Properties

Label 7616.2.a.y.1.1
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 238)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.23607 q^{3} -3.23607 q^{5} +1.00000 q^{7} -1.47214 q^{9} +0.763932 q^{11} -6.47214 q^{13} +4.00000 q^{15} +1.00000 q^{17} +0.472136 q^{19} -1.23607 q^{21} -8.00000 q^{23} +5.47214 q^{25} +5.52786 q^{27} -7.70820 q^{29} +10.4721 q^{31} -0.944272 q^{33} -3.23607 q^{35} -1.23607 q^{37} +8.00000 q^{39} -12.4721 q^{41} -6.47214 q^{43} +4.76393 q^{45} -6.47214 q^{47} +1.00000 q^{49} -1.23607 q^{51} -4.47214 q^{53} -2.47214 q^{55} -0.583592 q^{57} -6.00000 q^{59} +3.23607 q^{61} -1.47214 q^{63} +20.9443 q^{65} -10.4721 q^{67} +9.88854 q^{69} -6.47214 q^{71} -13.4164 q^{73} -6.76393 q^{75} +0.763932 q^{77} +1.52786 q^{79} -2.41641 q^{81} +2.00000 q^{83} -3.23607 q^{85} +9.52786 q^{87} +2.00000 q^{89} -6.47214 q^{91} -12.9443 q^{93} -1.52786 q^{95} +0.472136 q^{97} -1.12461 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{5} + 2 q^{7} + 6 q^{9} + 6 q^{11} - 4 q^{13} + 8 q^{15} + 2 q^{17} - 8 q^{19} + 2 q^{21} - 16 q^{23} + 2 q^{25} + 20 q^{27} - 2 q^{29} + 12 q^{31} + 16 q^{33} - 2 q^{35} + 2 q^{37}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.23607 −0.713644 −0.356822 0.934172i \(-0.616140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) 0 0
\(5\) −3.23607 −1.44721 −0.723607 0.690212i \(-0.757517\pi\)
−0.723607 + 0.690212i \(0.757517\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −1.47214 −0.490712
\(10\) 0 0
\(11\) 0.763932 0.230334 0.115167 0.993346i \(-0.463260\pi\)
0.115167 + 0.993346i \(0.463260\pi\)
\(12\) 0 0
\(13\) −6.47214 −1.79505 −0.897524 0.440966i \(-0.854636\pi\)
−0.897524 + 0.440966i \(0.854636\pi\)
\(14\) 0 0
\(15\) 4.00000 1.03280
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 0.472136 0.108315 0.0541577 0.998532i \(-0.482753\pi\)
0.0541577 + 0.998532i \(0.482753\pi\)
\(20\) 0 0
\(21\) −1.23607 −0.269732
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 5.47214 1.09443
\(26\) 0 0
\(27\) 5.52786 1.06384
\(28\) 0 0
\(29\) −7.70820 −1.43138 −0.715689 0.698419i \(-0.753887\pi\)
−0.715689 + 0.698419i \(0.753887\pi\)
\(30\) 0 0
\(31\) 10.4721 1.88085 0.940426 0.340000i \(-0.110427\pi\)
0.940426 + 0.340000i \(0.110427\pi\)
\(32\) 0 0
\(33\) −0.944272 −0.164377
\(34\) 0 0
\(35\) −3.23607 −0.546995
\(36\) 0 0
\(37\) −1.23607 −0.203208 −0.101604 0.994825i \(-0.532398\pi\)
−0.101604 + 0.994825i \(0.532398\pi\)
\(38\) 0 0
\(39\) 8.00000 1.28103
\(40\) 0 0
\(41\) −12.4721 −1.94782 −0.973910 0.226934i \(-0.927130\pi\)
−0.973910 + 0.226934i \(0.927130\pi\)
\(42\) 0 0
\(43\) −6.47214 −0.986991 −0.493496 0.869748i \(-0.664281\pi\)
−0.493496 + 0.869748i \(0.664281\pi\)
\(44\) 0 0
\(45\) 4.76393 0.710165
\(46\) 0 0
\(47\) −6.47214 −0.944058 −0.472029 0.881583i \(-0.656478\pi\)
−0.472029 + 0.881583i \(0.656478\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.23607 −0.173084
\(52\) 0 0
\(53\) −4.47214 −0.614295 −0.307148 0.951662i \(-0.599375\pi\)
−0.307148 + 0.951662i \(0.599375\pi\)
\(54\) 0 0
\(55\) −2.47214 −0.333343
\(56\) 0 0
\(57\) −0.583592 −0.0772987
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 3.23607 0.414336 0.207168 0.978305i \(-0.433575\pi\)
0.207168 + 0.978305i \(0.433575\pi\)
\(62\) 0 0
\(63\) −1.47214 −0.185472
\(64\) 0 0
\(65\) 20.9443 2.59782
\(66\) 0 0
\(67\) −10.4721 −1.27938 −0.639688 0.768635i \(-0.720936\pi\)
−0.639688 + 0.768635i \(0.720936\pi\)
\(68\) 0 0
\(69\) 9.88854 1.19044
\(70\) 0 0
\(71\) −6.47214 −0.768101 −0.384051 0.923312i \(-0.625471\pi\)
−0.384051 + 0.923312i \(0.625471\pi\)
\(72\) 0 0
\(73\) −13.4164 −1.57027 −0.785136 0.619324i \(-0.787407\pi\)
−0.785136 + 0.619324i \(0.787407\pi\)
\(74\) 0 0
\(75\) −6.76393 −0.781032
\(76\) 0 0
\(77\) 0.763932 0.0870581
\(78\) 0 0
\(79\) 1.52786 0.171898 0.0859491 0.996300i \(-0.472608\pi\)
0.0859491 + 0.996300i \(0.472608\pi\)
\(80\) 0 0
\(81\) −2.41641 −0.268490
\(82\) 0 0
\(83\) 2.00000 0.219529 0.109764 0.993958i \(-0.464990\pi\)
0.109764 + 0.993958i \(0.464990\pi\)
\(84\) 0 0
\(85\) −3.23607 −0.351001
\(86\) 0 0
\(87\) 9.52786 1.02149
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) −6.47214 −0.678464
\(92\) 0 0
\(93\) −12.9443 −1.34226
\(94\) 0 0
\(95\) −1.52786 −0.156756
\(96\) 0 0
\(97\) 0.472136 0.0479381 0.0239691 0.999713i \(-0.492370\pi\)
0.0239691 + 0.999713i \(0.492370\pi\)
\(98\) 0 0
\(99\) −1.12461 −0.113028
\(100\) 0 0
\(101\) −2.47214 −0.245987 −0.122993 0.992407i \(-0.539249\pi\)
−0.122993 + 0.992407i \(0.539249\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 4.00000 0.390360
\(106\) 0 0
\(107\) 3.23607 0.312842 0.156421 0.987690i \(-0.450004\pi\)
0.156421 + 0.987690i \(0.450004\pi\)
\(108\) 0 0
\(109\) 10.1803 0.975100 0.487550 0.873095i \(-0.337891\pi\)
0.487550 + 0.873095i \(0.337891\pi\)
\(110\) 0 0
\(111\) 1.52786 0.145018
\(112\) 0 0
\(113\) −13.4164 −1.26211 −0.631055 0.775738i \(-0.717378\pi\)
−0.631055 + 0.775738i \(0.717378\pi\)
\(114\) 0 0
\(115\) 25.8885 2.41412
\(116\) 0 0
\(117\) 9.52786 0.880851
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −10.4164 −0.946946
\(122\) 0 0
\(123\) 15.4164 1.39005
\(124\) 0 0
\(125\) −1.52786 −0.136656
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) −11.7082 −1.02295 −0.511475 0.859298i \(-0.670901\pi\)
−0.511475 + 0.859298i \(0.670901\pi\)
\(132\) 0 0
\(133\) 0.472136 0.0409394
\(134\) 0 0
\(135\) −17.8885 −1.53960
\(136\) 0 0
\(137\) 12.4721 1.06557 0.532783 0.846252i \(-0.321146\pi\)
0.532783 + 0.846252i \(0.321146\pi\)
\(138\) 0 0
\(139\) 10.1803 0.863485 0.431743 0.901997i \(-0.357899\pi\)
0.431743 + 0.901997i \(0.357899\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) −4.94427 −0.413461
\(144\) 0 0
\(145\) 24.9443 2.07151
\(146\) 0 0
\(147\) −1.23607 −0.101949
\(148\) 0 0
\(149\) −1.05573 −0.0864886 −0.0432443 0.999065i \(-0.513769\pi\)
−0.0432443 + 0.999065i \(0.513769\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) −1.47214 −0.119015
\(154\) 0 0
\(155\) −33.8885 −2.72199
\(156\) 0 0
\(157\) −3.05573 −0.243874 −0.121937 0.992538i \(-0.538911\pi\)
−0.121937 + 0.992538i \(0.538911\pi\)
\(158\) 0 0
\(159\) 5.52786 0.438388
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) −13.7082 −1.07371 −0.536855 0.843675i \(-0.680388\pi\)
−0.536855 + 0.843675i \(0.680388\pi\)
\(164\) 0 0
\(165\) 3.05573 0.237888
\(166\) 0 0
\(167\) 5.52786 0.427759 0.213879 0.976860i \(-0.431390\pi\)
0.213879 + 0.976860i \(0.431390\pi\)
\(168\) 0 0
\(169\) 28.8885 2.22220
\(170\) 0 0
\(171\) −0.695048 −0.0531517
\(172\) 0 0
\(173\) 10.6525 0.809893 0.404946 0.914340i \(-0.367290\pi\)
0.404946 + 0.914340i \(0.367290\pi\)
\(174\) 0 0
\(175\) 5.47214 0.413655
\(176\) 0 0
\(177\) 7.41641 0.557451
\(178\) 0 0
\(179\) 8.94427 0.668526 0.334263 0.942480i \(-0.391513\pi\)
0.334263 + 0.942480i \(0.391513\pi\)
\(180\) 0 0
\(181\) 7.23607 0.537853 0.268926 0.963161i \(-0.413331\pi\)
0.268926 + 0.963161i \(0.413331\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 0.763932 0.0558642
\(188\) 0 0
\(189\) 5.52786 0.402093
\(190\) 0 0
\(191\) 4.94427 0.357755 0.178877 0.983871i \(-0.442753\pi\)
0.178877 + 0.983871i \(0.442753\pi\)
\(192\) 0 0
\(193\) 23.8885 1.71954 0.859768 0.510686i \(-0.170608\pi\)
0.859768 + 0.510686i \(0.170608\pi\)
\(194\) 0 0
\(195\) −25.8885 −1.85392
\(196\) 0 0
\(197\) −8.29180 −0.590766 −0.295383 0.955379i \(-0.595447\pi\)
−0.295383 + 0.955379i \(0.595447\pi\)
\(198\) 0 0
\(199\) −5.52786 −0.391860 −0.195930 0.980618i \(-0.562773\pi\)
−0.195930 + 0.980618i \(0.562773\pi\)
\(200\) 0 0
\(201\) 12.9443 0.913019
\(202\) 0 0
\(203\) −7.70820 −0.541010
\(204\) 0 0
\(205\) 40.3607 2.81891
\(206\) 0 0
\(207\) 11.7771 0.818564
\(208\) 0 0
\(209\) 0.360680 0.0249487
\(210\) 0 0
\(211\) −14.2918 −0.983888 −0.491944 0.870627i \(-0.663713\pi\)
−0.491944 + 0.870627i \(0.663713\pi\)
\(212\) 0 0
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 20.9443 1.42839
\(216\) 0 0
\(217\) 10.4721 0.710895
\(218\) 0 0
\(219\) 16.5836 1.12062
\(220\) 0 0
\(221\) −6.47214 −0.435363
\(222\) 0 0
\(223\) −10.4721 −0.701266 −0.350633 0.936513i \(-0.614034\pi\)
−0.350633 + 0.936513i \(0.614034\pi\)
\(224\) 0 0
\(225\) −8.05573 −0.537049
\(226\) 0 0
\(227\) −21.5967 −1.43343 −0.716713 0.697368i \(-0.754354\pi\)
−0.716713 + 0.697368i \(0.754354\pi\)
\(228\) 0 0
\(229\) −12.9443 −0.855382 −0.427691 0.903925i \(-0.640673\pi\)
−0.427691 + 0.903925i \(0.640673\pi\)
\(230\) 0 0
\(231\) −0.944272 −0.0621285
\(232\) 0 0
\(233\) −15.8885 −1.04089 −0.520447 0.853894i \(-0.674235\pi\)
−0.520447 + 0.853894i \(0.674235\pi\)
\(234\) 0 0
\(235\) 20.9443 1.36625
\(236\) 0 0
\(237\) −1.88854 −0.122674
\(238\) 0 0
\(239\) −12.9443 −0.837295 −0.418648 0.908149i \(-0.637496\pi\)
−0.418648 + 0.908149i \(0.637496\pi\)
\(240\) 0 0
\(241\) −23.8885 −1.53880 −0.769398 0.638769i \(-0.779444\pi\)
−0.769398 + 0.638769i \(0.779444\pi\)
\(242\) 0 0
\(243\) −13.5967 −0.872232
\(244\) 0 0
\(245\) −3.23607 −0.206745
\(246\) 0 0
\(247\) −3.05573 −0.194431
\(248\) 0 0
\(249\) −2.47214 −0.156665
\(250\) 0 0
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) 0 0
\(253\) −6.11146 −0.384224
\(254\) 0 0
\(255\) 4.00000 0.250490
\(256\) 0 0
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) −1.23607 −0.0768055
\(260\) 0 0
\(261\) 11.3475 0.702394
\(262\) 0 0
\(263\) −24.9443 −1.53813 −0.769065 0.639171i \(-0.779278\pi\)
−0.769065 + 0.639171i \(0.779278\pi\)
\(264\) 0 0
\(265\) 14.4721 0.889016
\(266\) 0 0
\(267\) −2.47214 −0.151292
\(268\) 0 0
\(269\) 13.7082 0.835804 0.417902 0.908492i \(-0.362766\pi\)
0.417902 + 0.908492i \(0.362766\pi\)
\(270\) 0 0
\(271\) 7.41641 0.450515 0.225257 0.974299i \(-0.427678\pi\)
0.225257 + 0.974299i \(0.427678\pi\)
\(272\) 0 0
\(273\) 8.00000 0.484182
\(274\) 0 0
\(275\) 4.18034 0.252084
\(276\) 0 0
\(277\) −8.65248 −0.519877 −0.259938 0.965625i \(-0.583702\pi\)
−0.259938 + 0.965625i \(0.583702\pi\)
\(278\) 0 0
\(279\) −15.4164 −0.922956
\(280\) 0 0
\(281\) 12.4721 0.744025 0.372013 0.928228i \(-0.378668\pi\)
0.372013 + 0.928228i \(0.378668\pi\)
\(282\) 0 0
\(283\) 23.7082 1.40931 0.704653 0.709552i \(-0.251103\pi\)
0.704653 + 0.709552i \(0.251103\pi\)
\(284\) 0 0
\(285\) 1.88854 0.111868
\(286\) 0 0
\(287\) −12.4721 −0.736207
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −0.583592 −0.0342108
\(292\) 0 0
\(293\) 28.0000 1.63578 0.817889 0.575376i \(-0.195144\pi\)
0.817889 + 0.575376i \(0.195144\pi\)
\(294\) 0 0
\(295\) 19.4164 1.13047
\(296\) 0 0
\(297\) 4.22291 0.245038
\(298\) 0 0
\(299\) 51.7771 2.99435
\(300\) 0 0
\(301\) −6.47214 −0.373048
\(302\) 0 0
\(303\) 3.05573 0.175547
\(304\) 0 0
\(305\) −10.4721 −0.599633
\(306\) 0 0
\(307\) −12.4721 −0.711822 −0.355911 0.934520i \(-0.615829\pi\)
−0.355911 + 0.934520i \(0.615829\pi\)
\(308\) 0 0
\(309\) −4.94427 −0.281270
\(310\) 0 0
\(311\) 3.05573 0.173274 0.0866372 0.996240i \(-0.472388\pi\)
0.0866372 + 0.996240i \(0.472388\pi\)
\(312\) 0 0
\(313\) 21.4164 1.21053 0.605263 0.796025i \(-0.293068\pi\)
0.605263 + 0.796025i \(0.293068\pi\)
\(314\) 0 0
\(315\) 4.76393 0.268417
\(316\) 0 0
\(317\) 5.81966 0.326865 0.163432 0.986555i \(-0.447743\pi\)
0.163432 + 0.986555i \(0.447743\pi\)
\(318\) 0 0
\(319\) −5.88854 −0.329695
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 0.472136 0.0262703
\(324\) 0 0
\(325\) −35.4164 −1.96455
\(326\) 0 0
\(327\) −12.5836 −0.695874
\(328\) 0 0
\(329\) −6.47214 −0.356820
\(330\) 0 0
\(331\) 24.3607 1.33898 0.669492 0.742819i \(-0.266512\pi\)
0.669492 + 0.742819i \(0.266512\pi\)
\(332\) 0 0
\(333\) 1.81966 0.0997168
\(334\) 0 0
\(335\) 33.8885 1.85153
\(336\) 0 0
\(337\) −11.5279 −0.627963 −0.313981 0.949429i \(-0.601663\pi\)
−0.313981 + 0.949429i \(0.601663\pi\)
\(338\) 0 0
\(339\) 16.5836 0.900697
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −32.0000 −1.72282
\(346\) 0 0
\(347\) −26.6525 −1.43078 −0.715390 0.698725i \(-0.753751\pi\)
−0.715390 + 0.698725i \(0.753751\pi\)
\(348\) 0 0
\(349\) 30.4721 1.63114 0.815568 0.578661i \(-0.196425\pi\)
0.815568 + 0.578661i \(0.196425\pi\)
\(350\) 0 0
\(351\) −35.7771 −1.90964
\(352\) 0 0
\(353\) 23.8885 1.27146 0.635729 0.771912i \(-0.280699\pi\)
0.635729 + 0.771912i \(0.280699\pi\)
\(354\) 0 0
\(355\) 20.9443 1.11161
\(356\) 0 0
\(357\) −1.23607 −0.0654197
\(358\) 0 0
\(359\) 30.8328 1.62729 0.813647 0.581359i \(-0.197479\pi\)
0.813647 + 0.581359i \(0.197479\pi\)
\(360\) 0 0
\(361\) −18.7771 −0.988268
\(362\) 0 0
\(363\) 12.8754 0.675783
\(364\) 0 0
\(365\) 43.4164 2.27252
\(366\) 0 0
\(367\) 11.0557 0.577104 0.288552 0.957464i \(-0.406826\pi\)
0.288552 + 0.957464i \(0.406826\pi\)
\(368\) 0 0
\(369\) 18.3607 0.955819
\(370\) 0 0
\(371\) −4.47214 −0.232182
\(372\) 0 0
\(373\) 13.4164 0.694675 0.347338 0.937740i \(-0.387086\pi\)
0.347338 + 0.937740i \(0.387086\pi\)
\(374\) 0 0
\(375\) 1.88854 0.0975240
\(376\) 0 0
\(377\) 49.8885 2.56939
\(378\) 0 0
\(379\) 31.5967 1.62302 0.811508 0.584341i \(-0.198647\pi\)
0.811508 + 0.584341i \(0.198647\pi\)
\(380\) 0 0
\(381\) 14.8328 0.759908
\(382\) 0 0
\(383\) −8.94427 −0.457031 −0.228515 0.973540i \(-0.573387\pi\)
−0.228515 + 0.973540i \(0.573387\pi\)
\(384\) 0 0
\(385\) −2.47214 −0.125992
\(386\) 0 0
\(387\) 9.52786 0.484329
\(388\) 0 0
\(389\) −26.0000 −1.31825 −0.659126 0.752032i \(-0.729074\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 14.4721 0.730023
\(394\) 0 0
\(395\) −4.94427 −0.248773
\(396\) 0 0
\(397\) 4.18034 0.209805 0.104903 0.994482i \(-0.466547\pi\)
0.104903 + 0.994482i \(0.466547\pi\)
\(398\) 0 0
\(399\) −0.583592 −0.0292161
\(400\) 0 0
\(401\) −14.9443 −0.746281 −0.373141 0.927775i \(-0.621719\pi\)
−0.373141 + 0.927775i \(0.621719\pi\)
\(402\) 0 0
\(403\) −67.7771 −3.37622
\(404\) 0 0
\(405\) 7.81966 0.388562
\(406\) 0 0
\(407\) −0.944272 −0.0468058
\(408\) 0 0
\(409\) −2.94427 −0.145585 −0.0727924 0.997347i \(-0.523191\pi\)
−0.0727924 + 0.997347i \(0.523191\pi\)
\(410\) 0 0
\(411\) −15.4164 −0.760435
\(412\) 0 0
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) −6.47214 −0.317705
\(416\) 0 0
\(417\) −12.5836 −0.616221
\(418\) 0 0
\(419\) 28.0689 1.37125 0.685627 0.727953i \(-0.259528\pi\)
0.685627 + 0.727953i \(0.259528\pi\)
\(420\) 0 0
\(421\) 24.4721 1.19270 0.596349 0.802725i \(-0.296617\pi\)
0.596349 + 0.802725i \(0.296617\pi\)
\(422\) 0 0
\(423\) 9.52786 0.463261
\(424\) 0 0
\(425\) 5.47214 0.265438
\(426\) 0 0
\(427\) 3.23607 0.156604
\(428\) 0 0
\(429\) 6.11146 0.295064
\(430\) 0 0
\(431\) −4.94427 −0.238157 −0.119079 0.992885i \(-0.537994\pi\)
−0.119079 + 0.992885i \(0.537994\pi\)
\(432\) 0 0
\(433\) −6.94427 −0.333720 −0.166860 0.985981i \(-0.553363\pi\)
−0.166860 + 0.985981i \(0.553363\pi\)
\(434\) 0 0
\(435\) −30.8328 −1.47832
\(436\) 0 0
\(437\) −3.77709 −0.180683
\(438\) 0 0
\(439\) 20.9443 0.999616 0.499808 0.866136i \(-0.333404\pi\)
0.499808 + 0.866136i \(0.333404\pi\)
\(440\) 0 0
\(441\) −1.47214 −0.0701017
\(442\) 0 0
\(443\) 36.3607 1.72755 0.863774 0.503879i \(-0.168094\pi\)
0.863774 + 0.503879i \(0.168094\pi\)
\(444\) 0 0
\(445\) −6.47214 −0.306809
\(446\) 0 0
\(447\) 1.30495 0.0617221
\(448\) 0 0
\(449\) −17.4164 −0.821931 −0.410966 0.911651i \(-0.634808\pi\)
−0.410966 + 0.911651i \(0.634808\pi\)
\(450\) 0 0
\(451\) −9.52786 −0.448650
\(452\) 0 0
\(453\) 4.94427 0.232302
\(454\) 0 0
\(455\) 20.9443 0.981883
\(456\) 0 0
\(457\) −19.8885 −0.930347 −0.465173 0.885220i \(-0.654008\pi\)
−0.465173 + 0.885220i \(0.654008\pi\)
\(458\) 0 0
\(459\) 5.52786 0.258019
\(460\) 0 0
\(461\) 14.4721 0.674035 0.337017 0.941498i \(-0.390582\pi\)
0.337017 + 0.941498i \(0.390582\pi\)
\(462\) 0 0
\(463\) −15.0557 −0.699699 −0.349850 0.936806i \(-0.613767\pi\)
−0.349850 + 0.936806i \(0.613767\pi\)
\(464\) 0 0
\(465\) 41.8885 1.94253
\(466\) 0 0
\(467\) 34.3607 1.59002 0.795011 0.606595i \(-0.207465\pi\)
0.795011 + 0.606595i \(0.207465\pi\)
\(468\) 0 0
\(469\) −10.4721 −0.483558
\(470\) 0 0
\(471\) 3.77709 0.174039
\(472\) 0 0
\(473\) −4.94427 −0.227338
\(474\) 0 0
\(475\) 2.58359 0.118543
\(476\) 0 0
\(477\) 6.58359 0.301442
\(478\) 0 0
\(479\) −7.41641 −0.338864 −0.169432 0.985542i \(-0.554193\pi\)
−0.169432 + 0.985542i \(0.554193\pi\)
\(480\) 0 0
\(481\) 8.00000 0.364769
\(482\) 0 0
\(483\) 9.88854 0.449944
\(484\) 0 0
\(485\) −1.52786 −0.0693767
\(486\) 0 0
\(487\) −20.9443 −0.949076 −0.474538 0.880235i \(-0.657385\pi\)
−0.474538 + 0.880235i \(0.657385\pi\)
\(488\) 0 0
\(489\) 16.9443 0.766246
\(490\) 0 0
\(491\) −15.0557 −0.679455 −0.339728 0.940524i \(-0.610335\pi\)
−0.339728 + 0.940524i \(0.610335\pi\)
\(492\) 0 0
\(493\) −7.70820 −0.347160
\(494\) 0 0
\(495\) 3.63932 0.163575
\(496\) 0 0
\(497\) −6.47214 −0.290315
\(498\) 0 0
\(499\) −9.34752 −0.418453 −0.209226 0.977867i \(-0.567095\pi\)
−0.209226 + 0.977867i \(0.567095\pi\)
\(500\) 0 0
\(501\) −6.83282 −0.305268
\(502\) 0 0
\(503\) 4.94427 0.220454 0.110227 0.993906i \(-0.464842\pi\)
0.110227 + 0.993906i \(0.464842\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 0 0
\(507\) −35.7082 −1.58586
\(508\) 0 0
\(509\) 20.9443 0.928339 0.464169 0.885747i \(-0.346353\pi\)
0.464169 + 0.885747i \(0.346353\pi\)
\(510\) 0 0
\(511\) −13.4164 −0.593507
\(512\) 0 0
\(513\) 2.60990 0.115230
\(514\) 0 0
\(515\) −12.9443 −0.570393
\(516\) 0 0
\(517\) −4.94427 −0.217449
\(518\) 0 0
\(519\) −13.1672 −0.577975
\(520\) 0 0
\(521\) −18.9443 −0.829964 −0.414982 0.909830i \(-0.636212\pi\)
−0.414982 + 0.909830i \(0.636212\pi\)
\(522\) 0 0
\(523\) −25.0557 −1.09561 −0.547805 0.836606i \(-0.684537\pi\)
−0.547805 + 0.836606i \(0.684537\pi\)
\(524\) 0 0
\(525\) −6.76393 −0.295202
\(526\) 0 0
\(527\) 10.4721 0.456173
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 8.83282 0.383312
\(532\) 0 0
\(533\) 80.7214 3.49643
\(534\) 0 0
\(535\) −10.4721 −0.452750
\(536\) 0 0
\(537\) −11.0557 −0.477090
\(538\) 0 0
\(539\) 0.763932 0.0329049
\(540\) 0 0
\(541\) 18.7639 0.806724 0.403362 0.915040i \(-0.367841\pi\)
0.403362 + 0.915040i \(0.367841\pi\)
\(542\) 0 0
\(543\) −8.94427 −0.383835
\(544\) 0 0
\(545\) −32.9443 −1.41118
\(546\) 0 0
\(547\) −7.59675 −0.324813 −0.162407 0.986724i \(-0.551926\pi\)
−0.162407 + 0.986724i \(0.551926\pi\)
\(548\) 0 0
\(549\) −4.76393 −0.203320
\(550\) 0 0
\(551\) −3.63932 −0.155040
\(552\) 0 0
\(553\) 1.52786 0.0649714
\(554\) 0 0
\(555\) −4.94427 −0.209873
\(556\) 0 0
\(557\) 10.3607 0.438996 0.219498 0.975613i \(-0.429558\pi\)
0.219498 + 0.975613i \(0.429558\pi\)
\(558\) 0 0
\(559\) 41.8885 1.77170
\(560\) 0 0
\(561\) −0.944272 −0.0398672
\(562\) 0 0
\(563\) 20.8328 0.877999 0.438999 0.898487i \(-0.355333\pi\)
0.438999 + 0.898487i \(0.355333\pi\)
\(564\) 0 0
\(565\) 43.4164 1.82654
\(566\) 0 0
\(567\) −2.41641 −0.101480
\(568\) 0 0
\(569\) −19.8885 −0.833771 −0.416886 0.908959i \(-0.636878\pi\)
−0.416886 + 0.908959i \(0.636878\pi\)
\(570\) 0 0
\(571\) −8.76393 −0.366759 −0.183380 0.983042i \(-0.558704\pi\)
−0.183380 + 0.983042i \(0.558704\pi\)
\(572\) 0 0
\(573\) −6.11146 −0.255310
\(574\) 0 0
\(575\) −43.7771 −1.82563
\(576\) 0 0
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) 0 0
\(579\) −29.5279 −1.22714
\(580\) 0 0
\(581\) 2.00000 0.0829740
\(582\) 0 0
\(583\) −3.41641 −0.141493
\(584\) 0 0
\(585\) −30.8328 −1.27478
\(586\) 0 0
\(587\) −5.41641 −0.223559 −0.111780 0.993733i \(-0.535655\pi\)
−0.111780 + 0.993733i \(0.535655\pi\)
\(588\) 0 0
\(589\) 4.94427 0.203725
\(590\) 0 0
\(591\) 10.2492 0.421597
\(592\) 0 0
\(593\) 14.9443 0.613688 0.306844 0.951760i \(-0.400727\pi\)
0.306844 + 0.951760i \(0.400727\pi\)
\(594\) 0 0
\(595\) −3.23607 −0.132666
\(596\) 0 0
\(597\) 6.83282 0.279649
\(598\) 0 0
\(599\) 39.7771 1.62525 0.812624 0.582789i \(-0.198038\pi\)
0.812624 + 0.582789i \(0.198038\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 15.4164 0.627805
\(604\) 0 0
\(605\) 33.7082 1.37043
\(606\) 0 0
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 0 0
\(609\) 9.52786 0.386089
\(610\) 0 0
\(611\) 41.8885 1.69463
\(612\) 0 0
\(613\) −8.83282 −0.356754 −0.178377 0.983962i \(-0.557085\pi\)
−0.178377 + 0.983962i \(0.557085\pi\)
\(614\) 0 0
\(615\) −49.8885 −2.01170
\(616\) 0 0
\(617\) −34.3607 −1.38331 −0.691654 0.722229i \(-0.743118\pi\)
−0.691654 + 0.722229i \(0.743118\pi\)
\(618\) 0 0
\(619\) 12.2918 0.494049 0.247024 0.969009i \(-0.420547\pi\)
0.247024 + 0.969009i \(0.420547\pi\)
\(620\) 0 0
\(621\) −44.2229 −1.77460
\(622\) 0 0
\(623\) 2.00000 0.0801283
\(624\) 0 0
\(625\) −22.4164 −0.896656
\(626\) 0 0
\(627\) −0.445825 −0.0178045
\(628\) 0 0
\(629\) −1.23607 −0.0492853
\(630\) 0 0
\(631\) −20.9443 −0.833778 −0.416889 0.908957i \(-0.636880\pi\)
−0.416889 + 0.908957i \(0.636880\pi\)
\(632\) 0 0
\(633\) 17.6656 0.702146
\(634\) 0 0
\(635\) 38.8328 1.54103
\(636\) 0 0
\(637\) −6.47214 −0.256435
\(638\) 0 0
\(639\) 9.52786 0.376916
\(640\) 0 0
\(641\) 26.9443 1.06423 0.532117 0.846671i \(-0.321397\pi\)
0.532117 + 0.846671i \(0.321397\pi\)
\(642\) 0 0
\(643\) −27.1246 −1.06969 −0.534845 0.844950i \(-0.679630\pi\)
−0.534845 + 0.844950i \(0.679630\pi\)
\(644\) 0 0
\(645\) −25.8885 −1.01936
\(646\) 0 0
\(647\) 24.3607 0.957717 0.478859 0.877892i \(-0.341051\pi\)
0.478859 + 0.877892i \(0.341051\pi\)
\(648\) 0 0
\(649\) −4.58359 −0.179922
\(650\) 0 0
\(651\) −12.9443 −0.507326
\(652\) 0 0
\(653\) −41.5967 −1.62781 −0.813903 0.581000i \(-0.802661\pi\)
−0.813903 + 0.581000i \(0.802661\pi\)
\(654\) 0 0
\(655\) 37.8885 1.48043
\(656\) 0 0
\(657\) 19.7508 0.770551
\(658\) 0 0
\(659\) −3.05573 −0.119034 −0.0595171 0.998227i \(-0.518956\pi\)
−0.0595171 + 0.998227i \(0.518956\pi\)
\(660\) 0 0
\(661\) −23.4164 −0.910793 −0.455396 0.890289i \(-0.650502\pi\)
−0.455396 + 0.890289i \(0.650502\pi\)
\(662\) 0 0
\(663\) 8.00000 0.310694
\(664\) 0 0
\(665\) −1.52786 −0.0592480
\(666\) 0 0
\(667\) 61.6656 2.38770
\(668\) 0 0
\(669\) 12.9443 0.500454
\(670\) 0 0
\(671\) 2.47214 0.0954358
\(672\) 0 0
\(673\) 39.3050 1.51509 0.757547 0.652780i \(-0.226398\pi\)
0.757547 + 0.652780i \(0.226398\pi\)
\(674\) 0 0
\(675\) 30.2492 1.16429
\(676\) 0 0
\(677\) −11.8197 −0.454266 −0.227133 0.973864i \(-0.572935\pi\)
−0.227133 + 0.973864i \(0.572935\pi\)
\(678\) 0 0
\(679\) 0.472136 0.0181189
\(680\) 0 0
\(681\) 26.6950 1.02296
\(682\) 0 0
\(683\) 23.8197 0.911434 0.455717 0.890125i \(-0.349383\pi\)
0.455717 + 0.890125i \(0.349383\pi\)
\(684\) 0 0
\(685\) −40.3607 −1.54210
\(686\) 0 0
\(687\) 16.0000 0.610438
\(688\) 0 0
\(689\) 28.9443 1.10269
\(690\) 0 0
\(691\) −3.34752 −0.127346 −0.0636729 0.997971i \(-0.520281\pi\)
−0.0636729 + 0.997971i \(0.520281\pi\)
\(692\) 0 0
\(693\) −1.12461 −0.0427205
\(694\) 0 0
\(695\) −32.9443 −1.24965
\(696\) 0 0
\(697\) −12.4721 −0.472416
\(698\) 0 0
\(699\) 19.6393 0.742827
\(700\) 0 0
\(701\) −44.2492 −1.67127 −0.835635 0.549285i \(-0.814900\pi\)
−0.835635 + 0.549285i \(0.814900\pi\)
\(702\) 0 0
\(703\) −0.583592 −0.0220106
\(704\) 0 0
\(705\) −25.8885 −0.975019
\(706\) 0 0
\(707\) −2.47214 −0.0929742
\(708\) 0 0
\(709\) −25.5967 −0.961306 −0.480653 0.876911i \(-0.659600\pi\)
−0.480653 + 0.876911i \(0.659600\pi\)
\(710\) 0 0
\(711\) −2.24922 −0.0843525
\(712\) 0 0
\(713\) −83.7771 −3.13748
\(714\) 0 0
\(715\) 16.0000 0.598366
\(716\) 0 0
\(717\) 16.0000 0.597531
\(718\) 0 0
\(719\) 0.583592 0.0217643 0.0108822 0.999941i \(-0.496536\pi\)
0.0108822 + 0.999941i \(0.496536\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 0 0
\(723\) 29.5279 1.09815
\(724\) 0 0
\(725\) −42.1803 −1.56654
\(726\) 0 0
\(727\) 46.4721 1.72356 0.861778 0.507285i \(-0.169351\pi\)
0.861778 + 0.507285i \(0.169351\pi\)
\(728\) 0 0
\(729\) 24.0557 0.890953
\(730\) 0 0
\(731\) −6.47214 −0.239381
\(732\) 0 0
\(733\) 31.4164 1.16039 0.580196 0.814477i \(-0.302976\pi\)
0.580196 + 0.814477i \(0.302976\pi\)
\(734\) 0 0
\(735\) 4.00000 0.147542
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) −6.83282 −0.251349 −0.125675 0.992072i \(-0.540110\pi\)
−0.125675 + 0.992072i \(0.540110\pi\)
\(740\) 0 0
\(741\) 3.77709 0.138755
\(742\) 0 0
\(743\) −38.4721 −1.41141 −0.705703 0.708508i \(-0.749369\pi\)
−0.705703 + 0.708508i \(0.749369\pi\)
\(744\) 0 0
\(745\) 3.41641 0.125167
\(746\) 0 0
\(747\) −2.94427 −0.107725
\(748\) 0 0
\(749\) 3.23607 0.118243
\(750\) 0 0
\(751\) −11.0557 −0.403429 −0.201715 0.979444i \(-0.564651\pi\)
−0.201715 + 0.979444i \(0.564651\pi\)
\(752\) 0 0
\(753\) −17.3050 −0.630627
\(754\) 0 0
\(755\) 12.9443 0.471090
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) 0 0
\(759\) 7.55418 0.274199
\(760\) 0 0
\(761\) −31.8885 −1.15596 −0.577979 0.816051i \(-0.696159\pi\)
−0.577979 + 0.816051i \(0.696159\pi\)
\(762\) 0 0
\(763\) 10.1803 0.368553
\(764\) 0 0
\(765\) 4.76393 0.172240
\(766\) 0 0
\(767\) 38.8328 1.40217
\(768\) 0 0
\(769\) 48.8328 1.76096 0.880478 0.474087i \(-0.157222\pi\)
0.880478 + 0.474087i \(0.157222\pi\)
\(770\) 0 0
\(771\) 2.47214 0.0890318
\(772\) 0 0
\(773\) −4.00000 −0.143870 −0.0719350 0.997409i \(-0.522917\pi\)
−0.0719350 + 0.997409i \(0.522917\pi\)
\(774\) 0 0
\(775\) 57.3050 2.05845
\(776\) 0 0
\(777\) 1.52786 0.0548118
\(778\) 0 0
\(779\) −5.88854 −0.210979
\(780\) 0 0
\(781\) −4.94427 −0.176920
\(782\) 0 0
\(783\) −42.6099 −1.52275
\(784\) 0 0
\(785\) 9.88854 0.352937
\(786\) 0 0
\(787\) −3.70820 −0.132183 −0.0660916 0.997814i \(-0.521053\pi\)
−0.0660916 + 0.997814i \(0.521053\pi\)
\(788\) 0 0
\(789\) 30.8328 1.09768
\(790\) 0 0
\(791\) −13.4164 −0.477033
\(792\) 0 0
\(793\) −20.9443 −0.743753
\(794\) 0 0
\(795\) −17.8885 −0.634441
\(796\) 0 0
\(797\) −12.5836 −0.445734 −0.222867 0.974849i \(-0.571542\pi\)
−0.222867 + 0.974849i \(0.571542\pi\)
\(798\) 0 0
\(799\) −6.47214 −0.228968
\(800\) 0 0
\(801\) −2.94427 −0.104031
\(802\) 0 0
\(803\) −10.2492 −0.361687
\(804\) 0 0
\(805\) 25.8885 0.912451
\(806\) 0 0
\(807\) −16.9443 −0.596467
\(808\) 0 0
\(809\) 18.9443 0.666045 0.333023 0.942919i \(-0.391931\pi\)
0.333023 + 0.942919i \(0.391931\pi\)
\(810\) 0 0
\(811\) −42.1803 −1.48115 −0.740576 0.671973i \(-0.765447\pi\)
−0.740576 + 0.671973i \(0.765447\pi\)
\(812\) 0 0
\(813\) −9.16718 −0.321507
\(814\) 0 0
\(815\) 44.3607 1.55389
\(816\) 0 0
\(817\) −3.05573 −0.106906
\(818\) 0 0
\(819\) 9.52786 0.332931
\(820\) 0 0
\(821\) −33.0132 −1.15217 −0.576084 0.817391i \(-0.695420\pi\)
−0.576084 + 0.817391i \(0.695420\pi\)
\(822\) 0 0
\(823\) −6.47214 −0.225604 −0.112802 0.993617i \(-0.535983\pi\)
−0.112802 + 0.993617i \(0.535983\pi\)
\(824\) 0 0
\(825\) −5.16718 −0.179898
\(826\) 0 0
\(827\) 11.5967 0.403258 0.201629 0.979462i \(-0.435376\pi\)
0.201629 + 0.979462i \(0.435376\pi\)
\(828\) 0 0
\(829\) −23.0557 −0.800759 −0.400379 0.916350i \(-0.631122\pi\)
−0.400379 + 0.916350i \(0.631122\pi\)
\(830\) 0 0
\(831\) 10.6950 0.371007
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −17.8885 −0.619059
\(836\) 0 0
\(837\) 57.8885 2.00092
\(838\) 0 0
\(839\) −52.3607 −1.80769 −0.903846 0.427859i \(-0.859268\pi\)
−0.903846 + 0.427859i \(0.859268\pi\)
\(840\) 0 0
\(841\) 30.4164 1.04884
\(842\) 0 0
\(843\) −15.4164 −0.530969
\(844\) 0 0
\(845\) −93.4853 −3.21599
\(846\) 0 0
\(847\) −10.4164 −0.357912
\(848\) 0 0
\(849\) −29.3050 −1.00574
\(850\) 0 0
\(851\) 9.88854 0.338975
\(852\) 0 0
\(853\) 16.7639 0.573986 0.286993 0.957933i \(-0.407344\pi\)
0.286993 + 0.957933i \(0.407344\pi\)
\(854\) 0 0
\(855\) 2.24922 0.0769218
\(856\) 0 0
\(857\) −12.4721 −0.426040 −0.213020 0.977048i \(-0.568330\pi\)
−0.213020 + 0.977048i \(0.568330\pi\)
\(858\) 0 0
\(859\) −0.111456 −0.00380284 −0.00190142 0.999998i \(-0.500605\pi\)
−0.00190142 + 0.999998i \(0.500605\pi\)
\(860\) 0 0
\(861\) 15.4164 0.525390
\(862\) 0 0
\(863\) 0.944272 0.0321434 0.0160717 0.999871i \(-0.494884\pi\)
0.0160717 + 0.999871i \(0.494884\pi\)
\(864\) 0 0
\(865\) −34.4721 −1.17209
\(866\) 0 0
\(867\) −1.23607 −0.0419791
\(868\) 0 0
\(869\) 1.16718 0.0395940
\(870\) 0 0
\(871\) 67.7771 2.29654
\(872\) 0 0
\(873\) −0.695048 −0.0235238
\(874\) 0 0
\(875\) −1.52786 −0.0516512
\(876\) 0 0
\(877\) 31.1246 1.05100 0.525502 0.850793i \(-0.323878\pi\)
0.525502 + 0.850793i \(0.323878\pi\)
\(878\) 0 0
\(879\) −34.6099 −1.16736
\(880\) 0 0
\(881\) −29.0557 −0.978912 −0.489456 0.872028i \(-0.662805\pi\)
−0.489456 + 0.872028i \(0.662805\pi\)
\(882\) 0 0
\(883\) −23.4164 −0.788025 −0.394012 0.919105i \(-0.628913\pi\)
−0.394012 + 0.919105i \(0.628913\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) −20.3607 −0.683645 −0.341822 0.939765i \(-0.611044\pi\)
−0.341822 + 0.939765i \(0.611044\pi\)
\(888\) 0 0
\(889\) −12.0000 −0.402467
\(890\) 0 0
\(891\) −1.84597 −0.0618424
\(892\) 0 0
\(893\) −3.05573 −0.102256
\(894\) 0 0
\(895\) −28.9443 −0.967500
\(896\) 0 0
\(897\) −64.0000 −2.13690
\(898\) 0 0
\(899\) −80.7214 −2.69221
\(900\) 0 0
\(901\) −4.47214 −0.148988
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) 0 0
\(905\) −23.4164 −0.778388
\(906\) 0 0
\(907\) −11.2361 −0.373088 −0.186544 0.982447i \(-0.559729\pi\)
−0.186544 + 0.982447i \(0.559729\pi\)
\(908\) 0 0
\(909\) 3.63932 0.120709
\(910\) 0 0
\(911\) 32.3607 1.07216 0.536079 0.844168i \(-0.319905\pi\)
0.536079 + 0.844168i \(0.319905\pi\)
\(912\) 0 0
\(913\) 1.52786 0.0505649
\(914\) 0 0
\(915\) 12.9443 0.427924
\(916\) 0 0
\(917\) −11.7082 −0.386639
\(918\) 0 0
\(919\) 44.9443 1.48257 0.741287 0.671188i \(-0.234216\pi\)
0.741287 + 0.671188i \(0.234216\pi\)
\(920\) 0 0
\(921\) 15.4164 0.507988
\(922\) 0 0
\(923\) 41.8885 1.37878
\(924\) 0 0
\(925\) −6.76393 −0.222397
\(926\) 0 0
\(927\) −5.88854 −0.193405
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 0.472136 0.0154736
\(932\) 0 0
\(933\) −3.77709 −0.123656
\(934\) 0 0
\(935\) −2.47214 −0.0808475
\(936\) 0 0
\(937\) 55.8885 1.82580 0.912900 0.408184i \(-0.133838\pi\)
0.912900 + 0.408184i \(0.133838\pi\)
\(938\) 0 0
\(939\) −26.4721 −0.863886
\(940\) 0 0
\(941\) −18.8754 −0.615320 −0.307660 0.951496i \(-0.599546\pi\)
−0.307660 + 0.951496i \(0.599546\pi\)
\(942\) 0 0
\(943\) 99.7771 3.24919
\(944\) 0 0
\(945\) −17.8885 −0.581914
\(946\) 0 0
\(947\) −6.87539 −0.223420 −0.111710 0.993741i \(-0.535633\pi\)
−0.111710 + 0.993741i \(0.535633\pi\)
\(948\) 0 0
\(949\) 86.8328 2.81871
\(950\) 0 0
\(951\) −7.19350 −0.233265
\(952\) 0 0
\(953\) 22.9443 0.743238 0.371619 0.928385i \(-0.378803\pi\)
0.371619 + 0.928385i \(0.378803\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 0 0
\(957\) 7.27864 0.235285
\(958\) 0 0
\(959\) 12.4721 0.402746
\(960\) 0 0
\(961\) 78.6656 2.53760
\(962\) 0 0
\(963\) −4.76393 −0.153516
\(964\) 0 0
\(965\) −77.3050 −2.48853
\(966\) 0 0
\(967\) −27.0557 −0.870054 −0.435027 0.900418i \(-0.643261\pi\)
−0.435027 + 0.900418i \(0.643261\pi\)
\(968\) 0 0
\(969\) −0.583592 −0.0187477
\(970\) 0 0
\(971\) −28.8328 −0.925289 −0.462645 0.886544i \(-0.653099\pi\)
−0.462645 + 0.886544i \(0.653099\pi\)
\(972\) 0 0
\(973\) 10.1803 0.326367
\(974\) 0 0
\(975\) 43.7771 1.40199
\(976\) 0 0
\(977\) −41.0557 −1.31349 −0.656745 0.754113i \(-0.728067\pi\)
−0.656745 + 0.754113i \(0.728067\pi\)
\(978\) 0 0
\(979\) 1.52786 0.0488307
\(980\) 0 0
\(981\) −14.9868 −0.478493
\(982\) 0 0
\(983\) −45.5279 −1.45211 −0.726057 0.687635i \(-0.758649\pi\)
−0.726057 + 0.687635i \(0.758649\pi\)
\(984\) 0 0
\(985\) 26.8328 0.854965
\(986\) 0 0
\(987\) 8.00000 0.254643
\(988\) 0 0
\(989\) 51.7771 1.64642
\(990\) 0 0
\(991\) −58.2492 −1.85035 −0.925174 0.379544i \(-0.876081\pi\)
−0.925174 + 0.379544i \(0.876081\pi\)
\(992\) 0 0
\(993\) −30.1115 −0.955558
\(994\) 0 0
\(995\) 17.8885 0.567105
\(996\) 0 0
\(997\) −37.4853 −1.18717 −0.593586 0.804771i \(-0.702288\pi\)
−0.593586 + 0.804771i \(0.702288\pi\)
\(998\) 0 0
\(999\) −6.83282 −0.216181
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.y.1.1 2
4.3 odd 2 7616.2.a.n.1.2 2
8.3 odd 2 238.2.a.f.1.1 2
8.5 even 2 1904.2.a.f.1.2 2
24.11 even 2 2142.2.a.x.1.1 2
40.19 odd 2 5950.2.a.x.1.2 2
56.27 even 2 1666.2.a.o.1.2 2
136.67 odd 2 4046.2.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
238.2.a.f.1.1 2 8.3 odd 2
1666.2.a.o.1.2 2 56.27 even 2
1904.2.a.f.1.2 2 8.5 even 2
2142.2.a.x.1.1 2 24.11 even 2
4046.2.a.v.1.2 2 136.67 odd 2
5950.2.a.x.1.2 2 40.19 odd 2
7616.2.a.n.1.2 2 4.3 odd 2
7616.2.a.y.1.1 2 1.1 even 1 trivial