139\) 4.10270 0.347987 0.173993 0.984747i \(-0.444333\pi\)
0.173993 + 0.984747i \(0.444333\pi\)
\(140\) −0.443984 −0.0375235
\(141\) 0 0
\(142\) 20.6680 1.73442
\(143\) 0 0
\(144\) 0 0
\(145\) 22.0187 1.82855
\(146\) −4.39263 −0.363537
\(147\) 0 0
\(148\) 1.39470 0.114644
\(149\) −14.0187 −1.14845 −0.574227 0.818696i \(-0.694697\pi\)
−0.574227 + 0.818696i \(0.694697\pi\)
\(150\) 0 0
\(151\) −6.82936 −0.555765 −0.277883 0.960615i \(-0.589633\pi\)
−0.277883 + 0.960615i \(0.589633\pi\)
\(152\) 20.4626 1.65974
\(153\) 0 0
\(154\) 0 0
\(155\) 11.4240 0.917598
\(156\) 0 0
\(157\) −23.4427 −1.87093 −0.935464 0.353421i \(-0.885018\pi\)
−0.935464 + 0.353421i \(0.885018\pi\)
\(158\) −5.06794 −0.403183
\(159\) 0 0
\(160\) −2.50674 −0.198175
\(161\) 5.14134 0.405194
\(162\) 0 0
\(163\) −0.990671 −0.0775954 −0.0387977 0.999247i \(-0.512353\pi\)
−0.0387977 + 0.999247i \(0.512353\pi\)
\(164\) −0.455384 −0.0355595
\(165\) 0 0
\(166\) −2.12136 −0.164649
\(167\) −0.565344 −0.0437477 −0.0218738 0.999761i \(-0.506963\pi\)
−0.0218738 + 0.999761i \(0.506963\pi\)
\(168\) 0 0
\(169\) 9.82936 0.756105
\(170\) −20.4626 −1.56941
\(171\) 0 0
\(172\) −0.605296 −0.0461534
\(173\) 17.2406 1.31078 0.655391 0.755290i \(-0.272504\pi\)
0.655391 + 0.755290i \(0.272504\pi\)
\(174\) 0 0
\(175\) −4.86799 −0.367986
\(176\) 0 0
\(177\) 0 0
\(178\) 7.61462 0.570740
\(179\) −11.3213 −0.846194 −0.423097 0.906084i \(-0.639057\pi\)
−0.423097 + 0.906084i \(0.639057\pi\)
\(180\) 0 0
\(181\) 14.8773 1.10582 0.552911 0.833240i \(-0.313517\pi\)
0.552911 + 0.833240i \(0.313517\pi\)
\(182\) 6.51399 0.482849
\(183\) 0 0
\(184\) 15.0093 1.10650
\(185\) 30.9987 2.27907
\(186\) 0 0
\(187\) 0 0
\(188\) −0.109961 −0.00801970
\(189\) 0 0
\(190\) 30.0187 2.17778
\(191\) −3.84934 −0.278528 −0.139264 0.990255i \(-0.544474\pi\)
−0.139264 + 0.990255i \(0.544474\pi\)
\(192\) 0 0
\(193\) −2.54669 −0.183315 −0.0916573 0.995791i \(-0.529216\pi\)
−0.0916573 + 0.995791i \(0.529216\pi\)
\(194\) 8.38538 0.602035
\(195\) 0 0
\(196\) −0.141336 −0.0100954
\(197\) 10.5467 0.751420 0.375710 0.926737i \(-0.377399\pi\)
0.375710 + 0.926737i \(0.377399\pi\)
\(198\) 0 0
\(199\) 11.6846 0.828302 0.414151 0.910208i \(-0.364079\pi\)
0.414151 + 0.910208i \(0.364079\pi\)
\(200\) −14.2113 −1.00489
\(201\) 0 0
\(202\) 14.7194 1.03565
\(203\) 7.00933 0.491958
\(204\) 0 0
\(205\) −10.1214 −0.706906
\(206\) −18.0514 −1.25770
\(207\) 0 0
\(208\) 17.6660 1.22492
\(209\) 0 0
\(210\) 0 0
\(211\) 11.1120 0.764984 0.382492 0.923959i \(-0.375066\pi\)
0.382492 + 0.923959i \(0.375066\pi\)
\(212\) 0.322624 0.0221579
\(213\) 0 0
\(214\) −19.1120 −1.30647
\(215\) −13.4533 −0.917508
\(216\) 0 0
\(217\) 3.63667 0.246873
\(218\) −21.2334 −1.43811
\(219\) 0 0
\(220\) 0 0
\(221\) −22.8294 −1.53567
\(222\) 0 0
\(223\) 28.0407 1.87774 0.938872 0.344266i \(-0.111872\pi\)
0.938872 + 0.344266i \(0.111872\pi\)
\(224\) −0.797984 −0.0533175
\(225\) 0 0
\(226\) −5.63328 −0.374720
\(227\) 23.0093 1.52718 0.763591 0.645700i \(-0.223434\pi\)
0.763591 + 0.645700i \(0.223434\pi\)
\(228\) 0 0
\(229\) 13.4240 0.887083 0.443542 0.896254i \(-0.353722\pi\)
0.443542 + 0.896254i \(0.353722\pi\)
\(230\) 22.0187 1.45187
\(231\) 0 0
\(232\) 20.4626 1.34344
\(233\) 3.53736 0.231740 0.115870 0.993264i \(-0.463034\pi\)
0.115870 + 0.993264i \(0.463034\pi\)
\(234\) 0 0
\(235\) −2.44398 −0.159428
\(236\) −0.0513514 −0.00334269
\(237\) 0 0
\(238\) −6.51399 −0.422239
\(239\) −22.0187 −1.42427 −0.712134 0.702043i \(-0.752271\pi\)
−0.712134 + 0.702043i \(0.752271\pi\)
\(240\) 0 0
\(241\) −0.315366 −0.0203145 −0.0101573 0.999948i \(-0.503233\pi\)
−0.0101573 + 0.999948i \(0.503233\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −0.455384 −0.0291530
\(245\) −3.14134 −0.200693
\(246\) 0 0
\(247\) 33.4906 2.13096
\(248\) 10.6167 0.674161
\(249\) 0 0
\(250\) 0.565344 0.0357555
\(251\) −18.6460 −1.17693 −0.588463 0.808524i \(-0.700267\pi\)
−0.588463 + 0.808524i \(0.700267\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 30.0187 1.88354
\(255\) 0 0
\(256\) −3.37473 −0.210920
\(257\) 8.54669 0.533128 0.266564 0.963817i \(-0.414112\pi\)
0.266564 + 0.963817i \(0.414112\pi\)
\(258\) 0 0
\(259\) 9.86799 0.613167
\(260\) −2.12136 −0.131561
\(261\) 0 0
\(262\) −20.4626 −1.26419
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 7.17064 0.440489
\(266\) 9.55602 0.585917
\(267\) 0 0
\(268\) 0.932062 0.0569348
\(269\) −7.55602 −0.460698 −0.230349 0.973108i \(-0.573987\pi\)
−0.230349 + 0.973108i \(0.573987\pi\)
\(270\) 0 0
\(271\) 14.0187 0.851573 0.425786 0.904824i \(-0.359998\pi\)
0.425786 + 0.904824i \(0.359998\pi\)
\(272\) −17.6660 −1.07116
\(273\) 0 0
\(274\) 14.5840 0.881052
\(275\) 0 0
\(276\) 0 0
\(277\) −6.01866 −0.361626 −0.180813 0.983517i \(-0.557873\pi\)
−0.180813 + 0.983517i \(0.557873\pi\)
\(278\) 5.59333 0.335466
\(279\) 0 0
\(280\) −9.17064 −0.548051
\(281\) 20.6680 1.23295 0.616476 0.787374i \(-0.288560\pi\)
0.616476 + 0.787374i \(0.288560\pi\)
\(282\) 0 0
\(283\) 9.91595 0.589442 0.294721 0.955583i \(-0.404773\pi\)
0.294721 + 0.955583i \(0.404773\pi\)
\(284\) −2.14265 −0.127143
\(285\) 0 0
\(286\) 0 0
\(287\) −3.22199 −0.190188
\(288\) 0 0
\(289\) 5.82936 0.342903
\(290\) 30.0187 1.76276
\(291\) 0 0
\(292\) 0.455384 0.0266493
\(293\) 26.7967 1.56548 0.782739 0.622350i \(-0.213822\pi\)
0.782739 + 0.622350i \(0.213822\pi\)
\(294\) 0 0
\(295\) −1.14134 −0.0664512
\(296\) 28.8081 1.67443
\(297\) 0 0
\(298\) −19.1120 −1.10713
\(299\) 24.5653 1.42065
\(300\) 0 0
\(301\) −4.28267 −0.246849
\(302\) −9.31066 −0.535768
\(303\) 0 0
\(304\) 25.9160 1.48638
\(305\) −10.1214 −0.579547
\(306\) 0 0
\(307\) 11.8973 0.679015 0.339507 0.940603i \(-0.389740\pi\)
0.339507 + 0.940603i \(0.389740\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 15.5747 0.884582
\(311\) 21.2406 1.20445 0.602223 0.798328i \(-0.294282\pi\)
0.602223 + 0.798328i \(0.294282\pi\)
\(312\) 0 0
\(313\) −12.6974 −0.717697 −0.358848 0.933396i \(-0.616830\pi\)
−0.358848 + 0.933396i \(0.616830\pi\)
\(314\) −31.9600 −1.80361
\(315\) 0 0
\(316\) 0.525393 0.0295556
\(317\) 11.8680 0.666573 0.333286 0.942826i \(-0.391842\pi\)
0.333286 + 0.942826i \(0.391842\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −26.6468 −1.48960
\(321\) 0 0
\(322\) 7.00933 0.390615
\(323\) −33.4906 −1.86347
\(324\) 0 0
\(325\) −23.2593 −1.29019
\(326\) −1.35061 −0.0748034
\(327\) 0 0
\(328\) −9.40610 −0.519365
\(329\) −0.778008 −0.0428930
\(330\) 0 0
\(331\) −11.8867 −0.653349 −0.326675 0.945137i \(-0.605928\pi\)
−0.326675 + 0.945137i \(0.605928\pi\)
\(332\) 0.219921 0.0120697
\(333\) 0 0
\(334\) −0.770750 −0.0421736
\(335\) 20.7160 1.13184
\(336\) 0 0
\(337\) 0.990671 0.0539653 0.0269827 0.999636i \(-0.491410\pi\)
0.0269827 + 0.999636i \(0.491410\pi\)
\(338\) 13.4006 0.728899
\(339\) 0 0
\(340\) 2.12136 0.115047
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −12.5026 −0.674095
\(345\) 0 0
\(346\) 23.5047 1.26362
\(347\) 15.1893 0.815404 0.407702 0.913115i \(-0.366330\pi\)
0.407702 + 0.913115i \(0.366330\pi\)
\(348\) 0 0
\(349\) −29.7033 −1.58998 −0.794990 0.606622i \(-0.792524\pi\)
−0.794990 + 0.606622i \(0.792524\pi\)
\(350\) −6.63667 −0.354745
\(351\) 0 0
\(352\) 0 0
\(353\) 6.71601 0.357457 0.178729 0.983898i \(-0.442802\pi\)
0.178729 + 0.983898i \(0.442802\pi\)
\(354\) 0 0
\(355\) −47.6226 −2.52755
\(356\) −0.789407 −0.0418385
\(357\) 0 0
\(358\) −15.4347 −0.815747
\(359\) −17.7360 −0.936069 −0.468035 0.883710i \(-0.655038\pi\)
−0.468035 + 0.883710i \(0.655038\pi\)
\(360\) 0 0
\(361\) 30.1307 1.58583
\(362\) 20.2827 1.06603
\(363\) 0 0
\(364\) −0.675305 −0.0353956
\(365\) 10.1214 0.529776
\(366\) 0 0
\(367\) −8.09931 −0.422781 −0.211390 0.977402i \(-0.567799\pi\)
−0.211390 + 0.977402i \(0.567799\pi\)
\(368\) 19.0093 0.990930
\(369\) 0 0
\(370\) 42.2614 2.19706
\(371\) 2.28267 0.118510
\(372\) 0 0
\(373\) 0.565344 0.0292724 0.0146362 0.999893i \(-0.495341\pi\)
0.0146362 + 0.999893i \(0.495341\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −2.27127 −0.117132
\(377\) 33.4906 1.72486
\(378\) 0 0
\(379\) −22.5360 −1.15760 −0.578799 0.815470i \(-0.696479\pi\)
−0.578799 + 0.815470i \(0.696479\pi\)
\(380\) −3.11203 −0.159644
\(381\) 0 0
\(382\) −5.24791 −0.268506
\(383\) −21.3913 −1.09305 −0.546523 0.837444i \(-0.684049\pi\)
−0.546523 + 0.837444i \(0.684049\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.47197 −0.176719
\(387\) 0 0
\(388\) −0.869311 −0.0441326
\(389\) −10.6787 −0.541431 −0.270716 0.962659i \(-0.587260\pi\)
−0.270716 + 0.962659i \(0.587260\pi\)
\(390\) 0 0
\(391\) −24.5653 −1.24232
\(392\) −2.91934 −0.147449
\(393\) 0 0
\(394\) 14.3786 0.724383
\(395\) 11.6774 0.587553
\(396\) 0 0
\(397\) −23.9160 −1.20031 −0.600154 0.799885i \(-0.704894\pi\)
−0.600154 + 0.799885i \(0.704894\pi\)
\(398\) 15.9300 0.798498
\(399\) 0 0
\(400\) −17.9987 −0.899934
\(401\) −11.6587 −0.582209 −0.291104 0.956691i \(-0.594023\pi\)
−0.291104 + 0.956691i \(0.594023\pi\)
\(402\) 0 0
\(403\) 17.3760 0.865563
\(404\) −1.52596 −0.0759193
\(405\) 0 0
\(406\) 9.55602 0.474257
\(407\) 0 0
\(408\) 0 0
\(409\) 32.8153 1.62261 0.811307 0.584621i \(-0.198757\pi\)
0.811307 + 0.584621i \(0.198757\pi\)
\(410\) −13.7987 −0.681471
\(411\) 0 0
\(412\) 1.87138 0.0921964
\(413\) −0.363328 −0.0178782
\(414\) 0 0
\(415\) 4.88797 0.239941
\(416\) −3.81277 −0.186937
\(417\) 0 0
\(418\) 0 0
\(419\) −10.7967 −0.527452 −0.263726 0.964598i \(-0.584951\pi\)
−0.263726 + 0.964598i \(0.584951\pi\)
\(420\) 0 0
\(421\) −1.15198 −0.0561442 −0.0280721 0.999606i \(-0.508937\pi\)
−0.0280721 + 0.999606i \(0.508937\pi\)
\(422\) 15.1493 0.737459
\(423\) 0 0
\(424\) 6.66391 0.323628
\(425\) 23.2593 1.12824
\(426\) 0 0
\(427\) −3.22199 −0.155923
\(428\) 1.98134 0.0957718
\(429\) 0 0
\(430\) −18.3413 −0.884495
\(431\) 31.9600 1.53946 0.769731 0.638369i \(-0.220391\pi\)
0.769731 + 0.638369i \(0.220391\pi\)
\(432\) 0 0
\(433\) −4.43334 −0.213053 −0.106526 0.994310i \(-0.533973\pi\)
−0.106526 + 0.994310i \(0.533973\pi\)
\(434\) 4.95798 0.237991
\(435\) 0 0
\(436\) 2.20126 0.105421
\(437\) 36.0373 1.72390
\(438\) 0 0
\(439\) −27.4720 −1.31117 −0.655583 0.755123i \(-0.727577\pi\)
−0.655583 + 0.755123i \(0.727577\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −31.1239 −1.48041
\(443\) 7.79073 0.370149 0.185074 0.982725i \(-0.440747\pi\)
0.185074 + 0.982725i \(0.440747\pi\)
\(444\) 0 0
\(445\) −17.5454 −0.831730
\(446\) 38.2287 1.81018
\(447\) 0 0
\(448\) −8.48262 −0.400766
\(449\) −20.5106 −0.967955 −0.483978 0.875080i \(-0.660808\pi\)
−0.483978 + 0.875080i \(0.660808\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.584002 0.0274691
\(453\) 0 0
\(454\) 31.3693 1.47223
\(455\) −15.0093 −0.703648
\(456\) 0 0
\(457\) −8.56534 −0.400670 −0.200335 0.979727i \(-0.564203\pi\)
−0.200335 + 0.979727i \(0.564203\pi\)
\(458\) 18.3013 0.855165
\(459\) 0 0
\(460\) −2.28267 −0.106430
\(461\) −9.66598 −0.450189 −0.225095 0.974337i \(-0.572269\pi\)
−0.225095 + 0.974337i \(0.572269\pi\)
\(462\) 0 0
\(463\) 11.4240 0.530919 0.265459 0.964122i \(-0.414476\pi\)
0.265459 + 0.964122i \(0.414476\pi\)
\(464\) 25.9160 1.20312
\(465\) 0 0
\(466\) 4.82258 0.223402
\(467\) −18.2207 −0.843152 −0.421576 0.906793i \(-0.638523\pi\)
−0.421576 + 0.906793i \(0.638523\pi\)
\(468\) 0 0
\(469\) 6.59465 0.304513
\(470\) −3.33195 −0.153692
\(471\) 0 0
\(472\) −1.06068 −0.0488218
\(473\) 0 0
\(474\) 0 0
\(475\) −34.1214 −1.56560
\(476\) 0.675305 0.0309526
\(477\) 0 0
\(478\) −30.0187 −1.37302
\(479\) −3.47197 −0.158638 −0.0793192 0.996849i \(-0.525275\pi\)
−0.0793192 + 0.996849i \(0.525275\pi\)
\(480\) 0 0
\(481\) 47.1493 2.14983
\(482\) −0.429948 −0.0195836
\(483\) 0 0
\(484\) 0 0
\(485\) −19.3213 −0.877335
\(486\) 0 0
\(487\) −27.4613 −1.24439 −0.622196 0.782862i \(-0.713759\pi\)
−0.622196 + 0.782862i \(0.713759\pi\)
\(488\) −9.40610 −0.425794
\(489\) 0 0
\(490\) −4.28267 −0.193471
\(491\) 6.26401 0.282691 0.141346 0.989960i \(-0.454857\pi\)
0.141346 + 0.989960i \(0.454857\pi\)
\(492\) 0 0
\(493\) −33.4906 −1.50834
\(494\) 45.6587 2.05428
\(495\) 0 0
\(496\) 13.4461 0.603746
\(497\) −15.1600 −0.680019
\(498\) 0 0
\(499\) −20.6680 −0.925229 −0.462614 0.886560i \(-0.653089\pi\)
−0.462614 + 0.886560i \(0.653089\pi\)
\(500\) −0.0586092 −0.00262108
\(501\) 0 0
\(502\) −25.4206 −1.13458
\(503\) −22.0187 −0.981763 −0.490882 0.871226i \(-0.663325\pi\)
−0.490882 + 0.871226i \(0.663325\pi\)
\(504\) 0 0
\(505\) −33.9160 −1.50924
\(506\) 0 0
\(507\) 0 0
\(508\) −3.11203 −0.138074
\(509\) −21.4240 −0.949602 −0.474801 0.880093i \(-0.657480\pi\)
−0.474801 + 0.880093i \(0.657480\pi\)
\(510\) 0 0
\(511\) 3.22199 0.142533
\(512\) −24.5381 −1.08444
\(513\) 0 0
\(514\) 11.6519 0.513945
\(515\) 41.5933 1.83282
\(516\) 0 0
\(517\) 0 0
\(518\) 13.4533 0.591105
\(519\) 0 0
\(520\) −43.8174 −1.92152
\(521\) −13.9453 −0.610953 −0.305476 0.952200i \(-0.598816\pi\)
−0.305476 + 0.952200i \(0.598816\pi\)
\(522\) 0 0
\(523\) −18.4813 −0.808131 −0.404065 0.914730i \(-0.632403\pi\)
−0.404065 + 0.914730i \(0.632403\pi\)
\(524\) 2.12136 0.0926721
\(525\) 0 0
\(526\) −21.8133 −0.951103
\(527\) −17.3760 −0.756912
\(528\) 0 0
\(529\) 3.43334 0.149276
\(530\) 9.77594 0.424640
\(531\) 0 0
\(532\) −0.990671 −0.0429510
\(533\) −15.3947 −0.666819
\(534\) 0 0
\(535\) 44.0373 1.90390
\(536\) 19.2520 0.831562
\(537\) 0 0
\(538\) −10.3013 −0.444122
\(539\) 0 0
\(540\) 0 0
\(541\) 37.4533 1.61024 0.805122 0.593109i \(-0.202100\pi\)
0.805122 + 0.593109i \(0.202100\pi\)
\(542\) 19.1120 0.820932
\(543\) 0 0
\(544\) 3.81277 0.163471
\(545\) 48.9253 2.09573
\(546\) 0 0
\(547\) −17.1307 −0.732455 −0.366228 0.930525i \(-0.619351\pi\)
−0.366228 + 0.930525i \(0.619351\pi\)
\(548\) −1.51192 −0.0645861
\(549\) 0 0
\(550\) 0 0
\(551\) 49.1307 2.09304
\(552\) 0 0
\(553\) 3.71733 0.158077
\(554\) −8.20541 −0.348614
\(555\) 0 0
\(556\) −0.579860 −0.0245915
\(557\) −24.5653 −1.04087 −0.520434 0.853902i \(-0.674230\pi\)
−0.520434 + 0.853902i \(0.674230\pi\)
\(558\) 0 0
\(559\) −20.4626 −0.865478
\(560\) −11.6146 −0.490807
\(561\) 0 0
\(562\) 28.1773 1.18859
\(563\) 15.0093 0.632568 0.316284 0.948665i \(-0.397565\pi\)
0.316284 + 0.948665i \(0.397565\pi\)
\(564\) 0 0
\(565\) 12.9800 0.546074
\(566\) 13.5187 0.568233
\(567\) 0 0
\(568\) −44.2572 −1.85699
\(569\) −12.1027 −0.507372 −0.253686 0.967287i \(-0.581643\pi\)
−0.253686 + 0.967287i \(0.581643\pi\)
\(570\) 0 0
\(571\) 38.9439 1.62975 0.814877 0.579634i \(-0.196805\pi\)
0.814877 + 0.579634i \(0.196805\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −4.39263 −0.183345
\(575\) −25.0280 −1.04374
\(576\) 0 0
\(577\) 38.1507 1.58823 0.794116 0.607766i \(-0.207934\pi\)
0.794116 + 0.607766i \(0.207934\pi\)
\(578\) 7.94733 0.330565
\(579\) 0 0
\(580\) −3.11203 −0.129220
\(581\) 1.55602 0.0645544
\(582\) 0 0
\(583\) 0 0
\(584\) 9.40610 0.389227
\(585\) 0 0
\(586\) 36.5327 1.50915
\(587\) 34.7967 1.43621 0.718106 0.695934i \(-0.245009\pi\)
0.718106 + 0.695934i \(0.245009\pi\)
\(588\) 0 0
\(589\) 25.4906 1.05032
\(590\) −1.55602 −0.0640602
\(591\) 0 0
\(592\) 36.4854 1.49954
\(593\) 18.5913 0.763452 0.381726 0.924276i \(-0.375330\pi\)
0.381726 + 0.924276i \(0.375330\pi\)
\(594\) 0 0
\(595\) 15.0093 0.615322
\(596\) 1.98134 0.0811590
\(597\) 0 0
\(598\) 33.4906 1.36953
\(599\) −24.6680 −1.00791 −0.503955 0.863730i \(-0.668122\pi\)
−0.503955 + 0.863730i \(0.668122\pi\)
\(600\) 0 0
\(601\) −30.1286 −1.22897 −0.614486 0.788928i \(-0.710637\pi\)
−0.614486 + 0.788928i \(0.710637\pi\)
\(602\) −5.83869 −0.237967
\(603\) 0 0
\(604\) 0.965235 0.0392749
\(605\) 0 0
\(606\) 0 0
\(607\) −13.6587 −0.554390 −0.277195 0.960814i \(-0.589405\pi\)
−0.277195 + 0.960814i \(0.589405\pi\)
\(608\) −5.59333 −0.226840
\(609\) 0 0
\(610\) −13.7987 −0.558694
\(611\) −3.71733 −0.150387
\(612\) 0 0
\(613\) −45.0280 −1.81866 −0.909332 0.416072i \(-0.863406\pi\)
−0.909332 + 0.416072i \(0.863406\pi\)
\(614\) 16.2199 0.654583
\(615\) 0 0
\(616\) 0 0
\(617\) 8.26401 0.332697 0.166348 0.986067i \(-0.446802\pi\)
0.166348 + 0.986067i \(0.446802\pi\)
\(618\) 0 0
\(619\) 43.0500 1.73033 0.865163 0.501490i \(-0.167215\pi\)
0.865163 + 0.501490i \(0.167215\pi\)
\(620\) −1.61462 −0.0648449
\(621\) 0 0
\(622\) 28.9580 1.16111
\(623\) −5.58532 −0.223771
\(624\) 0 0
\(625\) −25.6426 −1.02570
\(626\) −17.3107 −0.691873
\(627\) 0 0
\(628\) 3.31330 0.132215
\(629\) −47.1493 −1.87997
\(630\) 0 0
\(631\) 1.03863 0.0413473 0.0206737 0.999786i \(-0.493419\pi\)
0.0206737 + 0.999786i \(0.493419\pi\)
\(632\) 10.8522 0.431676
\(633\) 0 0
\(634\) 16.1800 0.642589
\(635\) −69.1680 −2.74485
\(636\) 0 0
\(637\) −4.77801 −0.189312
\(638\) 0 0
\(639\) 0 0
\(640\) −31.3148 −1.23783
\(641\) −33.6413 −1.32875 −0.664376 0.747399i \(-0.731302\pi\)
−0.664376 + 0.747399i \(0.731302\pi\)
\(642\) 0 0
\(643\) −21.0314 −0.829396 −0.414698 0.909959i \(-0.636113\pi\)
−0.414698 + 0.909959i \(0.636113\pi\)
\(644\) −0.726656 −0.0286343
\(645\) 0 0
\(646\) −45.6587 −1.79642
\(647\) −25.2300 −0.991894 −0.495947 0.868353i \(-0.665179\pi\)
−0.495947 + 0.868353i \(0.665179\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −31.7101 −1.24377
\(651\) 0 0
\(652\) 0.140018 0.00548351
\(653\) −20.6387 −0.807656 −0.403828 0.914835i \(-0.632321\pi\)
−0.403828 + 0.914835i \(0.632321\pi\)
\(654\) 0 0
\(655\) 47.1493 1.84228
\(656\) −11.9128 −0.465118
\(657\) 0 0
\(658\) −1.06068 −0.0413496
\(659\) 18.5067 0.720920 0.360460 0.932775i \(-0.382620\pi\)
0.360460 + 0.932775i \(0.382620\pi\)
\(660\) 0 0
\(661\) 16.8001 0.653446 0.326723 0.945120i \(-0.394056\pi\)
0.326723 + 0.945120i \(0.394056\pi\)
\(662\) −16.2054 −0.629841
\(663\) 0 0
\(664\) 4.54255 0.176285
\(665\) −22.0187 −0.853847
\(666\) 0 0
\(667\) 36.0373 1.39537
\(668\) 0.0799036 0.00309156
\(669\) 0 0
\(670\) 28.2427 1.09111
\(671\) 0 0
\(672\) 0 0
\(673\) 17.5560 0.676735 0.338367 0.941014i \(-0.390125\pi\)
0.338367 + 0.941014i \(0.390125\pi\)
\(674\) 1.35061 0.0520236
\(675\) 0 0
\(676\) −1.38924 −0.0534324
\(677\) 3.64732 0.140178 0.0700889 0.997541i \(-0.477672\pi\)
0.0700889 + 0.997541i \(0.477672\pi\)
\(678\) 0 0
\(679\) −6.15066 −0.236041
\(680\) 43.8174 1.68032
\(681\) 0 0
\(682\) 0 0
\(683\) −27.4720 −1.05119 −0.525593 0.850736i \(-0.676156\pi\)
−0.525593 + 0.850736i \(0.676156\pi\)
\(684\) 0 0
\(685\) −33.6040 −1.28394
\(686\) −1.36333 −0.0520521
\(687\) 0 0
\(688\) −15.8345 −0.603686
\(689\) 10.9066 0.415509
\(690\) 0 0
\(691\) −5.95666 −0.226602 −0.113301 0.993561i \(-0.536142\pi\)
−0.113301 + 0.993561i \(0.536142\pi\)
\(692\) −2.43673 −0.0926304
\(693\) 0 0
\(694\) 20.7080 0.786065
\(695\) −12.8880 −0.488869
\(696\) 0 0
\(697\) 15.3947 0.583116
\(698\) −40.4953 −1.53277
\(699\) 0 0
\(700\) 0.688023 0.0260048
\(701\) −7.36927 −0.278333 −0.139167 0.990269i \(-0.544442\pi\)
−0.139167 + 0.990269i \(0.544442\pi\)
\(702\) 0 0
\(703\) 69.1680 2.60872
\(704\) 0 0
\(705\) 0 0
\(706\) 9.15613 0.344595
\(707\) −10.7967 −0.406050
\(708\) 0 0
\(709\) −34.7160 −1.30379 −0.651894 0.758310i \(-0.726025\pi\)
−0.651894 + 0.758310i \(0.726025\pi\)
\(710\) −64.9253 −2.43660
\(711\) 0 0
\(712\) −16.3055 −0.611073
\(713\) 18.6974 0.700221
\(714\) 0 0
\(715\) 0 0
\(716\) 1.60011 0.0597989
\(717\) 0 0
\(718\) −24.1800 −0.902388
\(719\) 4.06200 0.151487 0.0757435 0.997127i \(-0.475867\pi\)
0.0757435 + 0.997127i \(0.475867\pi\)
\(720\) 0 0
\(721\) 13.2406 0.493108
\(722\) 41.0780 1.52877
\(723\) 0 0
\(724\) −2.10270 −0.0781463
\(725\) −34.1214 −1.26724
\(726\) 0 0
\(727\) −30.5433 −1.13279 −0.566394 0.824135i \(-0.691662\pi\)
−0.566394 + 0.824135i \(0.691662\pi\)
\(728\) −13.9486 −0.516971
\(729\) 0 0
\(730\) 13.7987 0.510714
\(731\) 20.4626 0.756838
\(732\) 0 0
\(733\) −30.8340 −1.13888 −0.569440 0.822033i \(-0.692840\pi\)
−0.569440 + 0.822033i \(0.692840\pi\)
\(734\) −11.0420 −0.407568
\(735\) 0 0
\(736\) −4.10270 −0.151228
\(737\) 0 0
\(738\) 0 0
\(739\) 22.2241 0.817525 0.408763 0.912641i \(-0.365960\pi\)
0.408763 + 0.912641i \(0.365960\pi\)
\(740\) −4.38123 −0.161057
\(741\) 0 0
\(742\) 3.11203 0.114246
\(743\) 31.1493 1.14276 0.571379 0.820686i \(-0.306409\pi\)
0.571379 + 0.820686i \(0.306409\pi\)
\(744\) 0 0
\(745\) 44.0373 1.61340
\(746\) 0.770750 0.0282192
\(747\) 0 0
\(748\) 0 0
\(749\) 14.0187 0.512231
\(750\) 0 0
\(751\) 11.9894 0.437498 0.218749 0.975781i \(-0.429802\pi\)
0.218749 + 0.975781i \(0.429802\pi\)
\(752\) −2.87657 −0.104898
\(753\) 0 0
\(754\) 45.6587 1.66279
\(755\) 21.4533 0.780766
\(756\) 0 0
\(757\) −11.4533 −0.416278 −0.208139 0.978099i \(-0.566741\pi\)
−0.208139 + 0.978099i \(0.566741\pi\)
\(758\) −30.7240 −1.11595
\(759\) 0 0
\(760\) −64.2800 −2.33168
\(761\) −7.89004 −0.286014 −0.143007 0.989722i \(-0.545677\pi\)
−0.143007 + 0.989722i \(0.545677\pi\)
\(762\) 0 0
\(763\) 15.5747 0.563841
\(764\) 0.544050 0.0196830
\(765\) 0 0
\(766\) −29.1634 −1.05372
\(767\) −1.73599 −0.0626828
\(768\) 0 0
\(769\) −48.8153 −1.76033 −0.880163 0.474672i \(-0.842567\pi\)
−0.880163 + 0.474672i \(0.842567\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.359939 0.0129545
\(773\) 3.19608 0.114955 0.0574774 0.998347i \(-0.481694\pi\)
0.0574774 + 0.998347i \(0.481694\pi\)
\(774\) 0 0
\(775\) −17.7033 −0.635921
\(776\) −17.9559 −0.644579
\(777\) 0 0
\(778\) −14.5586 −0.521950
\(779\) −22.5840 −0.809156
\(780\) 0 0
\(781\) 0 0
\(782\) −33.4906 −1.19762
\(783\) 0 0
\(784\) −3.69735 −0.132048
\(785\) 73.6413 2.62837
\(786\) 0 0
\(787\) −42.4813 −1.51429 −0.757147 0.653244i \(-0.773408\pi\)
−0.757147 + 0.653244i \(0.773408\pi\)
\(788\) −1.49063 −0.0531014
\(789\) 0 0
\(790\) 15.9201 0.566412
\(791\) 4.13201 0.146917
\(792\) 0 0
\(793\) −15.3947 −0.546682
\(794\) −32.6053 −1.15712
\(795\) 0 0
\(796\) −1.65146 −0.0585345
\(797\) 28.8587 1.02223 0.511113 0.859513i \(-0.329233\pi\)
0.511113 + 0.859513i \(0.329233\pi\)
\(798\) 0 0
\(799\) 3.71733 0.131510
\(800\) 3.88458 0.137341
\(801\) 0 0
\(802\) −15.8947 −0.561260
\(803\) 0 0
\(804\) 0 0
\(805\) −16.1507 −0.569236
\(806\) 23.6893 0.834418
\(807\) 0 0
\(808\) −31.5192 −1.10884
\(809\) 29.4533 1.03552 0.517762 0.855525i \(-0.326765\pi\)
0.517762 + 0.855525i \(0.326765\pi\)
\(810\) 0 0
\(811\) −2.48130 −0.0871302 −0.0435651 0.999051i \(-0.513872\pi\)
−0.0435651 + 0.999051i \(0.513872\pi\)
\(812\) −0.990671 −0.0347657
\(813\) 0 0
\(814\) 0 0
\(815\) 3.11203 0.109010
\(816\) 0 0
\(817\) −30.0187 −1.05022
\(818\) 44.7381 1.56423
\(819\) 0 0
\(820\) 1.43051 0.0499557
\(821\) 14.0187 0.489255 0.244627 0.969617i \(-0.421334\pi\)
0.244627 + 0.969617i \(0.421334\pi\)
\(822\) 0 0
\(823\) −42.7933 −1.49168 −0.745840 0.666125i \(-0.767952\pi\)
−0.745840 + 0.666125i \(0.767952\pi\)
\(824\) 38.6540 1.34658
\(825\) 0 0
\(826\) −0.495336 −0.0172349
\(827\) −9.17064 −0.318894 −0.159447 0.987206i \(-0.550971\pi\)
−0.159447 + 0.987206i \(0.550971\pi\)
\(828\) 0 0
\(829\) 29.1973 1.01406 0.507032 0.861927i \(-0.330743\pi\)
0.507032 + 0.861927i \(0.330743\pi\)
\(830\) 6.66391 0.231308
\(831\) 0 0
\(832\) −40.5300 −1.40513
\(833\) 4.77801 0.165548
\(834\) 0 0
\(835\) 1.77594 0.0614588
\(836\) 0 0
\(837\) 0 0
\(838\) −14.7194 −0.508473
\(839\) −19.7326 −0.681245 −0.340622 0.940200i \(-0.610638\pi\)
−0.340622 + 0.940200i \(0.610638\pi\)
\(840\) 0 0
\(841\) 20.1307 0.694162
\(842\) −1.57053 −0.0541241
\(843\) 0 0
\(844\) −1.57053 −0.0540599
\(845\) −30.8773 −1.06221
\(846\) 0 0
\(847\) 0 0
\(848\) 8.43984 0.289825
\(849\) 0 0
\(850\) 31.7101 1.08765
\(851\) 50.7347 1.73916
\(852\) 0 0
\(853\) 28.3527 0.970777 0.485389 0.874298i \(-0.338678\pi\)
0.485389 + 0.874298i \(0.338678\pi\)
\(854\) −4.39263 −0.150313
\(855\) 0 0
\(856\) 40.9253 1.39880
\(857\) 13.2033 0.451017 0.225509 0.974241i \(-0.427596\pi\)
0.225509 + 0.974241i \(0.427596\pi\)
\(858\) 0 0
\(859\) −20.8260 −0.710573 −0.355286 0.934757i \(-0.615617\pi\)
−0.355286 + 0.934757i \(0.615617\pi\)
\(860\) 1.90144 0.0648385
\(861\) 0 0
\(862\) 43.5720 1.48407
\(863\) −34.9439 −1.18951 −0.594753 0.803909i \(-0.702750\pi\)
−0.594753 + 0.803909i \(0.702750\pi\)
\(864\) 0 0
\(865\) −54.1587 −1.84145
\(866\) −6.04409 −0.205387
\(867\) 0 0
\(868\) −0.513993 −0.0174461
\(869\) 0 0
\(870\) 0 0
\(871\) 31.5093 1.06765
\(872\) 45.4678 1.53973
\(873\) 0 0
\(874\) 49.1307 1.66187
\(875\) −0.414680 −0.0140187
\(876\) 0 0
\(877\) 26.4813 0.894210 0.447105 0.894481i \(-0.352455\pi\)
0.447105 + 0.894481i \(0.352455\pi\)
\(878\) −37.4533 −1.26399
\(879\) 0 0
\(880\) 0 0
\(881\) −17.2627 −0.581595 −0.290798 0.956785i \(-0.593921\pi\)
−0.290798 + 0.956785i \(0.593921\pi\)
\(882\) 0 0
\(883\) −44.6027 −1.50100 −0.750499 0.660871i \(-0.770187\pi\)
−0.750499 + 0.660871i \(0.770187\pi\)
\(884\) 3.22661 0.108523
\(885\) 0 0
\(886\) 10.6213 0.356830
\(887\) 30.7894 1.03381 0.516904 0.856044i \(-0.327085\pi\)
0.516904 + 0.856044i \(0.327085\pi\)
\(888\) 0 0
\(889\) −22.0187 −0.738482
\(890\) −23.9201 −0.801803
\(891\) 0 0
\(892\) −3.96316 −0.132697
\(893\) −5.45331 −0.182488
\(894\) 0 0
\(895\) 35.5640 1.18877
\(896\) −9.96862 −0.333028
\(897\) 0 0
\(898\) −27.9627 −0.933127
\(899\) 25.4906 0.850160
\(900\) 0 0
\(901\) −10.9066 −0.363352
\(902\) 0 0
\(903\) 0 0
\(904\) 12.0628 0.401201
\(905\) −46.7347 −1.55351
\(906\) 0 0
\(907\) 23.7801 0.789605 0.394802 0.918766i \(-0.370813\pi\)
0.394802 + 0.918766i \(0.370813\pi\)
\(908\) −3.25205 −0.107923
\(909\) 0 0
\(910\) −20.4626 −0.678330
\(911\) −49.0280 −1.62437 −0.812185 0.583400i \(-0.801722\pi\)
−0.812185 + 0.583400i \(0.801722\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −11.6774 −0.386253
\(915\) 0 0
\(916\) −1.89730 −0.0626885
\(917\) 15.0093 0.495652
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) −47.1493 −1.55447
\(921\) 0 0
\(922\) −13.1779 −0.433991
\(923\) −72.4346 −2.38421
\(924\) 0 0
\(925\) −48.0373 −1.57946
\(926\) 15.5747 0.511816
\(927\) 0 0
\(928\) −5.59333 −0.183610
\(929\) 56.5840 1.85646 0.928230 0.372006i \(-0.121330\pi\)
0.928230 + 0.372006i \(0.121330\pi\)
\(930\) 0 0
\(931\) −7.00933 −0.229721
\(932\) −0.499956 −0.0163766
\(933\) 0 0
\(934\) −24.8408 −0.812814
\(935\) 0 0
\(936\) 0 0
\(937\) −16.8153 −0.549333 −0.274666 0.961540i \(-0.588567\pi\)
−0.274666 + 0.961540i \(0.588567\pi\)
\(938\) 8.99067 0.293556
\(939\) 0 0
\(940\) 0.345423 0.0112665
\(941\) −7.25931 −0.236647 −0.118323 0.992975i \(-0.537752\pi\)
−0.118323 + 0.992975i \(0.537752\pi\)
\(942\) 0 0
\(943\) −16.5653 −0.539442
\(944\) −1.34335 −0.0437224
\(945\) 0 0
\(946\) 0 0
\(947\) 25.6040 0.832017 0.416009 0.909361i \(-0.363429\pi\)
0.416009 + 0.909361i \(0.363429\pi\)
\(948\) 0 0
\(949\) 15.3947 0.499733
\(950\) −46.5186 −1.50926
\(951\) 0 0
\(952\) 13.9486 0.452078
\(953\) −7.14935 −0.231590 −0.115795 0.993273i \(-0.536942\pi\)
−0.115795 + 0.993273i \(0.536942\pi\)
\(954\) 0 0
\(955\) 12.0921 0.391290
\(956\) 3.11203 0.100650
\(957\) 0 0
\(958\) −4.73344 −0.152930
\(959\) −10.6974 −0.345436
\(960\) 0 0
\(961\) −17.7746 −0.573375
\(962\) 64.2800 2.07247
\(963\) 0 0
\(964\) 0.0445726 0.00143559
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) 15.9600 0.513241 0.256620 0.966512i \(-0.417391\pi\)
0.256620 + 0.966512i \(0.417391\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −26.3413 −0.845768
\(971\) 30.4779 0.978083 0.489041 0.872261i \(-0.337347\pi\)
0.489041 + 0.872261i \(0.337347\pi\)
\(972\) 0 0
\(973\) −4.10270 −0.131527
\(974\) −37.4388 −1.19962
\(975\) 0 0
\(976\) −11.9128 −0.381321
\(977\) −4.13201 −0.132195 −0.0660973 0.997813i \(-0.521055\pi\)
−0.0660973 + 0.997813i \(0.521055\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.443984 0.0141826
\(981\) 0 0
\(982\) 8.53991 0.272519
\(983\) 25.0246 0.798161 0.399080 0.916916i \(-0.369329\pi\)
0.399080 + 0.916916i \(0.369329\pi\)
\(984\) 0 0
\(985\) −33.1307 −1.05563
\(986\) −45.6587 −1.45407
\(987\) 0 0
\(988\) −4.73344 −0.150591
\(989\) −22.0187 −0.700153
\(990\) 0 0
\(991\) −27.5747 −0.875938 −0.437969 0.898990i \(-0.644302\pi\)
−0.437969 + 0.898990i \(0.644302\pi\)
\(992\) −2.90201 −0.0921388
\(993\) 0 0
\(994\) −20.6680 −0.655551
\(995\) −36.7054 −1.16364
\(996\) 0 0
\(997\) 23.6846 0.750100 0.375050 0.927005i \(-0.377626\pi\)
0.375050 + 0.927005i \(0.377626\pi\)
\(998\) −28.1773 −0.891938
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7623.2.a.ce.1.2 3
3.2 odd 2 847.2.a.i.1.2 3
11.10 odd 2 7623.2.a.bz.1.2 3
21.20 even 2 5929.2.a.t.1.2 3
33.2 even 10 847.2.f.t.323.2 12
33.5 odd 10 847.2.f.u.729.2 12
33.8 even 10 847.2.f.t.372.2 12
33.14 odd 10 847.2.f.u.372.2 12
33.17 even 10 847.2.f.t.729.2 12
33.20 odd 10 847.2.f.u.323.2 12
33.26 odd 10 847.2.f.u.148.2 12
33.29 even 10 847.2.f.t.148.2 12
33.32 even 2 847.2.a.j.1.2 yes 3
231.230 odd 2 5929.2.a.y.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
847.2.a.i.1.2 3 3.2 odd 2
847.2.a.j.1.2 yes 3 33.32 even 2
847.2.f.t.148.2 12 33.29 even 10
847.2.f.t.323.2 12 33.2 even 10
847.2.f.t.372.2 12 33.8 even 10
847.2.f.t.729.2 12 33.17 even 10
847.2.f.u.148.2 12 33.26 odd 10
847.2.f.u.323.2 12 33.20 odd 10
847.2.f.u.372.2 12 33.14 odd 10
847.2.f.u.729.2 12 33.5 odd 10
5929.2.a.t.1.2 3 21.20 even 2
5929.2.a.y.1.2 3 231.230 odd 2
7623.2.a.bz.1.2 3 11.10 odd 2
7623.2.a.ce.1.2 3 1.1 even 1 trivial