Defining parameters
Level: | \( N \) | \(=\) | \( 7616 = 2^{6} \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7616.be (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(2304\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7616, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2336 | 384 | 1952 |
Cusp forms | 2272 | 384 | 1888 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{2}^{\mathrm{new}}(7616, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(7616, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7616, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1088, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1904, [\chi])\)\(^{\oplus 3}\)