Defining parameters
| Level: | \( N \) | \(=\) | \( 7623 = 3^{2} \cdot 7 \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7623.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 81 \) | ||
| Sturm bound: | \(2112\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7623))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1104 | 273 | 831 |
| Cusp forms | 1009 | 273 | 736 |
| Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(7\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(132\) | \(26\) | \(106\) | \(121\) | \(26\) | \(95\) | \(11\) | \(0\) | \(11\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(142\) | \(30\) | \(112\) | \(130\) | \(30\) | \(100\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(144\) | \(34\) | \(110\) | \(132\) | \(34\) | \(98\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(134\) | \(20\) | \(114\) | \(122\) | \(20\) | \(102\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(144\) | \(41\) | \(103\) | \(132\) | \(41\) | \(91\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(134\) | \(40\) | \(94\) | \(122\) | \(40\) | \(82\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(132\) | \(37\) | \(95\) | \(120\) | \(37\) | \(83\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(142\) | \(45\) | \(97\) | \(130\) | \(45\) | \(85\) | \(12\) | \(0\) | \(12\) | |||
| Plus space | \(+\) | \(532\) | \(123\) | \(409\) | \(485\) | \(123\) | \(362\) | \(47\) | \(0\) | \(47\) | |||||
| Minus space | \(-\) | \(572\) | \(150\) | \(422\) | \(524\) | \(150\) | \(374\) | \(48\) | \(0\) | \(48\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7623))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7623))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7623)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(693))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(847))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1089))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2541))\)\(^{\oplus 2}\)