# Properties

 Label 7623.2.a.cb Level 7623 Weight 2 Character orbit 7623.a Self dual yes Analytic conductor 60.870 Analytic rank 0 Dimension 3 CM no Inner twists 1

# Related objects

## Newspace parameters

 Level: $$N$$ = $$7623 = 3^{2} \cdot 7 \cdot 11^{2}$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 7623.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$60.8699614608$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.837.1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 231) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{2} + ( 2 + \beta_{2} ) q^{4} + ( -\beta_{1} + \beta_{2} ) q^{5} + q^{7} + ( 1 + 2 \beta_{1} ) q^{8} +O(q^{10})$$ $$q + \beta_{1} q^{2} + ( 2 + \beta_{2} ) q^{4} + ( -\beta_{1} + \beta_{2} ) q^{5} + q^{7} + ( 1 + 2 \beta_{1} ) q^{8} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{10} + ( -\beta_{1} + \beta_{2} ) q^{13} + \beta_{1} q^{14} + ( 4 + \beta_{1} ) q^{16} -2 \beta_{1} q^{17} + ( -4 + \beta_{1} + \beta_{2} ) q^{19} + ( 7 - 3 \beta_{1} ) q^{20} + ( 2 + 2 \beta_{1} ) q^{23} + ( 5 - 3 \beta_{1} - \beta_{2} ) q^{25} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{26} + ( 2 + \beta_{2} ) q^{28} + ( 4 - \beta_{1} + \beta_{2} ) q^{29} + ( -2 + 2 \beta_{2} ) q^{31} + ( 2 + \beta_{2} ) q^{32} + ( -8 - 2 \beta_{2} ) q^{34} + ( -\beta_{1} + \beta_{2} ) q^{35} + ( 3 \beta_{1} + \beta_{2} ) q^{37} + ( 5 - 2 \beta_{1} + \beta_{2} ) q^{38} + ( -6 + 3 \beta_{1} - \beta_{2} ) q^{40} + ( 2 + 2 \beta_{1} + 2 \beta_{2} ) q^{41} + ( -2 + 2 \beta_{1} ) q^{43} + ( 8 + 2 \beta_{1} + 2 \beta_{2} ) q^{46} + ( 8 - \beta_{1} - \beta_{2} ) q^{47} + q^{49} + ( -13 + 3 \beta_{1} - 3 \beta_{2} ) q^{50} + ( 7 - 3 \beta_{1} ) q^{52} + 2 \beta_{2} q^{53} + ( 1 + 2 \beta_{1} ) q^{56} + ( -3 + 6 \beta_{1} - \beta_{2} ) q^{58} + ( 8 - \beta_{1} + 3 \beta_{2} ) q^{59} -6 q^{61} + ( 2 + 2 \beta_{1} ) q^{62} + ( -7 + 2 \beta_{1} ) q^{64} + ( 10 - 3 \beta_{1} - \beta_{2} ) q^{65} + ( 4 + \beta_{1} + \beta_{2} ) q^{67} + ( -2 - 8 \beta_{1} ) q^{68} + ( -3 + 2 \beta_{1} - \beta_{2} ) q^{70} + ( -4 + 4 \beta_{1} ) q^{71} + ( -8 + \beta_{1} - \beta_{2} ) q^{73} + ( 13 + 2 \beta_{1} + 3 \beta_{2} ) q^{74} + ( 1 + 5 \beta_{1} - 4 \beta_{2} ) q^{76} + ( -4 - 4 \beta_{1} ) q^{79} + ( -3 - 2 \beta_{1} + 3 \beta_{2} ) q^{80} + ( 10 + 6 \beta_{1} + 2 \beta_{2} ) q^{82} + ( -6 + 2 \beta_{2} ) q^{83} + ( 6 - 4 \beta_{1} + 2 \beta_{2} ) q^{85} + ( 8 - 2 \beta_{1} + 2 \beta_{2} ) q^{86} + ( -6 - 4 \beta_{2} ) q^{89} + ( -\beta_{1} + \beta_{2} ) q^{91} + ( 6 + 8 \beta_{1} + 2 \beta_{2} ) q^{92} + ( -5 + 6 \beta_{1} - \beta_{2} ) q^{94} + ( 4 + 5 \beta_{1} - 7 \beta_{2} ) q^{95} + ( 8 + 2 \beta_{2} ) q^{97} + \beta_{1} q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3q + 6q^{4} + 3q^{7} + 3q^{8} + O(q^{10})$$ $$3q + 6q^{4} + 3q^{7} + 3q^{8} - 9q^{10} + 12q^{16} - 12q^{19} + 21q^{20} + 6q^{23} + 15q^{25} - 9q^{26} + 6q^{28} + 12q^{29} - 6q^{31} + 6q^{32} - 24q^{34} + 15q^{38} - 18q^{40} + 6q^{41} - 6q^{43} + 24q^{46} + 24q^{47} + 3q^{49} - 39q^{50} + 21q^{52} + 3q^{56} - 9q^{58} + 24q^{59} - 18q^{61} + 6q^{62} - 21q^{64} + 30q^{65} + 12q^{67} - 6q^{68} - 9q^{70} - 12q^{71} - 24q^{73} + 39q^{74} + 3q^{76} - 12q^{79} - 9q^{80} + 30q^{82} - 18q^{83} + 18q^{85} + 24q^{86} - 18q^{89} + 18q^{92} - 15q^{94} + 12q^{95} + 24q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - 6 x - 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2} - 4$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{2} + 4$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −2.36147 −0.167449 2.52892
−2.36147 0 3.57653 3.93800 0 1.00000 −3.72294 0 −9.29947
1.2 −0.167449 0 −1.97196 −3.80451 0 1.00000 0.665102 0 0.637062
1.3 2.52892 0 4.39543 −0.133492 0 1.00000 6.05784 0 −0.337590
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7623.2.a.cb 3
3.b odd 2 1 2541.2.a.bi 3
11.b odd 2 1 693.2.a.m 3
33.d even 2 1 231.2.a.d 3
77.b even 2 1 4851.2.a.bp 3
132.d odd 2 1 3696.2.a.bp 3
165.d even 2 1 5775.2.a.bw 3
231.h odd 2 1 1617.2.a.s 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.2.a.d 3 33.d even 2 1
693.2.a.m 3 11.b odd 2 1
1617.2.a.s 3 231.h odd 2 1
2541.2.a.bi 3 3.b odd 2 1
3696.2.a.bp 3 132.d odd 2 1
4851.2.a.bp 3 77.b even 2 1
5775.2.a.bw 3 165.d even 2 1
7623.2.a.cb 3 1.a even 1 1 trivial

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$7$$ $$-1$$
$$11$$ $$-1$$

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7623))$$:

 $$T_{2}^{3} - 6 T_{2} - 1$$ $$T_{5}^{3} - 15 T_{5} - 2$$ $$T_{13}^{3} - 15 T_{13} - 2$$