Properties

Label 7623.2.a.ce
Level $7623$
Weight $2$
Character orbit 7623.a
Self dual yes
Analytic conductor $60.870$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7623,2,Mod(1,7623)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7623.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7623, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7623 = 3^{2} \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7623.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,2,0,8,-1,0,-3,6,0,4,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8699614608\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 847)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{2} + 3) q^{4} + \beta_{2} q^{5} - q^{7} + (2 \beta_{2} - \beta_1 + 3) q^{8} + (2 \beta_{2} + 2) q^{10} + (\beta_{2} - \beta_1 - 2) q^{13} + (\beta_1 - 1) q^{14} + (3 \beta_{2} - 2 \beta_1 + 5) q^{16}+ \cdots + ( - \beta_1 + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 8 q^{4} - q^{5} - 3 q^{7} + 6 q^{8} + 4 q^{10} - 8 q^{13} - 2 q^{14} + 10 q^{16} + 8 q^{17} + 14 q^{20} - 7 q^{23} + 2 q^{25} + 12 q^{26} - 8 q^{28} - 13 q^{31} + 34 q^{32} - 12 q^{34}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.12489
−0.363328
−1.76156
−2.12489 0 2.51514 −0.484862 0 −1.00000 −1.09461 0 1.03028
1.2 1.36333 0 −0.141336 −3.14134 0 −1.00000 −2.91934 0 −4.28267
1.3 2.76156 0 5.62620 2.62620 0 −1.00000 10.0140 0 7.25240
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7623.2.a.ce 3
3.b odd 2 1 847.2.a.i 3
11.b odd 2 1 7623.2.a.bz 3
21.c even 2 1 5929.2.a.t 3
33.d even 2 1 847.2.a.j yes 3
33.f even 10 4 847.2.f.t 12
33.h odd 10 4 847.2.f.u 12
231.h odd 2 1 5929.2.a.y 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
847.2.a.i 3 3.b odd 2 1
847.2.a.j yes 3 33.d even 2 1
847.2.f.t 12 33.f even 10 4
847.2.f.u 12 33.h odd 10 4
5929.2.a.t 3 21.c even 2 1
5929.2.a.y 3 231.h odd 2 1
7623.2.a.bz 3 11.b odd 2 1
7623.2.a.ce 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7623))\):

\( T_{2}^{3} - 2T_{2}^{2} - 5T_{2} + 8 \) Copy content Toggle raw display
\( T_{5}^{3} + T_{5}^{2} - 8T_{5} - 4 \) Copy content Toggle raw display
\( T_{13}^{3} + 8T_{13}^{2} + 2T_{13} - 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + T^{2} - 8T - 4 \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 8 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$17$ \( T^{3} - 8 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$19$ \( T^{3} - 40T + 64 \) Copy content Toggle raw display
$23$ \( T^{3} + 7 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$29$ \( T^{3} - 40T + 64 \) Copy content Toggle raw display
$31$ \( T^{3} + 13 T^{2} + \cdots + 58 \) Copy content Toggle raw display
$37$ \( T^{3} + 17 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$41$ \( T^{3} - 16 T^{2} + \cdots - 80 \) Copy content Toggle raw display
$43$ \( T^{3} + 4 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$47$ \( T^{3} + 4 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$53$ \( T^{3} - 10T^{2} + 64 \) Copy content Toggle raw display
$59$ \( T^{3} + T^{2} - 6T + 2 \) Copy content Toggle raw display
$61$ \( T^{3} - 16 T^{2} + \cdots - 80 \) Copy content Toggle raw display
$67$ \( T^{3} + 3 T^{2} + \cdots - 424 \) Copy content Toggle raw display
$71$ \( T^{3} + 5 T^{2} + \cdots - 1480 \) Copy content Toggle raw display
$73$ \( T^{3} + 16 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$79$ \( T^{3} + 28 T^{2} + \cdots + 512 \) Copy content Toggle raw display
$83$ \( T^{3} - 8 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$89$ \( T^{3} - 21 T^{2} + \cdots - 100 \) Copy content Toggle raw display
$97$ \( T^{3} + 11 T^{2} + \cdots - 452 \) Copy content Toggle raw display
show more
show less